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Analysis of algorithms context

Framework:

Algorithms working on arrays of numbers, and using only comparisons
between entries (ex: sorting algorithms).

Inputs can be modeled by permutations.

Analysis of algorithms:

First step: worst-case analysis (ex: O(n2) for QuickSort)

Second step: average-case analysis under the uniform distribution
(ex: O(n log(n)) for QuickSort)

Sometimes, further refinement is needed to reconcile theoretical
statements with observations in practice
(ex: to explain why Python or Java switched to TimSort)
⇒ average-case analysis under non-uniform distributions
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Non-uniform permutations

For the average-case analysis of algorithms:

A first answer it obtained assuming the uniform distribution on the
data set.

But it is not always realistic.
E.g., sorting algorithms are often used on data which is already
“almost sorted”. (Ex. of TimSort [Auger, Jugé, Nicaud, Pivoteau, 2018])

⇒ Find non-uniform models with good balance between simplicity (so that
we can study it) and accuracy (in terms of modeling data)

Some classical models for non-uniform permutations

Ewens: P(σ) is proportional to θnumber of cycles of σ

Mallows: P(σ) is proportional to θnumber of inversions of σ

Our new model: record-biased permutations
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Our record-biased permutations

It is a non-uniform distribution on permutations, which gives higher
probabilities to permutations that are “almost sorted”.

Record-biased permutations:

A record is an element larger than all those preceding it.
Example: 3 4 1 2 6 8 7 9 5 has 5 records.

Roughly, a permutation with many records is “almost sorted”. More
formally, the number of non-records is a measure of presortedness as
defined by [Manilla, 1985], see [Auger, Bouvel, Pivoteau, Nicaud, 2016].

In our model, P(σ) is proportional to θnumber of records of σ.
More precisely,

P(σ) =
θnumber of records of σ

θ(n)
,

where θ(n) = θ(θ + 1) · · · (θ + n − 1) is the rising factorial.
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Remark: Link to Ewens distribution

The record-biased distribution is related to the Ewens distribution via
Foata’s fundamental bijection, which sends number of cycles to number of
records.

Example: 2 4 3 1 9 6 8 7 5 = (3)(4 1 2)(6)(8 7)(9 5) → 3 4 1 2 6 8 7 9 5

Mathilde Bouvel Record-biased permutations 5 / 28



Outline of the talk

Goal: Describe properties of the model of record-biased permutations.
And present roughly some applications to the analysis of algorithms.

Results obtained:

Random sampling can be done in linear time, in several ways.
viewing permutations as words, or as diagrams

Behavior of classical permutation statistics:
We obtain precise probabilities of elementary events.
We deduce their expected values and asymptotic distribution.
Applications to analysis of algorithms [ABNP, 2016]:

• expected running time of InsertionSort,
• expected number of mispredictions in MinMaxSearch

What does a large record-biased permutation typically look like?
We describe the (deterministic) permuton limit for our model.

Additional result: about the height of binary search trees associated with
record-biased permutations [Corsini, 2022]
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Linear random samplers



Some remarks about these random samplers

Sampling relying on Ewens and Foata: It is possible to sample (in
linear time) random permutations that are Ewens-distributed, e.g.

using a variant of the Chinese restaurant process,

or using the branching process known as Feller coupling.

Then, implementing Foata’s bijection (in linear time) provides (linear time)
random samplers for record-biased permutations.

Several uses of random samplers:

In practice: to observe your objects!

In theory: to prove properties of your objects, relying on the
underlying process that generates your objects.

For the second item, it is much more convenient to sample record-biased
permutations directly, rather than going through Ewens and Foata. I
present two such samplers.
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Random sampling of permutations as words

A sampling procedure for record-biased
permutations of size n:

Start with an empty array of n cells.

Insert i from 1 to n.

At step i ,

either insert i in the leftmost
empty cell (this creates a
record): with probability θ

θ+n−i ;
or insert i in one of the n − i other
empty cells (this does not create a
record): with probability 1

θ+n−i for
each such cell.
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Using appropriate data structures (one linked-list and two auxiliary
arrays), we can implement this sampling procedure in linear time.
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Random sampling of permutations as diagrams

Another sampling procedure for
record-biased permutations of size n:

Start with an empty diagram.

For i from 1 to n, insert an i-th
column and a new row, with a new
point at their intersection:

with probability θ
θ+i−1 , the new row

is the topmost one (hence the new
point a record);
for each j < i , with probability

1
θ+i−1 , the new row is just under the
point in column j (hence not a
record).

∅

θ

1

θ
1

θ2θ1

θ2

1

θ2
1

θ3θ
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θ

Using appropriate data structures (a linked list with direct access to
its cells), we can implement this sampling procedure in linear time.
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Playing with the samplers: behavior of statistics
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Playing with the samplers: a typical diagram arises

Recall that the diagram of a permutation σ
of size n is the set of points at coordinates
(i , σ(i)) for 1 ≤ i ≤ n.

The normalized diagram of σ is the same
picture, rescaled to the unit square.

σ = 3 1 2 8 5 4 7 9 6

Pictures obtained overlapping 10 000 permutations of size 100 sampled
according to the record-biased model with θ = 1, 50, 100 and 500:

We explain it by describing the permuton limit of record-biased
permutations (which is a deterministic permuton).
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Behavior of statistics



Number of records

Recall that a record of a permutation σ is given by an index i such that
σ(i) > σ(j) for all j < i .

Results:

The expected number of records in
record-biased permutations of size n
is
∑n

i=1
θ

θ+i−1 .

For fixed θ, it is ∼ θ log(n) as n → ∞.

For fixed θ, the distribution of the
number of records in record-biased
permutations is asymptotically Gaussian.
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permutations, of size
n = 100, and for
θ = 1, 50, 100 and 500.

Proof idea: Via the Foata bijection, records in record-biased permutations
correspond to cycles in Ewens-distributed permutations.

Remark: Expectation can also be derived from P(record at i) = θ
θ+i−1 ,

which is obvious from the random sampler of diagrams.
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Number of descents

A descent of a permutation σ is given by
an index i s.t. σ(i − 1) > σ(i).

Results:
The expected number of descents in
record-biased permutations of size n
is n(n−1)

2(θ+n−1)

For fixed θ, it is ∼ n
2 as n → ∞.

For fixed θ, the distribution of the
number of descents in record-biased
permutations is asymptotically Gaussian.
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permutations, of size
n = 100, and for
θ = 1, 50, 100 and 500.

Proof idea: Descents in record-biased permutations correspond to
anti-exceedances in Ewens-distributed permutations. These are closely
related to weak exceedances studied by [Féray, 2013].

Remark: P(descent at i) and hence the expectation can also be derived
from the random sampler of diagrams.
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Number of inversions

An inversion of σ is given by a pair (i , j) s.t.
i < j and σ(i) > σ(j).

Results:

The expected number of inversions in
record-biased permutations of size n is
n(n+1−2θ)

4 + θ(θ−1)
2

∑n
i=1

1
θ+i−1

For fixed θ, it is ∼ n2

4 as n → ∞.

For fixed θ, the distribution of the
number of inversions in record-biased
permutations is asymptotically Gaussian.
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Remark: No known natural analogue on Ewens-distributed permutations.

Proof ingredients: Writing the number of inversions as
∑

j invj where
invj is the number of inversions of the form (i , j), use the sampling
procedure as diagrams to compute the distribution of each invj and show
that they are independent.
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Number of inversions: proof sketch

Let invj be the number of inversions of the form (i , j),
and inv =

∑
j invj be the number of inversions.

Remarks: With the sampling procedure as diagrams

invj is completely determined by step j of the procedure, and depends
only on the height of the j-th point inserted;

in particular, for j ̸= j ′, invj and invj ′ are independent.

Expectation: The first remark gives P(invj = k) =

{
θ

θ+j−1 if k = 0
1

θ+j−1 if k ̸= 0
,

from which we deduce expressions for
E(invj) =

∑
k k · P(invj = k) and E(inv) =

∑
j E(invj).

Asymptotic normality: Follows from independence comparing the order

of
∑

j E(inv
3
j ) = Θ(n4) and

√
V(inv)3 = Θ(n9/2).

Mathilde Bouvel Record-biased permutations 17 / 28



Value of the first element

Results:

The expected value of σ(1) in record-
biased permutations of size n is θ+n

θ+1

For fixed θ, it is ∼ n
θ+1 as n → ∞.

For fixed θ, asymptotically, the
rescaled first value σ(1)/n in a
record-biased permutation of size n
follows a beta distribution of
parameters (1, θ).
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Remark: Corresponds to the minimum over all cycles of the maximal
value in a cycle for Ewens-distributed permutations.

Proof ingredients: The sampling procedure as words, and (magical)
computations. But is there a simple proof that E(σ(1)) = θ+n

θ+1 ???
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Value of the first element: proof sketch

Expectation: We use the sampling procedure as words.

The first element is k when the first k − 1 insertions do not create
records but the k-th insertion creates a record.

Therefore P(σ(1) = k) =
∏k−1

i=1
n−i

θ+n−i ·
θ

θ+n−k = (n−1)! θ(n−k)θ

(n−k)!θ(n)
,

where x (m) = x(x + 1) . . . (x +m − 1) is the rising factorial.

(Magical?) simplifications arise giving E(σ(1)) = θ+n
θ+1 .

Asymptotic distribution: We compute moments of σ(1) similarly.

The computation of E(σ(1)r ) uses similar simplifications and involves

Eulerian polynomials Ar (z) (because
∑

n n
rzn = zAr (z)

(1−z)r+1 ).

We obtain E(σ(1)r ) ∼n→∞
r !nr

(θ+1)(r)
.

After normalization, we recognize the r -th moment r !
(θ+1)(r)

of a beta

distribution of parameter (1, θ).

Mathilde Bouvel Record-biased permutations 19 / 28



Value of the first element: proof sketch

Expectation: We use the sampling procedure as words.

The first element is k when the first k − 1 insertions do not create
records but the k-th insertion creates a record.

Therefore P(σ(1) = k) =
∏k−1

i=1
n−i

θ+n−i ·
θ

θ+n−k = (n−1)! θ(n−k)θ

(n−k)!θ(n)
,

where x (m) = x(x + 1) . . . (x +m − 1) is the rising factorial.

(Magical?) simplifications arise giving E(σ(1)) = θ+n
θ+1 .

Asymptotic distribution: We compute moments of σ(1) similarly.

The computation of E(σ(1)r ) uses similar simplifications and involves

Eulerian polynomials Ar (z) (because
∑

n n
rzn = zAr (z)

(1−z)r+1 ).

We obtain E(σ(1)r ) ∼n→∞
r !nr

(θ+1)(r)
.

After normalization, we recognize the r -th moment r !
(θ+1)(r)

of a beta

distribution of parameter (1, θ).

Mathilde Bouvel Record-biased permutations 19 / 28



One remark: Various regimes for θ

For our four statistics, we have:

formula (depending on θ and n) for its expectation, valid for θ fixed
and θ = θ(n);

the asymptotic behavior of these expectations when θ is fixed;

the limiting distribution when θ is fixed.

Asymptotic behavior of expectations in various regimes for θ:

θ = 1 fixed θ > 0 θ = nϵ, θ = λn, θ = nδ,
(uniform) 0 < ϵ < 1 λ > 0 δ > 1

records log n θ · log n (1− ϵ) · nϵ log n λ log(1 + 1/λ) · n n
descents n/2 n/2 n/2 n/2(λ+ 1) n2−δ/2
inversions n2/4 n2/4 n2/4 n2/4 · f (λ) n3−δ/6
first value n/2 n/(θ + 1) n1−ϵ (λ+ 1)/λ 1

where f (λ) = 1− 2λ+ 2λ2 log (1 + 1/λ).

In the last part of the talk, we will focus on the regime θ = λn.
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Another remark: analysis of algorithms

InsertionSort:

For i = 1, 2, . . . n, swap i with the elements to its left until i reaches
the i-th cell.

The number of swaps is the number of inversions, whose expected
behavior is known from the previous table.

MinMaxSearch:

Several algorithms to find the min and the max in an array: naive
version with 2n comparisons, clever version with 3

2n comparisons.

But the naive algorithm is typically more efficient on uniform data!
Why? Not only the comparisons count in practice.

The branch predictors cause mispredictions, hence a slow-down.
We quantify this by computing the average number of mispredictions.

This also explains why the clever algorithm is more efficient on
“almost sorted” data (in some regimes for θ).
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Permuton limit
of record-biased permutations

(in the regime θ = λn)

Reminder: Pictures obtained overlapping 10 000 permutations of size 100 sampled

according to the record-biased model with θ = 1, 50, 100 and 500



Permutons 101 [Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013]

Informally, a permuton is the rescaled diagram of an infinite permutation.

(Formal) definition: A permuton µ is a probability measure on the unit
square with uniform projections (or marginals):

for all a < b in [0, 1], µ([a, b]× [0, 1]) = µ([0, 1]× [a, b]) = b − a.

Remark: The normalized diagrams of
permutations (denoted σ) are essentially
permutons (denoted µσ)
Replacing each point (i/n, σ(i)/n) by a little square [(i − 1)/n, i/n]× [(σ(i)− 1)/n, σ(i)/n], and

distributing the mass 1 uniformly on these little squares

Convergence of a sequence of permutations (σn) to a permuton µ:

inherited from the weak convergence of measures, namely:

σn → µ when sup
R rectangle ⊂[0,1]2

|µσn(R)− µ(R)| → 0 as n → +∞.
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Permuton limit of record-biased permutations

Theorem:
Let σn be a random record-biased permutation of size n for θ = λn.
µσn converges in probability to µ = µc + µu defined below.

Letting fλ(x) =
x(λ+1)
λ+x , we define

µu is the uniform measure
of total mass cλ

∫ 1
0 fλ for cλ = 1

λ+1
on the area under the curve y = fλ(x);

µc is the measure
supported by the curve y = fλ(x)
with density λ

λ+x with respect to Lebc ,
defined by Lebc(x , fλ(x)) = Lebesgue(x)

Two steps towards this statement:
guessing µ and proving convergence.

f0.01:

f0.2:

f3:
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Guessing the limit µ

The pictures suggest to decompose µ as µu + µc , with µc on a curve,
and µu uniform under the curve. To determine are:

the equation y = fλ(x) of the curve,

how to distribute the mass between µc and µu.

To find the equation y = fλ(x) of the curve,

we define lmax(i) = max before position i ,

we estimate P(lmax(i) = j) for i ≈ xn and j ≈ yn;

we find the relation between x and y which makes this probability not
larger than 1, and non-zero once summed over j .

To find the relative measures on the curve and below,

we compute the measure of the records in σn and take the limit in n:
this gives the measure

∫ 1
0

λ
λ+x dx on the curve;

we distribute uniformly the mass cλ
∫ 1
0 fλ(x)dx below the curve,

for cλ s.t.
∫ b
a (

λ
λ+x + cλfλ(x))dx = b − a.
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Proving convergence 1/2

Prerequisite: Ensure that µ is a permuton

Uniform projections for [a, b]× [0, 1]: essentially by construction.

For projections [0, 1]× [a, b]: from above and a symmetry w.r.t. ↖↘.

Prove concentration of lmax(i) around its typical value nfλ(i/n):
To this effect, we need quantitative analogues of the qualitative analysis
used for guessing the expression of fλ.
We obtain upper and lower bounds on P(lmax(i) = j) that differ from the
qualitative estimate only by polynomial factors.

Useful lemma:
To prove convergence (in probability) of σn to µ, it is enough to work with
“grid-aligned” rectangles, i.e. with the distance d·/n(µσn , µ) defined by

d·/n(µσn , µ) = sup
R of the form [0,i/n]×[0,j/n]

(|µσn(R)− µ(R)|).
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Proving convergence 2/2

Compute |µ(R)− µσn(R)| for grid-aligned rectangles R:
Easy for tall rectangles using concentration result of lmax(i).
Harder for long rectangles, because of R2 mostly.

a

b

tall rectangle
a

b

long rectangle a′ a

b
R1 R2

Rsmall

We obtain the following concentration inequality:
∀ε ∈ (0, 1/2), ∃c(ε) ∈ (0, 1), ∀n large enough,∀R = [0, i/n]× [0, j/n],

P (|µσn(R)− µ(R)| > ε) ≤ c(ε)n.

Theorem (reminder):
Let σn be a random record-biased permutation of size n for θ = λn.
µσn converges in probability to µ = µc + µu.
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Wrapping up

We introduced a new model of non-uniform random permutations

with a bias toward sortedness via their records,
motivated by the analysis of algorithms,
and with applications there.

Our model is however closely related to the Ewens model by Foata’s
bijection.

We have several efficient procedures for sampling our record-biased
permutations.

We described properties of this model, namely

the behavior of some classical statistics
and the permuton limit

!! Thank you !!

Any questions or suggestions?

Mathilde Bouvel Record-biased permutations 28 / 28


