# Decomposition trees of permutations, and how to use them for a (realistic? study of perfect sorting by reversals 

Mathilde Bouvel

talk based on joint works and ongoing projects with
C. Chauve, M. Mishna, C. Nicaud, C. Pivoteau, D. Rossin

Originally, a talk for a mixed audience of bio-informaticians and permutation patterns people

## Perfect sorting by reversals: the problem

## The model

- Genome or chromosome = sequence of genes (genes are oriented).
- Restricting to the set of common genes of two species: Genome $=$ a signed permutation (signs indicate orientation).
W.I.o.g., the genome of one of the species is $12 \ldots n$.
- One type of evolutionary events only: reversals.

The reversal of a fragment of a permutation reverses the order of the elements in that fragment while changing their signs.

$$
\begin{aligned}
\text { Example: } & \begin{array}{ccccccccccc}
1 & -7 & 6 & -10 & 9 & -8 & 2 & -11 & -3 & 5 & 4 \\
& & \Downarrow & \text { Reversal of the red fragment } & \Downarrow & \\
& 1 & -7 & 6 & -10 & 9 & -8 & 2 & -4 & -5 & 3
\end{array} \\
& 11
\end{aligned}
$$

## Sorting by reversals

## The problem:

- input: A signed permutation $\sigma$ of size $n$.
- output: A parsimonious scenario from $\sigma$ to $12 \ldots$. $n$ or $-n \ldots-2-1$.

Scenario = sequence of reversals.
Parsimonious = shortest, i.e. minimal number of reversals.


## The solution:

- Hannenhalli-Pevzner theory
- Polynomial algorithms: from $O\left(n^{4}\right)$ to $O(n \sqrt{n \log n})$

Remark: the problem is NP-hard when permutations are unsigned.

## Perfect sorting by reversals

Perfect sorting by reversals:
further requirement not to break any interval.
Interval of $\sigma=$
fragment of $\sigma$ whose (unsigned) elements form of range (in $\mathbb{N}$ ).
Example: $\sigma=4-7-563-12$.

## Why this restriction?

Groups of homologous genes appearing together in two species are likely to be

- together in the common ancestor;
- never separated during evolution.


## Perfect sorting by reversals

## The problem:

- input: A signed permutation $\sigma$ of size $n$.
- оитрит: A parsimonious perfect scenario from $\sigma$ to $12 \ldots$ n or -n...-2-1.

Parsimonious perfect scenario = scenario where reversals never break intervals, and which is shortest among all such scenarios.

Be careful!: Parsimonious perfect $\nRightarrow$ parsimonious.
Complexity: NP-hard problem [Figeac-Varré, '04].

## Algorithm:

FPT algorithm of [Bérard-Bergeron-Chauve-Paul, '07] (in $2^{p} \cdot n^{O(1)}$ ), representing permutations as trees.

## Decomposition trees or strong interval trees

(1) Strong interval trees
(2) (Substitution) decomposition trees
(3) Some applications in algorithms and combinatorics

## Decomposition trees or strong interval trees

(1) Strong interval trees
(2) (Substitution) decomposition trees
(3) Some applications in algorithms and combinatorics

## Strong intervals

Strong interval of $\sigma$ : one that does not overlap any other interval of $\sigma$. Interval $I$ is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J=\emptyset$.

## Example:


strong, ——overlapping

## Strong intervals

Strong interval of $\sigma$ : one that does not overlap any other interval of $\sigma$. Interval $I$ is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J=\emptyset$.

Remark: Trivial intervals (=singletons and whole set) are strong.

## Example:


__ strong, _ overlapping and __ trivial intervals.

## Strong intervals

Strong interval of $\sigma$ : one that does not overlap any other interval of $\sigma$. Interval $I$ is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J=\emptyset$.

Remark: Trivial intervals (=singletons and whole set) are strong.

## Example:


__ strong, __ overlapping and _ trivial intervals.

## Strong intervals

Strong interval of $\sigma$ : one that does not overlap any other interval of $\sigma$. Interval $I$ is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J=\emptyset$.

Remark: Trivial intervals (=singletons and whole set) are strong.

## Example:


__ strong, __ overlapping and _ trivial intervals.
Remark: Identical definition on signed and unsigned permutations.

## Strong interval tree [Heber-Stoye, '01](+ PQ-trees of [Booth-Lueker, '76])

## Example (continued):



The inclusion order among strong intervals is a tree-like ordering.

## Strong interval tree [Heber-Stoye, '01](+ PQ-trees of [Booth-Lueker, '76]])

## Example (continued):



The inclusion order among strong intervals is a tree-like ordering.


## Enriching strong interval trees

To every node, associate a quotient permutation = the order of the children. (Remark: children are intervals.)

## Example:



## Enriching strong interval trees

To every node, associate a quotient permutation = the order of the children. (Remark: children are intervals.)

Two types of nodes:

- Linear nodes (口):
- increasing, i.e. quotient permutation $=12 \ldots k$;
$\Rightarrow$ label 田
- decreasing, i.e. quotient permutation $=k(k-1) \ldots 21$;
$\Rightarrow$ label $\quad$
- Prime nodes $(\bigcirc)$ : the quotient permutation is simple.

Simple permutations = the only intervals are the trivial ones: $\{1\},\{2\}, \ldots,\{n\}$ and $[1, \ldots, n]$.

## Example:


Simple permutations $=$
the only intervals are the trivial ones:
$\{1\},\{2\}, \ldots,\{n\}$ and $[1, \ldots, n]$.

## Simplifying strong interval trees

In the full tree obtained, some information is redundant.


The full tree and the permutation can be recovered keeping only:

- the quotient permutations labeling the internal nodes;
- in the signed permutation case: the signs of the leaves.


## The strong interval trees we want

We use the simplified version of the strong interval tree.


Remark: Strong interval trees (simplified or not) can be computed in linear time [Uno-Yagiura, '00] [Bergeron-Chauve-de Montgolfier-Raffinot, '08].

## Decomposition trees or strong interval trees

(1) Strong interval trees
(2) (Substitution) decomposition trees
(3) Some applications in algorithms and combinatorics

## Substitution in permutations

Easily explained on permutation diagrams.

Example: $\sigma=18364257=$


## Substitution in permutations

Easily explained on permutation diagrams.

Example: $\sigma=18364257=$


The substitution of $\pi_{1}, \ldots, \pi_{k}$ in $\sigma$ of size $k$ is $\sigma\left[\pi_{1}, \ldots, \pi_{k}\right]$ obtained as: Example:
$132[21,132,1]=$


## Substitution in permutations

Easily explained on permutation diagrams.

Example: $\sigma=18364257=$


The substitution of $\pi_{1}, \ldots, \pi_{k}$ in $\sigma$ of size $k$ is $\sigma\left[\pi_{1}, \ldots, \pi_{k}\right]$ obtained as: Example:

$$
132[21,132,1]=
$$



Remark: Every $\pi_{i}$ corresponds to an interval in $\sigma\left[\pi_{1}, \ldots, \pi_{k}\right]$.

## Substitution decomposition theorem

Theorem: Every permutation of size $\neq 1$ is uniquely decomposed as

- $12 \ldots k\left[\pi_{1}, \ldots, \pi_{k}\right]$, where the $\pi_{i}$ are $\oplus$-indecomposable; or
- $k \ldots 21\left[\pi_{1}, \ldots, \pi_{k}\right]$, where the $\pi_{i}$ are $\Theta$-indecomposable; or
- $\sigma\left[\pi_{1}, \ldots, \pi_{k}\right]$, where $\sigma$ is simple of size $k \geq 4$.

Remark: Simple permutations (i.e. those with only trivial intervals, like before) are 12, 21 or of size $\geq 4$.

Notation: $\oplus$-indecomposable $=$ that cannot be written as $12\left[\pi_{1}, \pi_{2}\right]$; $\ominus$-indecomposable $=$ that cannot be written as $21\left[\pi_{1}, \pi_{2}\right]$.

Remark: The $\pi_{i}$ are the maximal strong intervals of the decomposed permutation.

## (Substitution) decomposition trees

The theorem gives the first level of the decomposition tree.

Example: 56794312810171315121114181916 $=123[567943128,1,735214896$ ]


## (Substitution) decomposition trees

The theorem gives the first level of the decomposition tree.
Decomposing recursively the $\pi_{i}$ 's gives the full decomposition tree.
Example: 56794312810171315121114181916

$$
\begin{aligned}
& =123[567943128,1,735214896] \\
& =123[2413[123,1,4312,1], 1, \ldots]=\ldots
\end{aligned}
$$



## Decomposition tree or strong interval tree?

Strong interval tree:


Decomposition tree:


They are the same (in the unsigned case) up to the change of notation $12 \ldots k \leftrightarrow \boxplus, \quad k \ldots 21 \leftrightarrow 日 \quad$ and $\quad \sigma \leftrightarrow \oplus$ for simples.

## Decomposition trees or strong interval trees

(1) Strong interval trees
(2) (Substitution) decomposition trees
(3) Some applications in algorithms and combinatorics

## Strong interval trees in algorithms

- Computating modular decomposition trees of graphs through factorizing permutations.
[Habib-Paul-Viennot, '98] [Habib-de Montgolfier-Paul, '04]
[Tedder-Corneil-Habib-Paul, '08] [Capelle-Habib-de Montgolfier, '02] [Bui Xuan-Habib-Paul, '05] [Bergeron-Chauve-de Montgolfier-Raffinot, '08]
- Pattern matching of permutations, in restricted cases. [Bose-Buss-Lubiw, '98] [Ibarra, '97] [B-Rossin, '06] [B-Rossin-Vialette, '07]
- Computing scenarios of perfect sorting by reversals. [Bérard-Bergeron-Chauve-Paul, '07] [Bérard-Chateau-Chauve-Paul-Tannier, '08] [B-Chauve-Mishna-Rossin, '09]
- ...


## Decomposition trees in combinatorics

- Enumeration of simple permutations.
[Albert-Atkinson-Klazar, '03]
- Number of intervals in random permutations.
[Corteel-Louchard-Pemantle, '06]
- Properties of classes closed by substitution.
[Atkinson-Stitt, '02] [Brignall, '07] [Atkinson-Ruškuc-Smith, '09]
- Exhibit the structure of classes.
[Albert-Atkinson, '05] [Brignall-Huczynska-Vatter, '08]
[Brignall-Ruškuc-Vatter, '08] [Bassino-B-Rossin, '08]
[Bassino-B-Pierrot-Rossin, '15] [Bassino-B-Pierrot-Pivoteau-Rossin, '16]


## Solving perfect sorting by reversals: an algorithm and its analysis

## Idea of the algorithm of［Bérard－Bergeron－Chauve－Paul，＇07］

Starting point：Compute the strong interval tree of $\sigma$ ．
Pre－processing：Put labels + or－on the nodes of the strong interval tree of $\sigma$ ：
－Leaf：sign of the element in $\sigma$ ；
－Linear node：＋for $⿴ 囗 十$（increasing）and－for $\boxminus$（decreasing）；
－Prime node whose parent is linear：sign of its parent；
－Other prime node：？？？
$\hookrightarrow$ Test labels＋and－and choose the shortest scenario．

## Main part of the algorithm：

－Perform Hannenhalli－Pevzner（or improved version－solving（normal） sorting by reversals）on prime nodes．
－A signed node belongs to the scenario iff it has a linear parent and its sign is different from the one of its parent．

## Example of labeled decomposition tree



## Complexity

- The algorithm runs in $O\left(2^{p} n \sqrt{n \log n}\right)$, with $p=\#$ prime nodes.
- It is polynomial when there are no prime nodes; this corresponds to separable permutations or commuting scenarios.
[Bérard-Bergeron-Chauve-Paul, '07]
Under the uniform distribution on signed permutations, it is:
- Polynomial with probability 1 asymptotically. Because a tree is of the shape shown opposite with probability tending to 1 :

- Polynomial on average.

Bounding the number of permutations whose strong interval tree contains pprime nodes.
[B-Chauve-Mishna-Rossin, '09]

## Separable permutations and commuting scenarios

## Commuting scenarios

- A scenario for perfect sorting by reversals is commuting when all its reversals pairwise commute (=do not overlap).

Nice surprise: Examples of commuting scenarios arise in the study of mammalian genome evolution.

## Commuting scenarios

- A scenario for perfect sorting by reversals is commuting when all its reversals pairwise commute (=do not overlap).

Nice surprise: Examples of commuting scenarios arise in the study of mammalian genome evolution.

Remark: A commuting scenario can be described as a set (instead of sequence) of reversals.

- A (signed) permutation is commuting if there exists a commuting scenario sorting it.

Remark: If $\sigma$ is commuting, all permutations obtained changing the signs in $\sigma$ also are.

## Separable permutations

## Separable permutations:

- Those avoiding the patterns 2413 and 3142.
- Those whose decomposition tree contains no prime node.

Consequence: Separable permutations and commuting permutations (rather, their unsigned version) coincide.

Consequence: The algorithm is polynomial on separable permutations ( $p=0$ ).

## Reversals in commuting scenarios

In general，in the computed scenario，a reversal is
－either a linear node or leaf with label different from its linear parent，
－or inside a prime node．

Consequence：For separable permutations，a reversal is a node with a label different from its parent．

Prop．：No $⿴ 囗 十$－$⿴ 囗 十$ nor $\boxminus-$ 日 edge in decomposition trees．

## Consequence：

The set of reversals is $\left\{\begin{array}{l}\text { all internal nodes except the root } \\ + \text { leaves with a label different from their parent．}\end{array}\right.$

Reversals $\approx$ internal nodes－the root + half of the leaves

## Parameters of commuting scenarios on Schröder trees

The shape of the tree is sufficient to study reversals．

Decomposition trees of（unsigned） separable permutation

reversal of length $\geq 2$ reversal of length 1 length of a reversal
size of $\sigma \longleftrightarrow \quad$ number of leaves
Schröder trees + label $⿴ 囗 十$ or $\boxminus$ on the root

$\longleftrightarrow \quad$ internal node except the root $\longleftrightarrow \quad$ some leaves（half of them）
$\longleftrightarrow \quad$ size（＝\＃leaves）of the subtree

## Parameters on Schröder trees

Study two parameters on Schröder trees:

- Number of internal nodes, and
- Pathlength = sum of the sizes of the subtrees.

Their average give access to:

- the average number of reversals, and
- the average length of a reversal
in a scenario for a separable permutation.


## Analytic combinatorics:

Average of parameters is obtained from bivariate generating functions $S(x, y)=\sum s_{n, k} x^{n} y^{k}$ where $s_{n, k}=$ number of Schröder trees with $n$ leaves and $k$ internal nodes (resp. pathlength $k$ ).

## Example: average value of the number of internal nodes

Application of the methodology of [Flajolet-Sedgewick, '09].
(Almost direct application; but note that for us the size is the number of leaves.)

Definition: $S(x, y)=\sum s_{n, k} x^{n} y^{k}$,
where $s_{n, k}=$ number of Schröder trees with $n$ leaves and $k$ internal nodes

Combinatorial specification: $\mathcal{S}=\bullet+\mathcal{S} \cdots \mathcal{S}$
Functional equation: $S(x, y)=x+y \frac{S(x, y)^{2}}{1-S(x, y)}$
Solution: $S(x, y)=\frac{(x+1)-\sqrt{(x+1)^{2}-4 x(y+1)}}{2(y+1)}$
Average number of internal nodes $=\frac{\sum_{k} k s_{n, k}}{\sum_{k} s_{n, k}}=\frac{\left.\left[x^{n}\right] \frac{\partial S(x, y)}{\partial y} \right\rvert\, y=1}{\left[x^{n}\right] S(x, 1)}$ Asymptotic estimate of $\left[x^{n}\right] S(x, 1)$ when $n \rightarrow+\infty$ : from asymptotic estimate of $S(x, 1)$ when $x \rightarrow$ dominant singularity

## Results on parameters

In Schröder trees with $n$ leaves:

- Average number of internal nodes: $\sim \frac{n}{\sqrt{2}}$
- Average pathlength: $\sim 1.27 n^{\frac{3}{2}}$

In scenarios for separable permutations of size $n$ :

- Average number of reversals: $\sim \frac{1+\sqrt{2}}{2} n$ (among which on average $n / 2$ are of length 1)
- Average length of a reversal: $\sim 1.054 \sqrt{n}$


## Results on parameters

In Schröder trees with $n$ leaves:

- Average number of internal nodes: $\sim \frac{n}{\sqrt{2}}$
- Average pathlength: $\sim 1.27 n^{\frac{3}{2}}$

In scenarios for separable permutations of size $n$ :

- Average number of reversals: $\sim \frac{1+\sqrt{2}}{2} n$ (among which on average $n / 2$ are of length 1)
- Average length of a reversal: $\sim 1.054 \sqrt{n}$

For separable permutations:

- Parsimonious scenarios are computed in polynomial time;
- Average properties of the reversals they contain are known.

Extension to decomposition trees with some prime nodes?

Allowing prime nodes of bounded arity

## Comparing models with data

- Data: tree comparing Gorilla and Bos Taurus:

- Random tree under the uniform distribution on permutations:
- Random tree under the uniform distribution on separables:


Neither the uniform distribution nor the restriction to separable permutations represent the data well.
Can we do better by allowing some prime nodes?

## Allowing prime nodes of bounded arity

Fix a maximal arity $k$ for the prime nodes.
Remark: This is not a simple variety of trees.

- Number of permutations of size $n$ in this class: $\sim c_{1} \cdot \rho_{k}^{-n} n^{-3 / 2}$.
- Average number of prime nodes in such trees: $\sim c_{2} \cdot n$
- Average number of internal nodes in such trees: $\sim c_{3} \cdot n$
- Average pathlength in such trees: $\sim c_{4} \cdot n^{3 / 2}$

These parameters are related to the perfect sorting by reversals (but less directly than in the separable case).

The constants $c_{i}$ are expressed in terms of $\tau_{k}, \rho_{k}$ and $\Lambda_{k}^{\prime \prime}\left(\tau_{k}\right)$, defined by:

- $\Lambda_{k}(x)=\frac{x^{2}}{1-x}+\sum_{j=4}^{k} s_{j}\left(\frac{x}{1-x}\right)^{j}$ where $s_{j}=\#$ simples of size $j$;
- $\tau_{k}$ is the smallest root of $\Lambda_{k}^{\prime}\left(\tau_{k}\right)=1$;
- $\rho_{k}=\tau_{k}-\Lambda_{k}\left(\tau_{k}\right)$.


## From genome rearrangements to analytic combinatorics

- Random tree under the uniform distribution on permutations whose decomposition tree has prime nodes of arity at most 7:


Does not seem a good model of data.
But those trees have another interest, for analytic combinatorics.

## Families of trees converging to permutations

## Combinatorial objects:

- $\mathcal{P}=$ the set of all permutations; $\mathcal{P}_{n}=$ those of size $n$.
- $\mathcal{P}^{(k)}=$ the set of all permutations whose decomposition tree contains prime nodes of arity at most $k ; \mathcal{P}_{n}^{(k)}=$ those of size $n$.
- $\mathcal{P}_{n}^{(k)}=\mathcal{P}_{n}$ as soon as $k \geq n$.
- Consequently, $\lim _{k \rightarrow \infty} \mathcal{P}^{(k)}=\mathcal{P}$.


## Asymptotics:

- Stirling estimates: $\left|\mathcal{P}_{n}\right| \sim_{n}(n / e)^{n} \sqrt{2 \pi n}$.
- Tree estimates: For any fixed $k,\left|P_{n}^{(k)}\right| \sim_{n} \alpha_{k} \rho_{k}^{-n} n^{-3 / 2}$.
- For any fixed $k$, we have an upper bound on $\alpha_{k} \rho_{k}^{-n} n^{-3 / 2}$ as $n \rightarrow \infty$; Illegally applying this bound for $k=n$ gives cst $\times$ Stirling estimates.
- Open: Can we reconcile both asymptotics properly? Difficulty: the OGF of permutations is not analytic.


# Other non-uniform distributions 

## Getting closer to the data?



## Galton-Watson trees

These are trees with prescribed offspring distribution: for all $i, p_{i}=$ probability that a node has $i$ children.

Estimating the offspring distribution on the data (by frequencies of number of children, forgetting about the root), we obtain random trees of the form:


These trees should represent those seen under the prime root in the data.
(Obviously) not a good model.
It is however not so obvious to prove it using the classical method of comparing the data to the model for some estimator.

## Mixed model

In this model, trees are a forest of 175 subtrees under one prime root, each subtree being obtainded as:

- Draw a random Galton-Watson binary tree, with Proba(leaf) $=0.8$;
- Replace each leaf by $k+1$ leaves, $k$ being randomly chosen according to a geometric law of parameter 0.85 .

Remark: 175 is the arity of the root in one tree from our data. Parameters 0.8 and 0.85 are heuristic.

Typical tree obtained:

It seems much more like our data!

## Statistical methods to compare trees

The mixed model seems:

- to represent the data well;
- to be simple enough to be studied mathematically.

Questions are:

- Prove properties of the trees in this model.
- Are some of them transferable to the data? Does this give a better understanding of the biological data?
- How to express that our model represents well the data?
- Can we prove it? and how? (Method of the two-sample problem?)


## Statistical methods to compare trees

The mixed model seems:

- to represent the data well;
- to be simple enough to be studied mathematically.

Questions are:

- Prove properties of the trees in this model.
- Are some of them transferable to the data? Does this give a better understanding of the biological data?
- How to express that our model represents well the data?
- Can we prove it? and how? (Method of the two-sample problem?)

Questions are very much open, and suggestions very welcome!
Thank you!

