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Perfect sorting by reversals:
the problem



The model

@ Genome or chromosome = sequence of genes (genes are oriented).

@ Restricting to the set of common genes of two species:
Genome = a signed permutation (signs indicate orientation).

W.l.0.g., the genome of one of the speciesis 12...n.

@ One type of evolutionary events only: reversals.
The reversal of a fragment of a permutation reverses the order of the
elements in that fragment while changing their signs.

Example: 1 -7 6 -10 9 -8 2 -11 -3 5 4
J Reversal of the red fragment ||

1 -7 6 10 9 8 2 4 -5 3 11
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Sorting by reversals

The problem:

@ INpUT: A signed permutation o of size n.
@ outpuT: A parsimonious scenario fromoto12...nor-n...-2 -1.

Scenario = sequence of reversals.

Parsimonious = shortest, i.e. minimal number of reversals.

Mouse
1 -76-109 -8 2 -11 -35 4

The solution:
ﬁm% @ Hannenhalli-Pevzner theory
% @ Polynomial algorithms:
_'-"3::3‘_';:—'._‘_-;{-_ from O(n*) to O(n+/nlog n)
il ,_f: Remark: the problem is NP-hard when
. iz’;’; S0 1L permutations are unsigned.

&Genome Research
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Perfect sorting by reversals

Perfect sorting by reversals:
further requirement not to break any interval.

Interval of o =
fragment of oo whose (unsigned) elements form of range (in IN).
Example: c=4-7-563-12.

Why this restriction?
Groups of homologous genes appearing together in two species are likely
to be

@ together in the common ancestor;

@ never separated during evolution.
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Perfect sorting by reversals

The problem:
@ InpuT: A signed permutation o of size n.

@ outpuT: A parsimonious perfect scenario from o to 12...nor
-n...-2-1.

Parsimonious perfect scenario = scenario where reversals never break
intervals, and which is shortest among all such scenarios.

Be carefull: Parsimonious perfect = parsimonious.
Complexity: NP-hard problem [Figeac-Varré, '04].
Algorithm:

FPT algorithm of [Bérard-Bergeron-Chauve-Paul, '07] (in 2P . n0(1)),
representing permutations as trees.
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Strong intervals

Strong interval of o: one that does not overlap any other interval of o.
Interval | is strong iff¥J, IC Jord Clorind = 0.

Example:

5 6 -7 9 4 31 2 -8-10-1713-1512 11 -14 18 -19-16

strong, overlapping
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Strong intervals

Strong interval of o: one that does not overlap any other interval of o.
Interval | is strong iff¥J, IC Jord Clorind = 0.

Remark: Trivial intervals (=singletons and whole set) are strong.

Example:

5 6 -7 9 4 31 2 -8-10-1713-1512 11 -14 18 -19-16

strong, overlapping and trivial intervals.
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Strong intervals

Strong interval of o: one that does not overlap any other interval of o.
Interval | is strong iff¥J, IC Jord Clorind = 0.

Remark: Trivial intervals (=singletons and whole set) are strong.

Example:

5 6 -7 9 4 31 2 -8-10-1713-1512 11 -14 18 -19-16

strong, overlapping and trivial intervals.

Remark: Identical definition on signed and unsigned permutations.
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Strong interval tree (+ PQ-trees of

Example (continued):

5 6 -7 9 4 31 2 -8-10-1713-1512 11 -14 18 -19-16

The inclusion order among strong intervals is a tree-like ordering.
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Strong interval tree (+ PQ-trees of

Example (continued):

5 6 -7 9 4 31 2 -8-10-1713-1512 11 -14 18 -19-16

The inclusion order among strong intervals is a tree-like ordering.

[1..19]
[1.9] /‘\ [11..19]
[5. 7]/9/W 11. 1g][18 19
/\\ N
-6 -7 4/‘:«{1 2] //11\12 18 19
A\ 13 15

12
1211
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Enriching strong interval trees

To every node, associate a quotient Example: .

permutation = the order of the children. "9

(Remark: children are intervals.)
5.7 9 [1.4 8
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Enriching strong interval trees

To every node, associate a quotient Example: .

permutation = the order of the children. e

(Remark: children are intervals.)
5.7 9 [1.4 8

Two types of nodes:

@ Linear nodes (O):
@ increasing, i.e. quotient permutation =1 2...k;
= label @
e decreasing, i.e. quotient permutation = k (k —1)...2 1;
= label B

@ Prime nodes (O): the quotient permutation is simple.

Simple permutations = Example: 425163, i.e.
the only intervals are the trivial ones:
{1}, {2},..., {n}and [1,...,n]. 4" 275 1673
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Simplifying strong interval trees

In the full tree obtained, some information is redundant.

[1..19]
1.9 /To\ 11..19
2413 31425
[5..7] 9 [1..4] 8 17 [18..19] 16
A A
5 6 7 4 5[1.2] [11.32] 18 -19
H B
A 13 -15 /\ -14
> 12 11

The full tree and the permutation can be recovered keeping only:
@ the quotient permutations labeling the internal nodes;
@ in the signed permutation case: the signs of the leaves.

Mathilde Bouvel Decomposition trees & perfect reversals 12/42



The strong interval trees we want

We use the simplified version of the strong interval tree.

Remark: Strong interval trees (simplified or not) can be computed in linear
time [Uno-Yagiura, '00] [Bergeron-Chauve-de Montgolfier-Raffinot, '08].
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Substitution in permutations

Easily explained on permutation diagrams.

Example:oc=18364257 =

Mathilde Bouvel
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Substitution in permutations

Easily explained on permutation diagrams.

Example:oc=18364257 =

The substitution of 74, ..

Example:

132[21,132,1] =

Mathilde Bouvel

., in o of size k is o[y, ..

I
1
I
L
1
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Substitution in permutations

Easily explained on permutation diagrams.

Example:oc=18364257 =

The substitution of 74, ..

Example:

132[21,132,1] =

Remark: Every 7j corresponds to an interval in o[ry, ...

Mathilde Bouvel

., in o of size k is o[y, ..

I
1
I
L
1

., k| obtained as:

5] =214653
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Substitution decomposition theorem [Albert-Atkinson, '05]

Theorem: Every permutation of size # 1 is uniquely decomposed as
@ 12...Kk[n1,...,mx], where the n; are @-indecomposable; or
@ k...21[n1,...,mx], where the n; are &-indecomposable; or
® om1,...,7mk], where o is simple of size k > 4.

Remark: Simple permutations (i.e. those with only trivial intervals, like
before) are 12, 21 or of size > 4.

Notation: @-indecomposable = that cannot be written as 12[x1, 72];
e-indecomposable = that cannot be written as 21[r1, 72).

Remark: The &; are the maximal strong intervals of the decomposed
permutation.
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(Substitution) decomposition trees

The theorem gives the first level of the decomposition tree.

Example: 567943128101713151211141819 16
=123[567943128,1,735214896]

123

tree of/ J tree of

567943128 735214896
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(Substitution) decomposition trees

The theorem gives the first level of the decomposition tree.
Decomposing recursively the zi’s gives the full decomposition tree.
Example: 5679431281017 1315121114181916

=123[567943128,1,735214896]
=123[2413[123,1,4312,1],1,...]=...
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Decomposition tree or strong interval tree?

Strong interval tree:

Decomposition tree:

/

They are the same (in the unsigned case) up to the change of notation

12.. ke B, k...21

Mathilde Bouvel
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o8 and o o @ for simples.
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Decomposition trees
or strong interval trees

@ Strong interval trees
© (Substitution) decomposition trees
© Some applications in algorithms and combinatorics



Strong interval trees in algorithms

@ Computating modular decomposition trees of graphs through
factorizing permutations.
[Habib-Paul-Viennot, 98] [Habib-de Montgolfier-Paul, '04]
[Tedder-Corneil-Habib-Paul, '08] [Capelle-Habib-de Montgolfier, '02] [Bui
Xuan-Habib-Paul, '05] [Bergeron-Chauve-de Montgolfier-Raffinot, '08]

@ Pattern matching of permutations, in restricted cases.
[Bose-Buss-Lubiw, ‘98] [Ibarra, '97] [B-Rossin, '06] [B-Rossin-Vialette, '07]

@ Computing scenarios of perfect sorting by reversals.
[Bérard-Bergeron-Chauve-Paul, '07] [Bérard-Chateau-Chauve-Paul-Tannier,
’08] [B-Chauve-Mishna-Rossin, '09]
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Decomposition trees in combinatorics

@ Enumeration of simple permutations.
[Albert-Atkinson-Klazar, 03]

@ Number of intervals in random permutations.
[Corteel-Louchard-Pemantle, "06]

@ Properties of classes closed by substitution.
[Atkinson-Stitt, '02] [Brignall, '07] [Atkinson-Ruskuc-Smith, '09]

@ Exhibit the structure of classes.
[Albert-Atkinson, '05] [Brignall-Huczynska-Vatter, '08]
[Brignall-Ruskuc-Vatter, '08] [Bassino-B-Rossin, '08]
[Bassino-B-Pierrot-Rossin, ’15] [Bassino-B-Pierrot-Pivoteau-Rossin, '16]
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Solving perfect sorting by reversals:
an algorithm and its analysis



Idea of the algorithm of [Bérard-Bergeron-Chauve-Paul, '07]

Starting point: Compute the strong interval tree of o.

Pre-processing: Put labels + or — on the nodes of the strong interval tree
of o:

@ Leaf: sign of the element in o;
@ Linear node: + for @ (increasing) and — for 8 (decreasing);

@ Prime node whose parent is linear: sign of its parent;
@ Other prime node: 777
— Test labels 4+ and — and choose the shortest scenario.

Main part of the algorithm:

@ Perform Hannenhalli-Pevzner (or improved version — solving (normal)
sorting by reversals) on prime nodes.

@ A signed node belongs to the scenario iff it has a linear parent and its
sign is different from the one of its parent.
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Example of labeled decomposition tree

Mathilde Bouvel Decomposition trees & perfect reversals 24/42



Complexity

@ The algorithm runs in O(2°n+/nlog n), with p = # prime nodes.

@ It is polynomial when there are no prime nodes;
this corresponds to separable permutations or commuting scenarios.

[Bérard-Bergeron-Chauve-Paul, '07]

Under the uniform distribution on signed permutations, it is:

@ Polynomial with probability 1 asymptotically.

Because a tree is of the shape shown B g m .
opposite with probability tending to 1: A /N

@ Polynomial on average.
Bounding the number of permutations whose strong interval tree

contains p prime nodes.
[B-Chauve-Mishna-Rossin, '09]
25/42
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Separable permutations
and commuting scenarios



Commuting scenarios

@ A scenario for perfect sorting by reversals is commuting when all its
reversals pairwise commute (=do not overlap).

Nice surprise: Examples of commuting scenarios arise in the study of
mammalian genome evolution.
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Commuting scenarios

@ A scenario for perfect sorting by reversals is commuting when all its
reversals pairwise commute (=do not overlap).

Nice surprise: Examples of commuting scenarios arise in the study of
mammalian genome evolution.

Remark: A commuting scenario can be described as a set (instead of
sequence) of reversals.

@ A (signed) permutation is commuting if there exists a commuting
scenario sorting it.

Remark: If o is commuting, all permutations obtained changing the signs
in o also are.
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Separable permutations

Separable permutations:

@ Those avoiding the patterns 2413 and 3142.

@ Those whose decomposition tree contains no prime node.

Consequence: Separable permutations and commuting permutations
(rather, their unsigned version) coincide.

Consequence: The algorithm is polynomial on separable permutations
(p=0).
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Reversals in commuting scenarios

In general, in the computed scenario, a reversal is
@ either a linear node or leaf with label different from its linear parent,
@ orinside a prime node.

Consequence: For separable permutations, a reversal is a node with a
label different from its parent.

Prop.: No B — @ nor 8 — 8 edge in decomposition trees.

Consequence:
all internal nodes except the root

The set of reversals is , , ,
+leaves with a label different from their parent.

\ Reversals ~ internal nodes — the root + half of the leaves \
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Parameters of commuting scenarios on Schrdder trees

The shape of the tree is sufficient to study reversals.

Decomposition trees of (unsigned) Schréder trees
separable permutation + label @ or 8 on the root

A
; /;\ A TN
. b /\J\ AN

sizeof & «— number of leaves
reversal of length > 2 «— internal node except the root
reversal of length1 «— some leaves (half of them)
length of areversal «— size (= # leaves) of the subtree
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Parameters on Schroder trees

Study two parameters on Schréder trees:
@ Number of internal nodes, and
@ Pathlength = sum of the sizes of the subtrees.

Their average give access to:
@ the average number of reversals, and
@ the average length of a reversal

in a scenario for a separable permutation.

Analytic combinatorics:

Average of parameters is obtained from bivariate generating functions
S(x,y) = Y snkXx"y¥ where s,x = number of Schréder trees with n leaves
and k internal nodes (resp. pathlength k).
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Example: average value of the number of internal nodes

Application of the methodology of [Flajolet-Sedgewick, '09].

(Almost direct application; but note that for us the size is the number of
leaves.)

Definition: S(x,y) = X snxx"yk,
where s,k = number of Schrdder trees with n leaves and k internal nodes

A

Combinatorial specification: S=e¢ + S

Functional equation: S(x,y) = x + y_1s_(sx(,§);)
o _(x+H1)=V(x+1)2-4x(y+1)
Solution: S(x,y) = 20+1)
A ber of internal nodes — Zksne _ K152
verage number of internal nodes = =2t = [XH]S(“)

Asymptotic estimate of [x"]S(x, 1) when n — +oo: from asymptotic
estimate of S(x, 1) when x — dominant singularity
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Results on parameters

In Schroder trees with n leaves:

@ Average number of internal nodes: ~ \/ié

@ Average pathlength: ~ 1.27n2

In scenarios for separable permutations of size n:
@ Average number of reversals: ~ %ﬁn
(among which on average n/2 are of length 1)

@ Average length of a reversal: ~ 1.054 v/n
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Results on parameters

In Schroder trees with n leaves:

@ Average number of internal nodes: ~ \/ié

@ Average pathlength: ~ 1.27n2

In scenarios for separable permutations of size n:

@ Average number of reversals: ~ %ﬁn
(among which on average n/2 are of length 1)

@ Average length of a reversal: ~ 1.054 v/n

For separable permutations:
@ Parsimonious scenarios are computed in polynomial time;
@ Average properties of the reversals they contain are known.
Extension to decomposition trees with some prime nodes?
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Allowing prime nodes of bounded arity



Comparing models with data

@ Data: tree comparing Gorilla and Bos Taurus:

@ Random tree under the uniform distribution on permutations:

@ Random tree under the uniform distribution on separables:

Neither the uniform distribution nor the restriction to separable
permutations represent the data well.
Can we do better by allowing some prime nodes?
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Allowing prime nodes of bounded arity

Fix a maximal arity k for the prime nodes.
Remark: This is not a simple variety of trees.

@ Number of permutations of size n in this class: ~ c1 - p,"n"3/2,
@ Average number of prime nodes in such trees: ~ ¢ - n

@ Average number of internal nodes in such trees: ~ ¢c3 - n

@ Average pathlength in such trees: ~ ¢4 - n°/2

These parameters are related to the perfect sorting by reversals
(but less directly than in the separable case).

The constants c; are expressed in terms of 7, px and /\;(/(Tk), defined by:

° Nk(x) =7 +Z/ 43,(1 X) where s; = # simples of size j;
@ 74 is the smallest root of A} (7x) = 1;

Q@ pk = Tk —/\k(‘rk).
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From genome rearrangements to analytic combinatorics

@ Random tree under the uniform distribution on permutations whose
decomposition tree has prime nodes of arity at most 7:

Does not seem a good model of data.
But those trees have another interest, for analytic combinatorics.
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Families of trees converging to permutations

Combinatorial objects:
@ P = the set of all permutations; #, = those of size n.
e PK) = the set of all permutations whose decomposition tree contains
prime nodes of arity at most k; Pf,k) = those of size n.
0 Pf,k) =%P,assoonas k > n.
o Consequently, lim Pk — P,
Asymptotics:
e Stirling estimates: |P,| ~, (n/e)” V2zn.
@ Tree estimates: For any fixed k, IPf,k)I ~n akp "3,

e For any fixed k, we have an upper bound on akp,"n"%/2 as n — oo;
lllegally applying this bound for k = n gives cst x Stirling estimates.

@ Open: Can we reconcile both asymptotics properly?
Difficulty: the OGF of permutations is not analytic.
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Other non-uniform distributions
Getting closer to the data?

— o e - B S S



Galton-Watson trees

These are trees with prescribed offspring distribution:
for all i, pj = probability that a node has i children.

Estimating the offspring distribution on the data
(by frequencies of number of children, forgetting
about the root), we obtain random trees of the
form:

These trees should represent those seen under the prime root in the data.
(Obviously) not a good model.

It is however not so obvious to prove it using the classical method of
comparing the data to the model for some estimator.
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Mixed model

In this model, trees are a forest of 175 subtrees under one prime root,
each subtree being obtainded as:

@ Draw a random Galton-Watson binary tree, with Proba(leaf) = 0.8;

@ Replace each leaf by k + 1 leaves, k being randomly chosen
according to a geometric law of parameter 0.85.

Remark: 175 is the arity of the root in one tree from our data.
Parameters 0.8 and 0.85 are heuristic.

Typical tree obtained:

It seems much more like our data!

Mathilde Bouvel Decomposition trees & perfect reversals 41/42



Statistical methods to compare trees

The mixed model seems:
@ to represent the data well;
@ to be simple enough to be studied mathematically.

Questions are:
@ Prove properties of the trees in this model.

@ Are some of them transferable to the data? Does this give a better
understanding of the biological data?

@ How to express that our model represents well the data?
@ Can we prove it? and how? (Method of the two-sample problem?)
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Statistical methods to compare trees

The mixed model seems:
@ to represent the data well;
@ to be simple enough to be studied mathematically.

Questions are:
@ Prove properties of the trees in this model.
@ Are some of them transferable to the data? Does this give a better
understanding of the biological data?
@ How to express that our model represents well the data?
@ Can we prove it? and how? (Method of the two-sample problem?)

Questions are very much open, and suggestions very welcome!
Thank you!
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