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What is a permutation (of size n)?

A bijection from {1, 2, . . . , n} to itself,

or more generally from X to X , for |X | = n.

A word containing exactly once each letter from {1, 2, . . . , n},
or more visually a diagram.

Ex.: σ = (1, 3, 5, 2)(4, 7)(6)

= 3 1 5 7 2 6 4 =

3 1 5 7 2 6 4

The questions addressed are different, depending on the point of view.

Very few results consider both points of view simultaneously.

The two points of view are believed to be rather orthogonal.

Goal: Give a “proof” that the two points of view are hardly reconciled.
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How? Logic to the rescue!

Formalize each point of view as a logic for permutations.
More precisely, we consider two first-order (logical) theories.
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How? Logic to the rescue!

Formalize each point of view as a logic for permutations.
More precisely, we consider two first-order (logical) theories.

For each theory,

permutations are models of our theory,

(logical) formulas express properties of the permutations.

To prove that the two points of view are essentially different, we study the
expressivity of the theories:

describe properties expressible in each theory,

show that the properties expressible in both theories are trivial.
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Two logics for permutations



TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)
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Two components of a logical theory:

its formulas = what the theory can say about its models syntax

its models = the objects the theory talks about interpretation
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(Finite) models of TOOB:
Pairs (X ,RX ) where X is a finite set and RX a binary relation on X .
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TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:

its formulas = what the theory can say about its models syntax

its models = the objects the theory talks about interpretation

(Finite) models of TOOB:
Pairs (X ,RX ) where X is a finite set and RX a binary relation on X .

Axioms of TOOB: ensure that RX is a bijection from X to X .

Surjectivity: ∀x ∃y yRx
Injectivity: ¬∃x , y , z (x 6= y ∧ xRz ∧ yRz)
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TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:

its formulas = what the theory can say about its models syntax

its models = the objects the theory talks about interpretation

(Finite) models of TOOB:
Pairs (X ,RX ) where X is a finite set and RX a binary relation on X .

Axioms of TOOB: ensure that RX is a bijection from X to X .

Permutations are models, and every model is a permutation.
(Possibly, up to a conjugating by a bijection between X and {1, 2, . . . , n}.)

The relation Rσ associated to σ of size n is given by:

i Rσ σ(i) for all i ≤ n
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TOOB: formulas

Atomic formulas of TOOB are x = y and xRy , for any variables x
and y .

 A variable is intended as representing an element of the permutation.
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TOOB: formulas

Atomic formulas of TOOB are x = y and xRy , for any variables x
and y .

 A variable is intended as representing an element of the permutation.

Formulas (φ, or φ(x)) are obtained inductively from the atomic ones
using the connectives and quantifiers.

 ∧, ∨, ¬, →, ↔.
 We restrict ourselves to first-order logic, so we consider only

quantification on variables: ∃x φ, ∀x φ.
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TOOB: formulas

Atomic formulas of TOOB are x = y and xRy , for any variables x
and y .

 A variable is intended as representing an element of the permutation.

Formulas (φ, or φ(x)) are obtained inductively from the atomic ones
using the connectives and quantifiers.

 ∧, ∨, ¬, →, ↔.
 We restrict ourselves to first-order logic, so we consider only

quantification on variables: ∃x φ, ∀x φ.

Sentences (ψ) are formulas where all variables are quantified (no free
variable).

Ex.: φ(x) := xRx and ψ := ∃x xRx .
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TOOB: formulas

Atomic formulas of TOOB are x = y and xRy , for any variables x
and y .

 A variable is intended as representing an element of the permutation.

Formulas (φ, or φ(x)) are obtained inductively from the atomic ones
using the connectives and quantifiers.

 ∧, ∨, ¬, →, ↔.
 We restrict ourselves to first-order logic, so we consider only

quantification on variables: ∃x φ, ∀x φ.

Sentences (ψ) are formulas where all variables are quantified (no free
variable).

Ex.: φ(x) := xRx and ψ := ∃x xRx .

A model of a sentence ψ is a model which in addition satisfies ψ.

Ex.: The models of ∃x xRx are the permutations having a fixed point.
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TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it
can be described by a sentence, i.e., there is a sentence whose models are
exactly the permutations for which this property holds.

Ex.: ψ := ∃x xRx expresses the property of having a fixed point.
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TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it
can be described by a sentence, i.e., there is a sentence whose models are
exactly the permutations for which this property holds.

Ex.: ψ := ∃x xRx expresses the property of having a fixed point.

Definition-by-example of |=: we write σ |= ψ when σ has a fixed point.

In TOOB, only properties about the cycle decomposition of a permutation
are expressible.

But not all such! For instance, being a full cycle is not expressible.

Thm.: If σ |= ψ, then for any τ in the conjugacy class of σ, τ |= ψ.

In other words, TOOB does not distinguish between conjugate
permutations.
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TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)
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TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)

Symbols available: same logical symbols (including =), no relation
symbol R, but instead, two binary relation symbols <P and <V

Axioms: ensure that <P and <V represent total orders.

Models: permutations as pairs of total orders on a finite set:

<P represents the position order between the elements;
<V represents their value order.

Ex.: σ =
2 5 1 4 3

is represented for instance by ({a, b, c , d , e},C,J)

where a C b C c C d C e and c J a J e J d J b.
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TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)

Symbols available: same logical symbols (including =), no relation
symbol R, but instead, two binary relation symbols <P and <V

Axioms: ensure that <P and <V represent total orders.

Models: permutations as pairs of total orders on a finite set:

<P represents the position order between the elements;
<V represents their value order.

Ex.: σ =
2 5 1 4 3

is represented for instance by ({a, b, c , d , e},C,J)

where a C b C c C d C e and c J a J e J d J b.

Summary of differences:

TOOB speaks about the
cycle structure but the total
order on {1, 2, . . . , n} is lost.

TOTO speaks about the relative
order of the elements, but the
cycle structure is lost.
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TOTO: expressivity

Unlike TOOB, TOTO does distinguish between any two different
permutations.

In other words, for any permutation σ, there exists a sentence whose
only model is σ (up to isomorphism on the ground set).
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TOTO: expressivity

Unlike TOOB, TOTO does distinguish between any two different
permutations.

In other words, for any permutation σ, there exists a sentence whose
only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

Containment/avoidance of a classical pattern;

Ex.: Avoidance of 231 is expressed by the sentence

φAv(231) := ¬ ∃x ∃y ∃z (x <P y <P z) ∧ (z <V x <V y)
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TOTO: expressivity

Unlike TOOB, TOTO does distinguish between any two different
permutations.

In other words, for any permutation σ, there exists a sentence whose
only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

Containment/avoidance of a classical pattern;

Extension to consecutive/vincular/mesh patterns (and further);

⊕- (resp. 	-)decomposability;

Generalization to being an inflation of π for any π;

Being simple;

Being West-k-stack sortable, for any k
(+ construction of the corresponding sentences)
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TOTO and stack-sorting

Let S be the stack-sorting operator.

Known description by pattern-avoidance of S-, S2- and S3-sortable
permutations.

But the notion of patterns are more and more complicated for every
additional S.

⇒ Prefer logic to patterns:

Thm.:
For any k , the property of being Sk -sortable is expressible in TOTO.

A formula φk expressing it may be derived automatically, starting from
φ1 = φAv(231) and iterating the operation of replacing every x <P y by(
x <P y ∧∃z (x <P z ≤P y ∧x <V z)

)
∨
(
y <P x ∧∀z (y <P z ≤P x → z <V y)

)
to obtain φk from φk−1.

Obtained formulas are complicated. . . Automatic simplification open.

Rk.: This extends to other sorting procedures/devices.
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Inexpressibility results in TOTO



Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that
σ |= ψ if and only if σ has a fixed point.
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Thm.: There is no sentence ψ in TOTO such that
σ |= ψ if and only if σ has a fixed point.

Intermezzo: Expressing properties of elements of permutations.

A formula φ(x) with one (or several) free variable(s) expresses
properties of one (or several) element(s) of a permutation.

Ex: xRx expresses the property that a given element is a fixed point:
For π a permutation and a an element of π, we write (π, a) |= φ(x)
when a is a fixed point of π.
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Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that
σ |= ψ if and only if σ has a fixed point.

Intermezzo: Expressing properties of elements of permutations.

A formula φ(x) with one (or several) free variable(s) expresses
properties of one (or several) element(s) of a permutation.

Ex: xRx expresses the property that a given element is a fixed point:
For π a permutation and a an element of π, we write (π, a) |= φ(x)
when a is a fixed point of π.

Cor.: There is no formula with one free variable in TOTO expressing the
property that a given element is a fixed point.
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Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that
σ |= ψ if and only if σ has a fixed point.
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Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that
σ |= ψ if and only if σ has a fixed point.

Proof strategy:

Assume such a sentence ψ exists.
Call k its quantifier depth (=max. number of nested quantifiers in ψ).

Exhibit two permutations σ and σ′ such that

σ has a fixed point but σ′ does not; and
σ |= ψ if and only if σ′ |= ψ.
(Actually, σ and σ′ satisfy the same sentences of quantifier depth at most k)
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Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that
σ |= ψ if and only if σ has a fixed point.

Proof strategy:

Assume such a sentence ψ exists.
Call k its quantifier depth (=max. number of nested quantifiers in ψ).

Exhibit two permutations σ and σ′ such that

σ has a fixed point but σ′ does not; and
σ |= ψ if and only if σ′ |= ψ.
(Actually, σ and σ′ satisfy the same sentences of quantifier depth at most k)

To show that two permutations satisfy the same sentences, use the
Ehrenfeucht-Fräıssé Theorem:

Two permutations σ and σ′ satisfy the same sentences of
quantifier depth at most k if and only if Duplicator wins the
EF-game with k rounds on σ and σ′.
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EF-games (a.k.a. Duplicator-Spoiler games)

The setting:

Two players: Duplicator (D) and Spoiler (S).

They play on a pair of permutations σ and σ′.

Goal of D: show that σ and σ′ cannot be distinguish in k rounds.

Goal of S: show that σ and σ′ are different.
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Goal of D: show that σ and σ′ cannot be distinguish in k rounds.

Goal of S: show that σ and σ′ are different.

At each round i :

S picks an element si in σ or s ′i in σ′;

D replicates with an element s ′i or si in the other permutation.
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EF-games (a.k.a. Duplicator-Spoiler games)

The setting:

Two players: Duplicator (D) and Spoiler (S).

They play on a pair of permutations σ and σ′.

Goal of D: show that σ and σ′ cannot be distinguish in k rounds.

Goal of S: show that σ and σ′ are different.

At each round i :

S picks an element si in σ or s ′i in σ′;

D replicates with an element s ′i or si in the other permutation.

Winner of the EF-game with k rounds:

D if s = (s1, . . . , sk) and s′ = (s ′1, . . . , s
′
k) are isomorphic,

i.e., if the position- and value-orders on s and s′ are identical;

S otherwise.
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Inexpressibility of fixed points: Proof

Goal: For each k , exhibit σ and σ′ such that

σ has a fixed point but σ′ does not;

D wins the EF-game with k rounds on σ and σ′.
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Inexpressibility of fixed points: Proof

Goal: For each k , exhibit σ and σ′ such that

σ has a fixed point but σ′ does not;

D wins the EF-game with k rounds on σ and σ′.

Answer: σ and σ′ are decreasing permutations of sizes 2k − 1 and 2k .
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Goal: For each k , exhibit σ and σ′ such that

σ has a fixed point but σ′ does not;

D wins the EF-game with k rounds on σ and σ′.

Answer: σ and σ′ are decreasing permutations of sizes 2k − 1 and 2k .
For k = 3:

7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns.
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Goal: For each k , exhibit σ and σ′ such that
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D wins the EF-game with k rounds on σ and σ′.

Answer: σ and σ′ are decreasing permutations of sizes 2k − 1 and 2k .
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7 6 5 4 3 2 1
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Inexpressibility of fixed points: Proof

Goal: For each k , exhibit σ and σ′ such that

σ has a fixed point but σ′ does not;

D wins the EF-game with k rounds on σ and σ′.

Answer: σ and σ′ are decreasing permutations of sizes 2k − 1 and 2k .
For k = 3:

7 6 5 4 3 2 1

s1

s2

s3

8 7 6 5 4 3 2 1

s ′1

s ′2

s ′3

S and D alternate turns. After 3 rounds, D wins!
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Intersection of TOTO and TOOB



Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:

Having a fixed point: expressible in TOOB but not in TOTO;

Avoiding a 231-pattern: expressible in TOTO but not in TOOB.
(TOOB does not distinguish between 231 = (1, 2, 3) and 312 = (1, 3, 2))
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Mathilde Bouvel FOL for permutations 17 / 19



Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:

Having a fixed point: expressible in TOOB but not in TOTO;

Avoiding a 231-pattern: expressible in TOTO but not in TOOB.
(TOOB does not distinguish between 231 = (1, 2, 3) and 312 = (1, 3, 2))

Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties P are eventually true or eventually false, where
eventually means “for all permutations of sufficiently large support”.

i.e., P is satisfied for all permutations of sufficiently large support or there
is a bound on the size of the support of any permutation satisfying P.

Dfn.: The support of a permutation is the set of the non-fixed points.

Mathilde Bouvel FOL for permutations 17 / 19



Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:

Having a fixed point: expressible in TOOB but not in TOTO;

Avoiding a 231-pattern: expressible in TOTO but not in TOOB.
(TOOB does not distinguish between 231 = (1, 2, 3) and 312 = (1, 3, 2))

Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties P are eventually true or eventually false, where
eventually means “for all permutations of sufficiently large support”.

i.e., P is satisfied for all permutations of sufficiently large support or there
is a bound on the size of the support of any permutation satisfying P.

Dfn.: The support of a permutation is the set of the non-fixed points.

The proof uses EF-games.

Mathilde Bouvel FOL for permutations 17 / 19



Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:

Having a fixed point: expressible in TOOB but not in TOTO;

Avoiding a 231-pattern: expressible in TOTO but not in TOOB.
(TOOB does not distinguish between 231 = (1, 2, 3) and 312 = (1, 3, 2))

Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties P are eventually true or eventually false, where
eventually means “for all permutations of sufficiently large support”.

i.e., P is satisfied for all permutations of sufficiently large support or there
is a bound on the size of the support of any permutation satisfying P.

Dfn.: The support of a permutation is the set of the non-fixed points.

The proof uses EF-games.

⇒ The intersection of TOOB and TOTO is trivial, so, as claimed,
permutations-as-elts-of-the-symmetric-group 6= permutations-as-words.
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Exact description of the intersection of TOOB and TOTO

For any partition λ, define

Cλ the set of permutations of cycle-type λ;

Dλ=
⊎

k≥0 Cλ∪(1k ).
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Thm.: A set E of permutations is defined by a property expressible in
both TOOB and TOTO if and only if it belongs to the Boolean algebra
generated by all Cλ and Dλ (where λ runs over all partitions).
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For any partition λ, define

Cλ the set of permutations of cycle-type λ;

Dλ=
⊎

k≥0 Cλ∪(1k ).

Thm.: A set E of permutations is defined by a property expressible in
both TOOB and TOTO if and only if it belongs to the Boolean algebra
generated by all Cλ and Dλ (where λ runs over all partitions).

Rk: This is more precise than the previous theorem. Indeed:

in Cλ and Dλ there is a bound on the size of the support.

the property either E contains all permutations of sufficiently large
support, or there is a bound on the size of the support of
permutations in E is stable by union, intersection and complement.
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Exact description of the intersection of TOOB and TOTO

For any partition λ, define

Cλ the set of permutations of cycle-type λ;

Dλ=
⊎

k≥0 Cλ∪(1k ).

Thm.: A set E of permutations is defined by a property expressible in
both TOOB and TOTO if and only if it belongs to the Boolean algebra
generated by all Cλ and Dλ (where λ runs over all partitions).

Rk: This is more precise than the previous theorem.

Tricks/tools in the proof:

expressing Dλ in TOTO;

use previous theorem to write E as a finite union of Cλ’s and Dλ’s;

and more EF games!
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Some other things we know (or not)

Characterization of the
permutation classes C such
that “having a fixed point” is
expressible in the restriction
of TOTO to C.
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Some other things we know (or not)

Characterization of the
permutation classes C such
that “having a fixed point” is
expressible in the restriction
of TOTO to C.

The condition is: there exist k , n,
m such that C does not contain

k nor

n

m
.

Formula-variant: Describe classes TOTO can express (by φ(x)) the
property that a given element is a fixed point. The same as above!

Extension to description of classes where TOTO can express that two
(resp. more) given elements form a transposition (resp. cycle)

But we don’t know in which classes the existence of a transposition
(resp. cycle of a given size) is expressible in TOTO.

Further project with M. Noy: Prove convergence laws in permutation
classes (for properties expressible in TOTO).
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