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Perfect sorting by reversals:
the problem



The model

Genome or chromosome = sequence of genes (genes are oriented).

Restricting to the set of common genes of two species:
Genome = a signed permutation (signs indicate orientation).

W.l.o.g., the genome of one of the species is 12 . . . n.

One type of evolutionary events only: reversals.
The reversal of a fragment of a permutation reverses the order of the
elements in that fragment while changing their signs.

Example: 1 -7 6 -10 9 -8 2 -11 -3 5 4

⇓ Reversal of the red fragment ⇓

1 -7 6 -10 9 -8 2 -4 -5 3 11
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Sorting by reversals

The problem:
input: A signed permutation σ of size n.
output: A parsimonious scenario from σ to 12 . . . n or -n . . . -2 -1.

Scenario = sequence of reversals.

Parsimonious = shortest, i.e. minimal number of reversals.

The solution:

Hannenhalli-Pevzner theory

Polynomial algorithms:
from O(n4) to O(n

√
n log n)

Remark: the problem is NP-hard when
permutations are unsigned.
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Perfect sorting by reversals (1/2)

Perfect sorting by reversals:
further requirement not to break any interval.

Interval of σ =
fragment of σ whose (unsigned) elements form of range (in �).
Example: σ = 4 -7 -5 6 3 -1 2.

Why this restriction?
Groups of homologous genes appearing together in two species are likely
to be

together in the common ancestor;

never separated during evolution.
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Perfect sorting by reversals (2/2)

The problem:

input: A signed permutation σ of size n.

output: A parsimonious perfect scenario from σ to 12 . . . n or
-n . . . -2 -1.

Parsimonious perfect scenario = scenario where reversals never break
intervals, and which is shortest among all such scenarios.

Be careful!: Parsimonious perfect⇒� parsimonious.

Complexity: NP-hard problem [Figeac-Varré, ’04].

Algorithm:
FPT algorithm of [Bérard-Bergeron-Chauve-Paul, ’07]

(
in 2p · nO(1)

)
,

representing permutations as trees.
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Strong intervals

Strong interval of σ: one that does not overlap any other interval of σ.

Interval I is strong iff ∀J, I ⊆ J or J ⊆ I or I ∩ J = ∅.

Remark: Trivial intervals (=singletons and whole set) are strong.

Example:

5 -6 -7 9 4 -3 1 2 -8 -10 -17 13 -15 12 11 -14 18 -19 -16

strong, overlapping

Remark: Identical definition on signed and unsigned permutations.
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Strong interval tree [Heber-Stoye, ’01](+ PQ-trees of [Booth-Lueker, ’76])

Example (continued):

5 -6 -7 9 4 -3 1 2 -8 -10 -17 13 -15 12 11 -14 18 -19 -16

The inclusion order among strong intervals is a tree-like ordering.

[1..19]

[1..9]

[5..7]

5 -6 -7

9 [1..4]

4 -3[1..2]

1 2

-8

-10 [11..19]

-17 [11..15]

13 -15
[11..12]

12 11

-14

[18..19]

18 -19

-16
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Enriching strong interval trees

To every node, associate a quotient
permutation = the order of the children.
(Remark: children are intervals.)

Example: ...
[1..9]
2 4 1 3

[5..7]...
9 [1..4]...

-8

Two types of nodes:

Linear nodes (�):
increasing, i.e. quotient permutation = 1 2 . . . k ;

⇒ label �
decreasing, i.e. quotient permutation = k (k − 1) . . . 2 1;

⇒ label �

Prime nodes (©): the quotient permutation is simple.

Simple permutations =
the only intervals are the trivial ones:
{1}, {2},. . ., {n} and [1, . . . , n].

Example: 425163, i.e.
425163

4 2 5 1 6 3
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Simplifying strong interval trees

In the full tree obtained, some information is redundant.

[1..19]
�

[1..9]
2 4 1 3

[5..7]
�

5 -6 -7

9 [1..4]
�

4 -3[1..2]
�

1 2

-8

-10 [11..19]
3 1 4 2

-17 [11..15]
2 4 1 3

13 -15

[11..12]
�

12 11
-14

[18..19]
�

18 -19

-16

The full tree and the permutation can be recovered keeping only:

the quotient permutations labeling the internal nodes;

in the signed permutation case: the signs of the leaves.
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The strong interval trees we want

We use the simplified version of the strong interval tree.

�

2 4 1 3

�

•
+
•
−
•
−

•
+

�

•
+
•
−

�

•
+
•
+

•
−

•
−

3 1 4 2

•
−

2 4 1 3

•
+
•
−

�

•
+
•
+

•
−

�

•
+
•
−

•
−

Remark: Strong interval trees (simplified or not) can be computed in linear
time [Uno-Yagiura, ’00] [Bergeron-Chauve-de Montgolfier-Raffinot, ’08].
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Decomposition trees
or strong interval trees
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Substitution in permutations

Easily explained on permutation diagrams.

Example: σ = 1 8 3 6 4 2 5 7 =

i

σi

The substitution of π1, . . . , πk in σ of size k is σ[π1, . . . , πk ] obtained as:
Example:

1 3 2[2 1, 1 3 2, 1] = = = 2 1 4 6 5 3

Remark: Every πi corresponds to an interval in σ[π1, . . . , πk ].
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Substitution decomposition theorem [Albert-Atkinson, ’05]

Theorem: Every permutation of size , 1 is uniquely decomposed as

12 . . . k [π1, . . . , πk ], where the πi are ⊕-indecomposable; or

k . . . 21[π1, . . . , πk ], where the πi are 	-indecomposable; or

σ[π1, . . . , πk ], where σ is simple of size k ≥ 4.

Remark: Simple permutations (i.e. those with only trivial intervals, like
before) are 12, 21 or of size ≥ 4.

Notation: ⊕-indecomposable = that cannot be written as 12[π1, π2];
	-indecomposable = that cannot be written as 21[π1, π2].

Remark: The πi are the maximal strong intervals of the decomposed
permutation.
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(Substitution) decomposition trees

The theorem gives the first level of the decomposition tree.

Decomposing recursively the πi ’s gives the full decomposition tree.

Example: 5 6 7 9 4 3 1 2 8 10 17 13 15 12 11 14 18 19 16

= 1 2 3 [ 5 6 7 9 4 3 1 2 8 , 1 , 7 3 5 2 1 4 8 9 6 ]

= 1 2 3 [ 2 4 1 3 [ 1 2 3 , 1 , 4 3 1 2, 1], 1, . . .] = . . .

123

tree of
567943128

• tree of
735214896

123

2413

123

• • •

•
321

• • 12

• •

•

•
3142

•
2413

• • 21

• •

•

12

• •

•
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Decomposition tree or strong interval tree?

Strong interval tree: �

2 4 1 3

�

•
+
•
−
•
−

•
+

�

•
+
•
−

�

•
+
•
+

•
−

•
−

3 1 4 2

•
−

2 4 1 3

•
+
•
−

�

•
+
•
+

•
−

�

•
+
•
−

•
−

Decomposition tree: 123

2413

123

• • •

• 321

• • 12

• •

•

• 3142

• 2413

• • 21

• •

•

12

• •

•

They are the same (in the unsigned case) up to the change of notation
12 . . . k ↔ �, k . . . 21↔ � and σ↔ σ for simples.
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Decomposition trees
or strong interval trees

1 Strong interval trees
2 (Substitution) decomposition trees
3 Some applications in algorithms and combinatorics



Strong interval trees in algorithms

Computating modular decomposition trees of graphs through
factorizing permutations.
[Habib-Paul-Viennot, ’98] [Habib-de Montgolfier-Paul, ’04]
[Tedder-Corneil-Habib-Paul, ’08] [Capelle-Habib-de Montgolfier, ’02] [Bui
Xuan-Habib-Paul, ’05] [Bergeron-Chauve-de Montgolfier-Raffinot, ’08]

Pattern matching of permutations, in restricted cases.
[Bose-Buss-Lubiw, ’98] [Ibarra, ’97] [B-Rossin, ’06] [B-Rossin-Vialette, ’07]

Computing scenarios of perfect sorting by reversals.
[Bérard-Bergeron-Chauve-Paul, ’07] [Bérard-Chateau-Chauve-Paul-Tannier,
’08] [B-Chauve-Mishna-Rossin, ’09]

. . .
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Decomposition trees in combinatorics

Enumeration of simple permutations.
[Albert-Atkinson-Klazar, ’03]

Number of intervals in random permutations.
[Corteel-Louchard-Pemantle, ’06]

Properties of classes closed by substitution.
[Atkinson-Stitt, ’02] [Brignall, ’07] [Atkinson-Ruškuc-Smith, ’09]

Exhibit the structure of classes.
[Albert-Atkinson, ’05] [Brignall-Huczynska-Vatter, ’08]
[Brignall-Ruškuc-Vatter, ’08] [Bassino-B-Rossin, ’08]
[Bassino-B-Pierrot-Rossin, ’15] [Bassino-B-Pierrot-Pivoteau-Rossin, ’16]

. . .
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Solving perfect sorting by reversals:
an algorithm and its analysis



Idea of the algorithm of [Bérard-Bergeron-Chauve-Paul, ’07]

Starting point: Compute the strong interval tree of σ.

Pre-processing: Put labels + or − on the nodes of the strong interval tree
of σ:

Leaf: sign of the element in σ;

Linear node: + for � (increasing) and − for � (decreasing);

Prime node whose parent is linear: sign of its parent;
Other prime node: ???

↪→ Test labels + and − and choose the shortest scenario.

Main part of the algorithm:

Perform Hannenhalli-Pevzner (or improved version – solving (normal)
sorting by reversals) on prime nodes.

A signed node belongs to the scenario iff it has a linear parent and its
sign is different from the one of its parent.
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Example of labeled decomposition tree

+
�

+
2 4 1 3

+
�

•
+
•
−
•
−

•
+

−
�

•
+
•
−

+
�

•
+
•
+

•
−

•
−

+
3 1 4 2

•
−

???
2 4 1 3

•
+
•
−

−
�

•
+
•
+

•
−

+
�

•
+
•
−

•
−
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Complexity

The algorithm runs in O(2pn
√

n log n), with p = # prime nodes.

It is polynomial when there are no prime nodes;
this corresponds to separable permutations or commuting scenarios.

[Bérard-Bergeron-Chauve-Paul, ’07]

Under the uniform distribution on signed permutations, it is:

Polynomial with probability 1 asymptotically.
Because a tree is of the shape shown
opposite with probability tending to 1:

prime node

� � � . . .

Polynomial on average.
Bounding the number of permutations whose strong interval tree
contains p prime nodes.

[B-Chauve-Mishna-Rossin, ’09]
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Separable permutations
and commuting scenarios



Commuting scenarios

A scenario for perfect sorting by reversals is commuting when all its
reversals pairwise commute (=do not overlap).

Nice surprise: Examples of commuting scenarios arise in the study of
mammalian genome evolution.

Remark: A commuting scenario can be described as a set (instead of
sequence) of reversals.

A (signed) permutation is commuting if there exists a commuting
scenario sorting it.

Remark: If σ is commuting, all permutations obtained changing the signs
in σ also are.
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Separable permutations

Separable permutations:

Those avoiding the patterns 2413 and 3142.

Those whose decomposition tree contains no prime node.

Consequence: Separable permutations and commuting permutations
(rather, their unsigned version) coincide.

Consequence: The algorithm is polynomial on separable permutations
(p = 0).
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Reversals in commuting scenarios

In general, in the computed scenario, a reversal is

either a linear node or leaf with label different from its linear parent,

or inside a prime node.

Consequence: For separable permutations, a reversal is a node with a
label different from its parent.

Prop.: No � − � nor � − � edge in decomposition trees.

Consequence:

The set of reversals is

all internal nodes except the root

+leaves with a label different from their parent.

Reversals ≈ internal nodes − the root + half of the leaves
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Parameters of commuting scenarios on Schröder trees

The shape of the tree is sufficient to study reversals.

Decomposition trees of (unsigned) Schröder trees
separable permutation + label � or � on the root

�

�

5 �

�

2 1

3 4

6 �

12 �

1011

�

7 8 9

◦

◦

◦

◦

◦

◦ ◦

size of σ ←→ number of leaves
reversal of length ≥ 2 ←→ internal node except the root

reversal of length 1 ←→ some leaves (half of them)
length of a reversal ←→ size (= # leaves) of the subtree
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Parameters on Schröder trees

Study two parameters on Schröder trees:

Number of internal nodes, and

Pathlength = sum of the sizes of the subtrees.

Their average give access to:

the average number of reversals, and

the average length of a reversal

in a scenario for a separable permutation.

Analytic combinatorics:
Average of parameters is obtained from bivariate generating functions
S(x, y) =

∑
sn,k xnyk where sn,k = number of Schröder trees with n leaves

and k internal nodes (resp. pathlength k ).
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Example: average value of the number of internal nodes

Application of the methodology of [Flajolet-Sedgewick, ’09].
(Almost direct application; but note that for us the size is the number of
leaves.)

Definition: S(x, y) =
∑

sn,k xnyk ,

where sn,k = number of Schröder trees with n leaves and k internal nodes

Combinatorial specification: S = • +

◦

S S . . . S

Functional equation: S(x, y) = x + y S(x,y)2

1−S(x,y)

Solution: S(x, y) =
(x+1)−

√
(x+1)2−4x(y+1)
2(y+1)

Average number of internal nodes =
∑

k ksn,k∑
k sn,k

=
[xn]

∂S(x,y)
∂y |y=1

[xn]S(x,1)

Asymptotic estimate of [xn]S(x, 1) when n → +∞: from asymptotic
estimate of S(x, 1) when x → dominant singularity
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Results on parameters

In Schröder trees with n leaves:

Average number of internal nodes: ∼ n√
2

Average pathlength: ∼ 1.27n
3
2

In scenarios for separable permutations of size n:

Average number of reversals: ∼ 1+
√

2
2 n

(among which on average n/2 are of length 1)

Average length of a reversal: ∼ 1.054
√

n
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In scenarios for separable permutations of size n:

Average number of reversals: ∼ 1+
√

2
2 n

(among which on average n/2 are of length 1)

Average length of a reversal: ∼ 1.054
√

n

For separable permutations:

Parsimonious scenarios are computed in polynomial time;

Average properties of the reversals they contain are known.

Extension to decomposition trees with some prime nodes?
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Allowing prime nodes of bounded arity



Comparing models with data

Data: tree comparing Gorilla and Bos Taurus:

Random tree under the uniform distribution on permutations:

Random tree under the uniform distribution on separables:

Neither the uniform distribution nor the restriction to separable
permutations represent the data well.
Can we do better by allowing some prime nodes?
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Allowing prime nodes of bounded arity

Fix a maximal arity k for the prime nodes.
Remark: This is not a simple variety of trees.

Number of permutations of size n in this class: ∼ c1 · ρ
−n
k n−3/2.

Average number of prime nodes in such trees: ∼ c2 · n

Average number of internal nodes in such trees: ∼ c3 · n

Average pathlength in such trees: ∼ c4 · n3/2

These parameters are related to the perfect sorting by reversals
(but less directly than in the separable case).

The constants ci are expressed in terms of τk , ρk and Λ′′k (τk ), defined by:

Λk (x) = x2

1−x +
∑k

j=4 sj

(
x

1−x

)j
where sj = # simples of size j;

τk is the smallest root of Λ′k (τk ) = 1;

ρk = τk − Λk (τk ).
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From genome rearrangements to analytic combinatorics

Random tree under the uniform distribution on permutations whose
decomposition tree has prime nodes of arity at most 7:

Does not seem a good model of data.
But those trees have another interest, for analytic combinatorics.
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Families of trees converging to permutations

Combinatorial objects:

P = the set of all permutations; Pn = those of size n.

P(k) = the set of all permutations whose decomposition tree contains
prime nodes of arity at most k ; P(k)

n = those of size n.

P
(k)
n = Pn as soon as k ≥ n.

Consequently, lim
k→∞
P(k) = P.

Asymptotics:

Stirling estimates: |Pn | ∼n (n/e)n
√

2πn.

Tree estimates: For any fixed k , |P(k)
n | ∼n αkρ

−n
k n−3/2.

For any fixed k , we have an upper bound on αkρ
−n
k n−3/2 as n → ∞;

Illegally applying this bound for k = n gives cst × Stirling estimates.

Open: Can we reconcile both asymptotics properly?
Difficulty: the OGF of permutations is not analytic.
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Other non-uniform distributions
Getting closer to the data?



Galton-Watson trees

These are trees with prescribed offspring distribution:
for all i, pi = probability that a node has i children.

Estimating the offspring distribution on the data
(by frequencies of number of children, forgetting
about the root), we obtain random trees of the
form:

These trees should represent those seen under the prime root in the data.

(Obviously) not a good model.

It is however not so obvious to prove it using the classical method of
comparing the data to the model for some estimator.
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Mixed model

In this model, trees are a forest of 175 subtrees under one prime root,
each subtree being obtainded as:

Draw a random Galton-Watson binary tree, with Proba(leaf) = 0.8;

Replace each leaf by k + 1 leaves, k being randomly chosen
according to a geometric law of parameter 0.85.

Remark: 175 is the arity of the root in one tree from our data.
Parameters 0.8 and 0.85 are heuristic.

Typical tree obtained:

It seems much more like our data!
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Statistical methods to compare trees

The mixed model seems:

to represent the data well;

to be simple enough to be studied mathematically.

Questions are:

Prove properties of the trees in this model.

Are some of them transferable to the data? Does this give a better
understanding of the biological data?

How to express that our model represents well the data?

Can we prove it? and how? (Method of the two-sample problem?)
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Statistical methods to compare trees

The mixed model seems:

to represent the data well;

to be simple enough to be studied mathematically.

Questions are:

Prove properties of the trees in this model.

Are some of them transferable to the data? Does this give a better
understanding of the biological data?

How to express that our model represents well the data?

Can we prove it? and how? (Method of the two-sample problem?)

Questions are very much open, and suggestions very welcome!
Thank you!
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