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What is a permutation (of size n)?

@ A bijection from {1,2,...,n} to itself,

@ or more generally from X to X, for |X| = n.

Ex.: 0 =(1,3,5,2)(4,7)(6)
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What is a permutation (of size n)?

@ A bijection from {1,2,...,n} to itself,
@ or more generally from X to X, for |X| = n.

e A word containing exactly once each letter from {1,2,...,n},

@ or more visually a diagram.

Ex.. 0 =(1,3,5,2)(4,7)(6)=3157264= "* .
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What is a permutation (of size n)?

@ A bijection from {1,2,...,n} to itself,
@ or more generally from X to X, for |X| = n.

e A word containing exactly once each letter from {1,2,...,n},

@ or more visually a diagram.

Ex.. 0 =(1,3,5,2)(4,7)(6)=3157264= "* .

3157264

@ The questions addressed are different, depending on the point of view.
@ Very few results consider both points of view simultaneously.

@ The two points of view are believed to be rather orthogonal.
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What is a permutation (of size n)?

@ A bijection from {1,2,...,n} to itself,
@ or more generally from X to X, for |X| = n.

e A word containing exactly once each letter from {1,2,...,n},

@ or more visually a diagram.

Ex.. 0 =(1,3,5,2)(4,7)(6)=3157264= "* .

3157264

@ The questions addressed are different, depending on the point of view.
@ Very few results consider both points of view simultaneously.

@ The two points of view are believed to be rather orthogonal.

Goal: Give a "proof” that the two points of view are hardly reconciled.
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How? Logic to the rescue!

Formalize each point of view as a logic for permutations.
More precisely, we consider two first-order (logical) theories.
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How? Logic to the rescue!

Formalize each point of view as a logic for permutations.
More precisely, we consider two first-order (logical) theories.

For each theory,

@ permutations are models of our theory,

o (logical) formulas express properties of the permutations.
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How? Logic to the rescue!

Formalize each point of view as a logic for permutations.
More precisely, we consider two first-order (logical) theories.

For each theory,

@ permutations are models of our theory,

o (logical) formulas express properties of the permutations.

To prove that the two points of view are essentially different, we study the
expressivity of the theories:

@ describe properties expressible in each theory,

@ show that the properties expressible in both theories are trivial.
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Two logics for permutations



TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)
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TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:
@ its formulas = what the theory can say about its models syntax

@ its models = the objects the theory talks about interpretation
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TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:

@ its formulas = what the theory can say about its models syntax

@ its models = the objects the theory talks about interpretation

(Finite) models of TOOB:
Pairs (X, Rx) where X is a finite set and Rx a binary relation on X.
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TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:

@ its formulas = what the theory can say about its models syntax

@ its models = the objects the theory talks about interpretation

(Finite) models of TOOB:
Pairs (X, Rx) where X is a finite set and Rx a binary relation on X.

Axioms of TOOB: ensure that Rx is a bijection from X to X.
@ Surjectivity: Vx dy yRx
@ Injectivity: —3x,y,z(x # y A xRz A yRz)
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TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:
@ its formulas = what the theory can say about its models syntax

@ its models = the objects the theory talks about interpretation

(Finite) models of TOOB:
Pairs (X, Rx) where X is a finite set and Rx a binary relation on X.

Axioms of TOOB: ensure that Rx is a bijection from X to X.

Permutations are models, and every model is a permutation.
(Possibly, up to a conjugating by a bijection between X and {1,2,...,n}.)

The relation R, associated to o of size n is given by:
i Ry o(i) foralli<n
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TOOB: formulas

@ Atomic formulas of TOOB are x = y and xRy, for any variables x
and y.
~+ A variable is intended as representing an element of the permutation.
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TOOB: formulas

@ Atomic formulas of TOOB are x = y and xRy, for any variables x
and y.
~+ A variable is intended as representing an element of the permutation.

e Formulas (¢, or ¢(x)) are obtained inductively from the atomic ones
using the connectives and quantifiers.
~ AV, o, =, o
~ We restrict ourselves to first-order logic, so we consider only
quantification on variables: 3x ¢, Vx ¢.
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TOOB: formulas

@ Atomic formulas of TOOB are x = y and xRy, for any variables x
and y.
~+ A variable is intended as representing an element of the permutation.

e Formulas (¢, or ¢(x)) are obtained inductively from the atomic ones
using the connectives and quantifiers.
~ AV, o, =, o
~ We restrict ourselves to first-order logic, so we consider only
quantification on variables: 3x ¢, Vx ¢.
@ Sentences (v) are formulas where all variables are quantified (no free
variable).

Ex.: ¢(x) := xRx and 9 := Ix xRx.
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TOOB: formulas

@ Atomic formulas of TOOB are x = y and xRy, for any variables x
and y.
~+ A variable is intended as representing an element of the permutation.

e Formulas (¢, or ¢(x)) are obtained inductively from the atomic ones
using the connectives and quantifiers.
~ AV, o, =, o
~ We restrict ourselves to first-order logic, so we consider only
quantification on variables: 3x ¢, Vx ¢.

@ Sentences (v) are formulas where all variables are quantified (no free
variable).

Ex.: ¢(x) := xRx and 9 := Ix xRx.
A model of a sentence v is a model which in addition satisfies ).

Ex.: The models of dx xRx are the permutations having a fixed point.
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TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it
can be described by a sentence, i.e., there is a sentence whose models are
exactly the permutations for which this property holds.

Ex.: 1 := dx xRx expresses the property of having a fixed point.
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TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it
can be described by a sentence, i.e., there is a sentence whose models are
exactly the permutations for which this property holds.

Ex.: 1 := dx xRx expresses the property of having a fixed point.

Definition-by-example of |=: we write o |= ¢ when ¢ has a fixed point.
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TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it
can be described by a sentence, i.e., there is a sentence whose models are
exactly the permutations for which this property holds.

Ex.: 1 := dx xRx expresses the property of having a fixed point.

Definition-by-example of |=: we write o |= ¢ when ¢ has a fixed point.

In TOOB, only properties about the cycle decomposition of a permutation
are expressible.

But not all such! For instance, being a full cycle is not expressible.
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TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it
can be described by a sentence, i.e., there is a sentence whose models are
exactly the permutations for which this property holds.

Ex.: 1 := dx xRx expresses the property of having a fixed point.
Definition-by-example of |=: we write o |= ¢ when ¢ has a fixed point.

In TOOB, only properties about the cycle decomposition of a permutation
are expressible.

But not all such! For instance, being a full cycle is not expressible.
Thm.: If o0 =14, then for any 7 in the conjugacy class of o, T |= ¥.

In other words, TOOB does not distinguish between conjugate
permutations.

Mathilde Bouvel FOL for permutations 7/19



TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)
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TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)

@ Symbols available: same logical symbols (including =), no relation
symbol R, but instead, two binary relation symbols <p and <y
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TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)

@ Symbols available: same logical symbols (including =), no relation
symbol R, but instead, two binary relation symbols <p and <y

@ Axioms: ensure that <p and <y represent total orders.
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TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)

@ Symbols available: same logical symbols (including =), no relation
symbol R, but instead, two binary relation symbols <p and <y

@ Axioms: ensure that <p and <y represent total orders.

@ Models: permutations as pairs of total orders on a finite set:

e <p represents the position order between the elements;
e <y represents their value order.

o Ex: o=

.
25143

is represented for instance by ({a, b, c,d, e}, <1, €)

wherea< b<dc<dd<eandcdadec<«4d«b.
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TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)

@ Symbols available: same logical symbols (including =), no relation
symbol R, but instead, two binary relation symbols <p and <y

@ Axioms: ensure that <p and <y represent total orders.

@ Models: permutations as pairs of total orders on a finite set:

e <p represents the position order between the elements;
e <y represents their value order.

o Ex: o= . is represented for instance by ({a, b, c,d, e}, <, €)
25143

wherea< b<dc<dd<eandcdadec<«4d«b.

Summary of differences:

@ TOOB speaks about the @ TOTO speaks about the relative
cycle structure but the total order of the elements, but the
order on {1,2,...,n} is lost. cycle structure is lost.
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TOTO: expressivity

@ Unlike TOOB, TOTO does distinguish between any two different
permutations.

@ In other words, for any permutation o, there exists a sentence whose
only model is o (up to isomorphism on the ground set).
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TOTO: expressivity

@ Unlike TOOB, TOTO does distinguish between any two different
permutations.

@ In other words, for any permutation o, there exists a sentence whose
only model is o (up to isomorphism on the ground set).

Some concepts expressible in TOTO:
e Containment/avoidance of a classical pattern;

Ex.: Avoidance of 231 is expressed by the sentence

bavesry = IxTy3z (x<py<pz) A (z<yx<vy)
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TOTO: expressivity

@ Unlike TOOB, TOTO does distinguish between any two different
permutations.

@ In other words, for any permutation o, there exists a sentence whose
only model is o (up to isomorphism on the ground set).

Some concepts expressible in TOTO:
e Containment/avoidance of a classical pattern;
@ Extension to consecutive/vincular/mesh patterns (and further);
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TOTO: expressivity

@ Unlike TOOB, TOTO does distinguish between any two different
permutations.

@ In other words, for any permutation o, there exists a sentence whose
only model is o (up to isomorphism on the ground set).

Some concepts expressible in TOTO:
e Containment/avoidance of a classical pattern;

@ Extension to consecutive/vincular/mesh patterns (and further);

@- (resp. ©-)decomposability;

Generalization to being an inflation of 7 for any T;

Being simple;
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TOTO: expressivity

@ Unlike TOOB, TOTO does distinguish between any two different
permutations.

@ In other words, for any permutation o, there exists a sentence whose
only model is o (up to isomorphism on the ground set).

Some concepts expressible in TOTO:
e Containment/avoidance of a classical pattern;

@ Extension to consecutive/vincular/mesh patterns (and further);

@- (resp. ©-)decomposability;

Generalization to being an inflation of 7 for any T;

Being simple;

@ Being West-k-stack sortable, for any k
(+ construction of the corresponding sentences)
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TOTO and stack-sorting

Let S be the stack-sorting operator.

@ Known description by pattern-avoidance of S-, S?- and S3-sortable
permutations.

@ But the notion of patterns are more and more complicated for every
additional S.

Mathilde Bouvel FOL for permutations 10 /19



TOTO and stack-sorting

Let S be the stack-sorting operator.
@ Known description by pattern-avoidance of S-, S?- and S3-sortable
permutations.

@ But the notion of patterns are more and more complicated for every
additional S.

= Prefer logic to patterns:

Thm.:
For any k, the property of being S*-sortable is expressible in TOTO.
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TOTO and stack-sorting

Let S be the stack-sorting operator.
@ Known description by pattern-avoidance of S-, S?- and S3-sortable
permutations.

@ But the notion of patterns are more and more complicated for every
additional S.

= Prefer logic to patterns:

Thm.:
For any k, the property of being S*-sortable is expressible in TOTO.

A formula ¢, expressing it may be derived automatically, starting from

$1 = dav(231) and iterating the operation of replacing every x <p y by

(x <pyANIz(x<pz<pyAx<y z)) Vv (y <pxANVz(y<pz<px—z<y y))
to obtain ¢, from ¢y_1.

Obtained formulas are complicated. . . Automatic simplification open.
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TOTO and stack-sorting

Let S be the stack-sorting operator.
@ Known description by pattern-avoidance of S-, S?- and S3-sortable
permutations.

@ But the notion of patterns are more and more complicated for every
additional S.

= Prefer logic to patterns:

Thm.:
For any k, the property of being S*-sortable is expressible in TOTO.

A formula ¢, expressing it may be derived automatically, starting from

$1 = dav(231) and iterating the operation of replacing every x <p y by

(x <pyANIz(x<pz<pyAx<y z)) Vv (y <pxANVz(y<pz<px—z<y y))
to obtain ¢, from ¢y_1.

Obtained formulas are complicated. . . Automatic simplification open.

Rk.: This extends to other sorting procedures/devices.
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Inexpressibility results in TOTO



Inexpressibility of fixed points

Thm.: There is no sentence 1 in TOTO such that
o =4 if and only if o has a fixed point.
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Inexpressibility of fixed points

Thm.: There is no sentence 1 in TOTO such that
o =4 if and only if o has a fixed point.

Intermezzo: Expressing properties of elements of permutations.

e A formula ¢(x) with one (or several) free variable(s) expresses
properties of one (or several) element(s) of a permutation.

@ Ex: xRx expresses the property that a given element is a fixed point:

For 7 a permutation and a an element of 7, we write (7, a) = ¢(x)
when a is a fixed point of 7.
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Inexpressibility of fixed points

Thm.: There is no sentence 1 in TOTO such that
o =4 if and only if o has a fixed point.

Intermezzo: Expressing properties of elements of permutations.

e A formula ¢(x) with one (or several) free variable(s) expresses
properties of one (or several) element(s) of a permutation.

@ Ex: xRx expresses the property that a given element is a fixed point:
For 7 a permutation and a an element of 7, we write (7, a) = ¢(x)
when a is a fixed point of 7.

Cor.: There is no formula with one free variable in TOTO expressing the
property that a given element is a fixed point.
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Inexpressibility of fixed points

Thm.: There is no sentence 1 in TOTO such that
o =4 if and only if o has a fixed point.
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Inexpressibility of fixed points

Thm.: There is no sentence 1 in TOTO such that
o =4 if and only if o has a fixed point.

Proof strategy:
@ Assume such a sentence ) exists.
Call k its quantifier depth (=max. number of nested quantifiers in 1)).
@ Exhibit two permutations o and ¢’ such that
e o has a fixed point but ¢’ does not; and

e o = ifand only if o/ = .

(Actually, o and o’ satisfy the same sentences of quantifier depth at most k)
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Inexpressibility of fixed points

Thm.: There is no sentence 1 in TOTO such that
o =4 if and only if o has a fixed point.

Proof strategy:

@ Assume such a sentence ) exists.
Call k its quantifier depth (=max. number of nested quantifiers in 1)).
@ Exhibit two permutations o and ¢’ such that
e o has a fixed point but ¢’ does not; and

e o = ifand only if o/ = .

(Actually, o and o’ satisfy the same sentences of quantifier depth at most k)

To show that two permutations satisfy the same sentences, use the
Ehrenfeucht-Fraissé Theorem:

Two permutations o and ¢’ satisfy the same sentences of
quantifier depth at most k if and only if Duplicator wins the
EF-game with k rounds on ¢ and ¢.
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EF-games (a.k.a. Duplicator-Spoiler games)

The setting:
e Two players: Duplicator (D) and Spoiler (S).
@ They play on a pair of permutations o and ¢’.
@ Goal of D: show that o and ¢’ cannot be distinguish in k rounds.
@ Goal of S: show that o and ¢’ are different.
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EF-games (a.k.a. Duplicator-Spoiler games)

The setting:
e Two players: Duplicator (D) and Spoiler (S).
@ They play on a pair of permutations o and ¢’.
@ Goal of D: show that o and ¢’ cannot be distinguish in k rounds.
@ Goal of S: show that o and ¢’ are different.

At each round /:
@ S picks an element s; in o or s/ in ¢’;

o D replicates with an element s/ or s; in the other permutation.
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EF-games (a.k.a. Duplicator-Spoiler games)

The setting:
e Two players: Duplicator (D) and Spoiler (S).

They play on a pair of permutations ¢ and o’.

o
@ Goal of D: show that o and ¢’ cannot be distinguish in k rounds.
o

Goal of S: show that ¢ and ¢’ are different.

At each round /:
@ S picks an element s; in o or s/ in ¢’;

/

@ D replicates with an element s; or s; in the other permutation.

Winner of the EF-game with k rounds:

o Difs=(sq,...,s¢) and 8" = (si,...,s,) are isomorphic,
i.e., if the position- and value-orders on s and s’ are identical;

@ S otherwise.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that
@ o has a fixed point but ¢’ does not;

@ D wins the EF-game with k rounds on ¢ and ¢’.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that
@ o has a fixed point but ¢’ does not;
@ D wins the EF-game with k rounds on ¢ and ¢’.

Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that
@ o has a fixed point but ¢’ does not;
@ D wins the EF-game with k rounds on ¢ and ¢’.

Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

S and D alternate turns.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that
@ o has a fixed point but ¢’ does not;
@ D wins the EF-game with k rounds on ¢ and ¢’.

Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

°
° o s
° °
° o
° °
° °
o °
° o
7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that
@ o has a fixed point but ¢’ does not;
@ D wins the EF-game with k rounds on ¢ and ¢’.

Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

°
° o s
® S1 [ )

° °
° °
° °
° °
° °
7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that
@ o has a fixed point but ¢’ does not;
@ D wins the EF-game with k rounds on ¢ and ¢’.

Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

°
° °
° °
° °
@ S1 [
° °
° °

° °

7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns.
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Goal: For each k, exhibit o and ¢’ such that
@ o has a fixed point but ¢’ does not;
@ D wins the EF-game with k rounds on ¢ and ¢’.

Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

°
° °
° °
° s
@ S1 [
° °
° °
° °
7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that
@ o has a fixed point but ¢’ does not;
@ D wins the EF-game with k rounds on ¢ and ¢’.

Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

)
) )
° )
° ® s
@ S1 [
) )
° )
® 2 °
7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that
@ o has a fixed point but ¢’ does not;
@ D wins the EF-game with k rounds on ¢ and ¢’.

Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

[ ]
[ ] [ ]
® [ ]
° ® s
® S1 °
[ ] [ ]
[ ] [ ]
o OES
7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that

@ o has a fixed point but ¢’ does not;

@ D wins the EF-game with k rounds on ¢ and ¢’.
Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

[ ]
[ ] [ ]
® [ ]
° os
® si ®s;
[ ] [ ]
[ ] [ ]
o OES
7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that

@ o has a fixed point but ¢’ does not;

@ D wins the EF-game with k rounds on ¢ and ¢’.
Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

[ ]
[ ] [ ]
[ ] [ ]
° os
® S1 o s;
® S3 °
[ [ ]
o OES
7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns.
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Inexpressibility of fixed points: Proof

Goal: For each k, exhibit o and ¢’ such that

@ o has a fixed point but ¢’ does not;

@ D wins the EF-game with k rounds on ¢ and ¢’.
Answer: o and ¢’ are decreasing permutations of sizes 2K — 1 and 2k.
For k = 3:

[ ]
[ ] [ ]
[ ] [ ]
° os
® S1 o s;
® S3 °
[ [ ]
o OES
7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

S and D alternate turns. After 3 rounds, D wins!

Mathilde Bouvel FOL for permutations 15 /19



Intersection of TOTO and TOOB



Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:
@ Having a fixed point: expressible in TOOB but not in TOTO;

@ Avoiding a 231-pattern: expressible in TOTO but not in TOOB.
(TOOB does not distinguish between 231 = (1,2,3) and 312 = (1, 3, 2))
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Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:
@ Having a fixed point: expressible in TOOB but not in TOTO;

@ Avoiding a 231-pattern: expressible in TOTO but not in TOOB.
(TOOB does not distinguish between 231 = (1,2,3) and 312 = (1, 3, 2))

Which properties are expressible in both TOOB and TOTO?

Mathilde Bouvel FOL for permutations 17 /19



Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:
@ Having a fixed point: expressible in TOOB but not in TOTO;
@ Avoiding a 231-pattern: expressible in TOTO but not in TOOB.
(TOOB does not distinguish between 231 = (1,2,3) and 312 = (1, 3, 2))
Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties P are eventually true or eventually false, where
eventually means “for all permutations of sufficiently large support”.

Dfn.: The support of a permutation is the set of the non-fixed points.
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Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:
@ Having a fixed point: expressible in TOOB but not in TOTO;

@ Avoiding a 231-pattern: expressible in TOTO but not in TOOB.
(TOOB does not distinguish between 231 = (1,2,3) and 312 = (1, 3, 2))

Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties P are eventually true or eventually false, where
eventually means “for all permutations of sufficiently large support”.

i.e., P is satisfied for all permutations of sufficiently large support or there
is a bound on the size of the support of any permutation satisfying P.

Dfn.: The support of a permutation is the set of the non-fixed points.

The proof uses EF-games.

= The intersection of TOOB and TOTO is trivial, so, as claimed,
permutations-as-elts-of-the-symmetric-group # permutations-as-words.
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Exact description of the intersection of TOOB and TOTO

For any partition A, define
@ C) the set of permutations of cycle-type A;

® Dy=Wi=0Cruqk)-
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Thm.: A set E of permutations is defined by a property expressible in
both TOOB and TOTO if and only if it belongs to the Boolean algebra
generated by all C) and D) (where A runs over all partitions).
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Exact description of the intersection of TOOB and TOTO

For any partition A, define
@ C) the set of permutations of cycle-type A;

® Dy=Wi=0Cruqk)-

Thm.: A set E of permutations is defined by a property expressible in
both TOOB and TOTO if and only if it belongs to the Boolean algebra
generated by all C) and D) (where A runs over all partitions).

Rk: This is more precise than the previous theorem. Indeed:
@ in Cy and D, there is a bound on the size of the support.

o the property either E contains all permutations of sufficiently large
support, or there is a bound on the size of the support of
permutations in E is stable by union, intersection and complement.
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Exact description of the intersection of TOOB and TOTO

For any partition A, define
@ C) the set of permutations of cycle-type A;
® Dy=Wi=0Cruqk)-
Thm.: A set E of permutations is defined by a property expressible in

both TOOB and TOTO if and only if it belongs to the Boolean algebra
generated by all C) and D) (where A runs over all partitions).

Rk: This is more precise than the previous theorem.

Tricks/tools in the proof:
@ expressing Dy in TOTO;
@ use previous theorem to write E as a finite union of Cy's and D) 's;
@ and more EF games!
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Some other things we know (or not)

@ Characterization of the
permutation classes C such
that “having a fixed point” is
expressible in the restriction
of TOTO to C.
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7/

The condition is: there exist k, n,
m such that C does not contain

T

@ Formula-variant: Describe classes TOTO can express (by ¢(x)) the
property that a given element is a fixed point. The same as above!

Mathilde Bouvel FOL for permutations

19 /19



Some other things we know (or not)

o Characterization of the The condition is: there exist k, n,
permutation classes C such m such that C does not contain
that “having a fixed point” is nﬂ7
expressible in the restriction Eﬂk nor 0 _

I

of TOTO to C.

@ Formula-variant: Describe classes TOTO can express (by ¢(x)) the
property that a given element is a fixed point. The same as above!

@ Extension to description of classes where TOTO can express that two
(resp. more) given elements form a transposition (resp. cycle)

Mathilde Bouvel FOL for permutations 19 /19



Some other things we know (or not)

o Characterization of the The condition is: there exist k, n,
permutation classes C such m such that C does not contain
that “having a fixed point” is nﬂ7
expressible in the restriction Eﬂk nor 0

of TOTO to C. N

e Formula-variant: Describe classes TOTO can express (by ¢(x)) the
property that a given element is a fixed point. The same as above!

@ Extension to description of classes where TOTO can express that two
(resp. more) given elements form a transposition (resp. cycle)

@ But we don't know in which classes the existence of a transposition
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Some other things we know (or not)

o Characterization of the The condition is: there exist k, n,
permutation classes C such m such that C does not contain
that “having a fixed point” is nﬂ7
expressible in the restriction Eﬂk nor 0

of TOTO to C. N

Formula-variant: Describe classes TOTO can express (by ¢(x)) the
property that a given element is a fixed point. The same as above!

@ Extension to description of classes where TOTO can express that two
(resp. more) given elements form a transposition (resp. cycle)

@ But we don't know in which classes the existence of a transposition
(resp. cycle of a given size) is expressible in TOTO.

Further project with M. Noy: Prove convergence laws in permutation
classes (for properties expressible in TOTO).
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