Bubble Sort and Permutation Classes

Mathilde Bouvel

LaBRI, CNRS
Joint work with
M.H. Albert, M.D. Atkinson, A. Claesson and M. Dukes

The Bubble Sort Operator B

$B=$ one pass of bubble sort. On sequences that are permutations.

Definition(s):

The Bubble Sort Operator B

$B=$ one pass of bubble sort.
On sequences that are permutations.
Definition(s):

- Algorithmically:
$\hookrightarrow B$ processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i)>\sigma(i+1)$.

The Bubble Sort Operator B

$B=$ one pass of bubble sort.
On sequences that are permutations.
Definition(s):

- Algorithmically:
$\hookrightarrow B$ processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i)>\sigma(i+1)$.
- Recursively:
$\hookrightarrow\left\{\begin{array}{l}B\left(\sigma_{1} n \sigma_{2}\right)=B\left(\sigma_{1}\right) \sigma_{2} n \text { if } \sigma=\sigma_{1} n \sigma_{2} \in S_{n} \\ B(\varepsilon)=\varepsilon\end{array}\right.$

The Bubble Sort Operator B

$B=$ one pass of bubble sort.
On sequences that are permutations.
Definition(s):

- Algorithmically:
$\hookrightarrow B$ processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i)>\sigma(i+1)$.
- Recursively:
$\hookrightarrow\left\{\begin{array}{l}B\left(\sigma_{1} n \sigma_{2}\right)=B\left(\sigma_{1}\right) \sigma_{2} n \text { if } \sigma=\sigma_{1} n \sigma_{2} \in S_{n} \\ B(\varepsilon)=\varepsilon \\ \qquad \begin{array}{c}\text { NB Stack-sorting operator } S \\ S\left(\sigma_{1} n \sigma_{2}\right)=S\left(\sigma_{1}\right) S\left(\sigma_{2}\right) n\end{array} \\ \hline\end{array}\right.$

The Bubble Sort Operator B

$B=$ one pass of bubble sort.
On sequences that are permutations.
Definition(s):

- Algorithmically:
$\hookrightarrow B$ processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i)>\sigma(i+1)$.
- Recursively:
$\hookrightarrow\left\{\begin{array}{l}B\left(\sigma_{1} n \sigma_{2}\right)=B\left(\sigma_{1}\right) \sigma_{2} n \text { if } \sigma=\sigma_{1} n \sigma_{2} \in S_{n} \\ B(\varepsilon)=\varepsilon\end{array}\right.$
- Explicitely:
\hookrightarrow If $\sigma=n_{1} \lambda_{1} n_{2} \lambda_{2} \cdots n_{k} \lambda_{k}$ where n_{1}, \ldots, n_{k} are the left to right maxima of σ then $B(\sigma)=\lambda_{1} n_{1} \lambda_{2} n_{2} \cdots \lambda_{k} n_{k}$.

Permutation Classes

Permutations

- $S_{n}=$ permutations σ of $\{1,2, \ldots, n\}$
- Representation by a word: $\sigma(1) \sigma(2) \cdots \sigma(n)$, by its diagram, \ldots

$$
\sigma=312854796
$$

Permutation Classes

Permutations

- $S_{n}=$ permutations σ of $\{1,2, \ldots, n\}$
- Representation by a word: $\sigma(1) \sigma(2) \cdots \sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram

Example: $2134 \preccurlyeq 312854796$

$$
\sigma=312854796
$$

Permutation Classes

Permutations

- $S_{n}=$ permutations σ of $\{1,2, \ldots, n\}$
- Representation by a word: $\sigma(1) \sigma(2) \cdots \sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

$$
\sigma=312854796
$$

Permutation Classes

Permutations

- $S_{n}=$ permutations σ of $\{1,2, \ldots, n\}$
- Representation by a word: $\sigma(1) \sigma(2) \cdots \sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Permutation Classes

Permutations

- $S_{n}=$ permutations σ of $\{1,2, \ldots, n\}$
- Representation by a word: $\sigma(1) \sigma(2) \cdots \sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Permutation Classes

Permutations

- $S_{n}=$ permutations σ of $\{1,2, \ldots, n\}$
- Representation by a word: $\sigma(1) \sigma(2) \cdots \sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Permutation Classes

Permutations

- $S_{n}=$ permutations σ of $\{1,2, \ldots, n\}$
- Representation by a word: $\sigma(1) \sigma(2) \cdots \sigma(n)$, by its diagram, \ldots

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Occurrence of a pattern

- Occurrence $=$ subpermutation without normalization

Example: $3279 \subseteq 312854796$

Permutation Classes

Permutations

- $S_{n}=$ permutations σ of $\{1,2, \ldots, n\}$
- Representation by a word: $\sigma(1) \sigma(2) \cdots \sigma(n)$, by its diagram, \ldots

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Occurrence of a pattern

- Occurrence $=$ subpermutation without normalization

Example: $3279 \subseteq 312854796$

Classes

- Subset of $S=\cup_{n} S_{n}$ downward closed for \preccurlyeq
- Characterization by a basis of excluded patterns: $\mathcal{C}=\operatorname{Av}(\mathcal{B})$
- Principal classes: $\mathcal{C}=\operatorname{Av}(\pi)$

B-sortable permutations

Proposition

The permutations that are sorted by B are a class.
Namely: $B(\sigma)=I d$ iff $\sigma \in \operatorname{Av}(231,321)$.

Proof: by induction.
Decompose $\sigma=\sigma_{1} n \sigma_{2}$ around its maximum n.
Recall that $B(\sigma)=B\left(\sigma_{1}\right) \sigma_{2} n$.
σ is sorted by B
σ_{1} is sorted by B, σ_{2} is increasing, and $\sigma_{1}<\sigma_{2}$

B-sortable permutations

Proposition

The permutations that are sorted by B are a class.
Namely: $B(\sigma)=1 d$ iff $\sigma \in \operatorname{Av}(231,321)$.

Proof: by induction.
Decompose $\sigma=\sigma_{1} n \sigma_{2}$ around its maximum n.
Recall that $B(\sigma)=B\left(\sigma_{1}\right) \sigma_{2} n$.
σ is sorted by B
$\Leftrightarrow \sigma_{1}$ is sorted by B, σ_{2} is increasing, and $\sigma_{1}<\sigma_{2}$
$\Leftrightarrow \sigma_{1} \in \operatorname{Av}(231,321), \sigma_{2}$ is increasing, and $\sigma_{1}<\sigma_{2}$
$\Leftrightarrow \sigma \in \operatorname{Av}(231,321)$

Motivation and main result

- B-sortable permutations
$\hookrightarrow B^{-1}(A v(21))=\operatorname{Av}(231,321)$

Motivation and main result

- B-sortable permutations
$\hookrightarrow B^{-1}(A v(21))=A v(231,321)$
- SB-sortable permutations?

$$
\hookrightarrow(S B)^{-1}(A v(21))=B^{-1}(A v(231))
$$

Motivation and main result

- B-sortable permutations

$$
\hookrightarrow B^{-1}(A v(21))=\operatorname{Av}(231,321)
$$

- $S B$-sortable permutations?

$$
\hookrightarrow(S B)^{-1}(A v(21))=B^{-1}(A v(231))
$$

- B^{2}-sortable permutations?

$$
\hookrightarrow(B B)^{-1}(A v(21))=B^{-1}(A v(231,321))
$$

Motivation and main result

- B-sortable permutations
$\hookrightarrow B^{-1}(A v(21))=A v(231,321)$
- $S B$-sortable permutations?
$\hookrightarrow(S B)^{-1}(A v(21))=B^{-1}(A v(231))$
- B^{2}-sortable permutations?
$\hookrightarrow(B B)^{-1}(A v(21))=B^{-1}(A v(231,321))$
- In general, what can we say about $B^{-1}(\mathcal{C})$?

For $\mathcal{C}=A v(\pi)$ a principal permutation class, we can determine

Motivation and main result

- B-sortable permutations
$\hookrightarrow B^{-1}(A v(21))=A v(231,321)$
- SB-sortable permutations?
$\hookrightarrow(S B)^{-1}(A v(21))=B^{-1}(A v(231))$
- B^{2}-sortable permutations?
$\hookrightarrow(B B)^{-1}(A v(21))=B^{-1}(A v(231,321))$
- In general, what can we say about $B^{-1}(\mathcal{C})$?

For $\mathcal{C}=\operatorname{Av}(\pi)$ a principal permutation class, we can determine

- when $B^{-1}(\operatorname{Av}(\pi))$ is a class,
- and in this case give its basis.

This result is proved by considering the LtoR-maxima of π.

Summary of results

π	$B^{-1}(A v(\pi))$	Basis
1	is a class	1
12	is a class	12,21
21	is a class	231,321
$n \alpha, \alpha \neq \varepsilon$	is a class	$n(n+1) \alpha,(n+1) n \alpha$
$(n-1) \alpha n, \alpha \neq \varepsilon$	is a class	$(n-1) n \alpha, n(n-1) \alpha$
$a \alpha b \beta, \beta \neq \varepsilon$	is a class	$R(\pi)$
$a \alpha b \beta n, \beta \neq \varepsilon$	is a class	$R(a \alpha b \beta)$
$(n-2) \alpha(n-1) n$	is a class	$(n-2)(n-1) \alpha n,(n-1)(n-2) \alpha n$, $(n-2) n \alpha(n-1), n(n-2) \alpha(n-1)$
$a \alpha b \beta c \gamma, \gamma \neq \varepsilon$	is not a class	

Remarks: $\quad n,(n-1),(n-2), a, b$ and c are LtoR-maxima.

Short patterns π

Proposition

There are no permutations σ of length $n \geq 1$ such that $B(\sigma)$ avoids 1 . Hence $B^{-1}(A v(1))=\{\varepsilon\}=A v(1)$.

Short patterns π

Proposition

There are no permutations σ of length $n \geq 1$ such that $B(\sigma)$ avoids 1 . Hence $B^{-1}(\operatorname{Av}(1))=\{\varepsilon\}=\operatorname{Av}(1)$.

Proposition

The only permutations σ such that $B(\sigma)$ avoids 12 are ε and 1 . Hence $B^{-1}(A v(12))=\{\varepsilon, 1\}=A v(12,21)$.

Proof: $B(\sigma)$ always ends with its maximum.
\square

Short patterns π

Proposition

There are no permutations σ of length $n \geq 1$ such that $B(\sigma)$ avoids 1 . Hence $B^{-1}(\operatorname{Av}(1))=\{\varepsilon\}=\operatorname{Av}(1)$.

Proposition

The only permutations σ such that $B(\sigma)$ avoids 12 are ε and 1 . Hence $B^{-1}(A v(12))=\{\varepsilon, 1\}=A v(12,21)$.

Proof: $B(\sigma)$ always ends with its maximum.

Proposition

The permutations σ such that $B(\sigma)$ avoids 21 are the B-sortable permutations. Hence $B^{-1}(A v(21))=A v(231,321)$.

Summary of results

π	$B^{-1}(A v(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231,321	\checkmark
$n \alpha, \alpha \neq \varepsilon$	is a class	$n(n+1) \alpha,(n+1) n \alpha$	
$(n-1) \alpha n, \alpha \neq \varepsilon$	is a class	$(n-1) n \alpha, n(n-1) \alpha$	
$a \alpha b \beta, \beta \neq \varepsilon$	is a class	$R(\pi)$	
$a \alpha b \beta n, \beta \neq \varepsilon$	is a class	$R(a \alpha b \beta)$	
		$(n-2)(n-1) \alpha n$, $(n-1)(n-2) \alpha n$, $(n-2) n \alpha(n-1)$, $(n-2) \alpha(n-1) n$ is a class	
$a \alpha b \beta c \gamma, \gamma \neq \varepsilon$	is not a class		

Patterns $\pi \in S_{n}$ ending with n but not with $(n-1) n$

Lemma

If $\pi \in S_{n}$ with $n \geq 3$ is such that $\pi(n)=n$ but $\pi(n-1) \neq n-1$, then setting $\pi^{\prime}=\pi(1) \pi(2) \ldots \pi(n-1)$ we have $B^{-1}(A v(\pi))=B^{-1}\left(A v\left(\pi^{\prime}\right)\right)$.

Patterns $\pi \in S_{n}$ ending with n but not with $(n-1) n$

Lemma

If $\pi \in S_{n}$ with $n \geq 3$ is such that $\pi(n)=n$ but $\pi(n-1) \neq n-1$, then setting $\pi^{\prime}=\pi(1) \pi(2) \ldots \pi(n-1)$ we have $B^{-1}(A v(\pi))=B^{-1}\left(A v\left(\pi^{\prime}\right)\right)$.

Proof:

- $\sigma \in B^{-1}\left(A v\left(\pi^{\prime}\right)\right) \Rightarrow B(\sigma)$ avoids π^{\prime}

$$
\Rightarrow B(\sigma) \text { avoids } \pi \Rightarrow \sigma \in B^{-1}(A v(\pi))
$$

But $B(\sigma)=B\left(\sigma_{1}\right) \sigma_{2} m$ ends with its maximum m.

Hence $B\left(\sigma_{1}\right) \sigma_{2}$ avoids π^{\prime}.
But π^{\prime} does not end with its maximum
Hence $B(\sigma)=B\left(\sigma_{1}\right) \sigma_{2} m$ avoids π^{\prime} and $\sigma \in B^{-1}\left(A v\left(\pi^{\prime}\right)\right)$

This lemmas applies in particular for $\pi=(n-1) \alpha n$ with $\alpha \neq \varepsilon$ and

Patterns $\pi \in S_{n}$ ending with n but not with $(n-1) n$

Lemma

If $\pi \in S_{n}$ with $n \geq 3$ is such that $\pi(n)=n$ but $\pi(n-1) \neq n-1$, then setting $\pi^{\prime}=\pi(1) \pi(2) \ldots \pi(n-1)$ we have $B^{-1}(A v(\pi))=B^{-1}\left(A v\left(\pi^{\prime}\right)\right)$.

Proof:

- $\sigma \in B^{-1}\left(A v\left(\pi^{\prime}\right)\right) \Rightarrow B(\sigma)$ avoids π^{\prime}
$\Rightarrow B(\sigma)$ avoids $\pi \Rightarrow \sigma \in B^{-1}(A v(\pi))$
- $\sigma \in B^{-1}(\operatorname{Av}(\pi)) \Rightarrow B(\sigma)$ avoids $\pi=\pi^{\prime} n$ But $B(\sigma)=B\left(\sigma_{1}\right) \sigma_{2} m$ ends with its maximum m. Hence $B\left(\sigma_{1}\right) \sigma_{2}$ avoids π^{\prime}.
But π^{\prime} does not end with its maximum. Hence $B(\sigma)=B\left(\sigma_{1}\right) \sigma_{2} m$ avoids π^{\prime} and $\sigma \in B^{-1}\left(A v\left(\pi^{\prime}\right)\right)$.

Patterns $\pi \in S_{n}$ ending with n but not with $(n-1) n$

Lemma

If $\pi \in S_{n}$ with $n \geq 3$ is such that $\pi(n)=n$ but $\pi(n-1) \neq n-1$, then setting $\pi^{\prime}=\pi(1) \pi(2) \ldots \pi(n-1)$ we have $B^{-1}(A v(\pi))=B^{-1}\left(A v\left(\pi^{\prime}\right)\right)$.

Proof:

- $\sigma \in B^{-1}\left(A v\left(\pi^{\prime}\right)\right) \Rightarrow B(\sigma)$ avoids π^{\prime}
$\Rightarrow B(\sigma)$ avoids $\pi \Rightarrow \sigma \in B^{-1}(A v(\pi))$
- $\sigma \in B^{-1}(A v(\pi)) \Rightarrow B(\sigma)$ avoids $\pi=\pi^{\prime} n$

But $B(\sigma)=B\left(\sigma_{1}\right) \sigma_{2} m$ ends with its maximum m.
Hence $B\left(\sigma_{1}\right) \sigma_{2}$ avoids π^{\prime}.
But π^{\prime} does not end with its maximum. Hence $B(\sigma)=B\left(\sigma_{1}\right) \sigma_{2} m$ avoids π^{\prime} and $\sigma \in B^{-1}\left(A v\left(\pi^{\prime}\right)\right)$.

This lemmas applies in particular for $\pi=(n-1) \alpha n$ with $\alpha \neq \varepsilon$ and $\pi=a \alpha b \beta n$ with $\beta \neq \varepsilon$.

Summary of results

π	$B^{-1}(A v(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231,321	\checkmark
$n \alpha, \alpha \neq \varepsilon$	is a class	$n(n+1) \alpha,(n+1) n \alpha$	
$(n-1) \alpha n, \alpha \neq \varepsilon$	is a class	$(n-1) n \alpha, n(n-1) \alpha$	\checkmark
$a \alpha b \beta, \beta \neq \varepsilon$	is a class	$R(\pi)$	
$a \alpha b \beta n, \beta \neq \varepsilon$	is a class	$R(a \alpha b \beta)$	\checkmark
		$(n-2)(n-1) \alpha n$, $(n-1)(n-2) \alpha n$, $(n-2) n \alpha(n-1)$, $(n-2) \alpha(n-1) n$ is a class	
$a \alpha b \beta c \gamma, \gamma \neq \varepsilon$	is not a class		

Patterns $\pi \in S_{n}$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi=a \alpha b \beta c \gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(\operatorname{Av}(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi=a \alpha b \beta c \gamma n$.

Patterns $\pi \in S_{n}$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi=\operatorname{a\alpha b} \beta c \gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(\operatorname{Av}(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi=a \alpha b \beta c \gamma n$.
Set $\theta_{1}=b a \alpha n \beta c \gamma$ and $\theta_{2}=(n+1) \theta_{1}$. Notice that $\theta_{1} \preccurlyeq \theta_{2}$.

Patterns $\pi \in S_{n}$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi=a \alpha b \beta c \gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(\operatorname{Av}(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi=a \alpha b \beta c \gamma n$.
Set $\theta_{1}=b a \alpha n \beta c \gamma$ and $\theta_{2}=(n+1) \theta_{1}$. Notice that $\theta_{1} \preccurlyeq \theta_{2}$.

- Clearly, $B\left(\theta_{1}\right)=\pi$ and $\theta_{1} \notin B^{-1}(A v(\pi))$.
\qquad
\qquad
\square

Patterns $\pi \in S_{n}$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi=a \alpha b \beta c \gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(\operatorname{Av}(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi=a \alpha b \beta c \gamma n$.
Set $\theta_{1}=\operatorname{ba\alpha n} \beta c \gamma$ and $\theta_{2}=(n+1) \theta_{1}$. Notice that $\theta_{1} \preccurlyeq \theta_{2}$.

- Clearly, $B\left(\theta_{1}\right)=\pi$ and $\theta_{1} \notin B^{-1}(A v(\pi))$.
- $B\left(\theta_{2}\right)=b a \alpha n \beta c \gamma(n+1)$

Since $B\left(\theta_{2}\right)$ is only one term longer than π, we easily check that $B\left(\theta_{2}\right)$ avoids π. Hence $\theta_{2} \in B^{-1}(\operatorname{Av}(\pi))$.

Patterns $\pi \in S_{n}$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi=a \alpha b \beta c \gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(\operatorname{Av}(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi=a \alpha b \beta c \gamma n$.
Set $\theta_{1}=b a \alpha n \beta c \gamma$ and $\theta_{2}=(n+1) \theta_{1}$. Notice that $\theta_{1} \preccurlyeq \theta_{2}$.

- Clearly, $B\left(\theta_{1}\right)=\pi$ and $\theta_{1} \notin B^{-1}(A v(\pi))$.
- $B\left(\theta_{2}\right)=b a \alpha n \beta c \gamma(n+1)$

Since $B\left(\theta_{2}\right)$ is only one term longer than π, we easily check that $B\left(\theta_{2}\right)$ avoids π. Hence $\theta_{2} \in B^{-1}(\operatorname{Av}(\pi))$.

We have $B^{-1}(\operatorname{Av}(\pi)) \not \ni \theta_{1} \preccurlyeq \theta_{2} \in B^{-1}(\operatorname{Av}(\pi))$. Consequently, $B^{-1}(A v(\pi))$ is not a class.

Summary of results

π	$B^{-1}(A v(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231,321	\checkmark
$n \alpha, \alpha \neq \varepsilon$	is a class	$n(n+1) \alpha,(n+1) n \alpha$	
$(n-1) \alpha n, \alpha \neq \varepsilon$	is a class	$(n-1) n \alpha, n(n-1) \alpha$	\checkmark
$a \alpha b \beta, \beta \neq \varepsilon$	is a class	$R(\pi)$	
$a \alpha b \beta n, \beta \neq \varepsilon$	is a class	$R(a \alpha b \beta)$	\checkmark
		$(n-2)(n-1) \alpha n$, $(n-1)(n-2) \alpha n$, $(n-2) n \alpha(n-1)$, $n-2) \alpha(n-1) n$ is a class	
$a \alpha b \beta c \gamma, \gamma \neq \varepsilon$	is not a class		

Common framework for the remaining cases

Lemma

For any pattern π, if there exists a set \mathcal{R} of permutations such that $\forall \sigma, \pi \preccurlyeq B(\sigma) \Leftrightarrow \rho \preccurlyeq \sigma$ for some $\rho \in \mathcal{R}$, then $B^{-1}(\operatorname{Av}(\pi))$ is a class. Furthermore, if \mathcal{R} is minimal, it is the basis of $B^{-1}(\operatorname{Av}(\pi))$.

This show that $B^{-1}(A v(\pi))$ is a downset, hence a classThis also shows that the minimal \mathcal{R} is its basis.

Common framework for the remaining cases

Lemma

For any pattern π, if there exists a set \mathcal{R} of permutations such that $\forall \sigma, \pi \preccurlyeq B(\sigma) \Leftrightarrow \rho \preccurlyeq \sigma$ for some $\rho \in \mathcal{R}$, then $B^{-1}(\operatorname{Av}(\pi))$ is a class. Furthermore, if \mathcal{R} is minimal, it is the basis of $B^{-1}(\operatorname{Av}(\pi))$.

Proof: Show that $B^{-1}(\operatorname{Av}(\pi))$ is downward closed for \preccurlyeq.

$$
\begin{aligned}
& \sigma \notin B^{-1}(\operatorname{Av}(\pi)) \\
\Leftrightarrow & B(\sigma) \notin \operatorname{Av}(\pi) \\
\Leftrightarrow & \pi \preccurlyeq B(\sigma) \\
\Leftrightarrow & \exists \rho \in \mathcal{R}, \rho \preccurlyeq \sigma
\end{aligned}
$$

so that $\sigma \in B^{-1}(\operatorname{Av}(\pi)) \Leftrightarrow \forall \rho \in \mathcal{R}, \rho \nprec \sigma$.
This show that $B^{-1}(\operatorname{Av}(\pi))$ is a downset, hence a class.
This also shows that the minimal \mathcal{R} is its basis.

Patterns $\pi \in S_{n}$ starting with n

Proposition

If $\pi \in S_{n}$ is such that $\pi=n \alpha$ for $\alpha \neq \varepsilon$, then $B^{-1}(A v(\pi))$ is a class whose basis is $\{n(n+1) \alpha,(n+1) n \alpha\}$.

Patterns $\pi \in S_{n}$ starting with n

Proposition

If $\pi \in S_{n}$ is such that $\pi=n \alpha$ for $\alpha \neq \varepsilon$, then $B^{-1}(A v(\pi))$ is a class whose basis is $\{n(n+1) \alpha,(n+1) n \alpha\}$.

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p \lambda \subseteq B(\sigma)$.
Then there exists $q>p>\lambda$ such that $p q \lambda \subseteq \sigma$ or $q p \lambda \subseteq \sigma$. Hence $n(n+1) \alpha$ or $(n+1) n \alpha \preccurlyeq \sigma$.

Lemma

If $n(n+1) \alpha$ or $(n+1) n \alpha \preccurlyeq \sigma$, consider an occurrence $p q \lambda$ or $q p \lambda \subseteq \sigma$.
Then $p \lambda \subseteq B(\sigma)$.
Hence $\pi \preccurlyeq B(\sigma)$.

Proof of the first lemma for $\pi=n \alpha$ with $\alpha \neq \varepsilon$

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p \lambda \subseteq B(\sigma)$.
Then there exists $q>p>\lambda$ such that $p q \lambda \subseteq \sigma$ or $q p \lambda \subseteq \sigma$.
Hence $n(n+1) \alpha$ or $(n+1) n \alpha \preccurlyeq \sigma$.
Proof: by induction on $|\sigma|$.

- If $|\sigma| \leq 2$, result vacuously true (since $B(\sigma)$ ends with its maximum).
- If $\sigma=\sigma_{1} m \sigma_{2}$ with $m=|\sigma|>2$, then $p \lambda \subseteq B\left(\sigma_{1}\right) \sigma_{2} m$.

Because $p \lambda$ does not end with its maximum, $p \lambda \subseteq B\left(\sigma_{1}\right) \sigma_{2}$.

* If $\lambda=\lambda_{1} \lambda_{2}$ with $\lambda_{1} \neq \varepsilon, p \lambda_{1} \subseteq B\left(\sigma_{1}\right)$ and $\lambda_{2} \subseteq \sigma_{2}$, then by induction $p \lambda_{1} \subseteq B\left(\sigma_{1}\right)$ implies that $\exists q>p$ such that $p q \lambda_{1} \subseteq \sigma_{1}$ or $q p \lambda_{1} \subseteq \sigma_{1}$.
Hence $\sigma=\sigma_{1} m \sigma_{2}$ contains an occurrence of $p q \lambda_{1} \lambda_{2}$ or of $q p \lambda_{1} \lambda_{2}$.
* If $p \subseteq B\left(\sigma_{1}\right)$ and $\lambda \subseteq \sigma_{2}$, then $p \subseteq \sigma_{1}$ and $p m \lambda \subseteq \sigma_{1} m \sigma_{2}=\sigma$.
* If $p \lambda \subseteq \sigma_{2}$, then $m p \lambda \subseteq m \sigma_{2} \subseteq \sigma$.

Proof of the second lemma for $\pi=n \alpha$ with $\alpha \neq \varepsilon$

Lemma

If $n(n+1) \alpha$ or $(n+1) n \alpha \preccurlyeq \sigma$, consider an occurrence $p q \lambda$ or $q p \lambda \subseteq \sigma$.
Then $p \lambda \subseteq B(\sigma)$.
Hence $\pi \preccurlyeq B(\sigma)$.

Proof:

Recall that if $\sigma=n_{1} \lambda_{1} n_{2} \lambda_{2} \cdots n_{k} \lambda_{k}$ where n_{1}, \ldots, n_{k} are the left to right maxima of σ then $B(\sigma)=\lambda_{1} n_{1} \lambda_{2} n_{2} \cdots \lambda_{k} n_{k}$.
Hence, the order of the elements not LtoR-maxima is preserved by B.

- If $q p \lambda \subseteq \sigma, p \lambda$ are not LtoR-maxima. Hence $p \lambda \subseteq B(\sigma)$.
- This also holds when $p q \lambda \subseteq \sigma$ and p is not a LtoR-maximum.
- If $p q \lambda \subseteq \sigma$ and p is a LtoR-maximum, then there exists some r between p and q (possibly $r=q$) in σ that is a LtoR-maximum. This implies that p still precedes λ in $B(\sigma)$, hence $p \lambda \subseteq B(\sigma)$.

Summary of results

π	$B^{-1}(A v(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231,321	\checkmark
$n \alpha, \alpha \neq \varepsilon$	is a class	$n(n+1) \alpha,(n+1) n \alpha$	\checkmark
$(n-1) \alpha n, \alpha \neq \varepsilon$	is a class	$(n-1) n \alpha, n(n-1) \alpha$	\checkmark
$a \alpha b \beta, \beta \neq \varepsilon$	is a class	$R(\pi)$	
$a \alpha b \beta n, \beta \neq \varepsilon$	is a class	$R(a \alpha b \beta)$	\checkmark
		$(n-2)(n-1) \alpha n$, $(n-1)(n-2) \alpha n$, $(n-2) n \alpha(n-1)$, $n-2) \alpha(n-1) n$ is a class	
$a \alpha b \beta c \gamma, \gamma \neq \varepsilon$	is not a class		

Introducing ambiguity in diagram representations

- A set of points in the plane that are pairwise neither horizontally nor vertically aligned represents a permutation.
 permutations are represented (considering all possible disambiguations)

Example:

\square - $\{a, b, c, d\}$ represents 3142 .
-d

Introducing ambiguity in diagram representations

- A set of points in the plane that are pairwise neither horizontally nor vertically aligned represents a permutation.
- When some points are horizontally or vertically aligned, sets of permutations are represented (considering all possible disambiguations).

Example:

- $\{a, b, c, d\}$ represents 3142 .
- $\{a, b, c, d, x, y\}$ represents the set
$\{241563,241653,341562,341652\}$.

Definition of $R(\pi)$ for $\pi=a \alpha b \beta$ with $\beta \neq \varepsilon$

$R(\pi)$ is the set of
permutations
in the set

[^0]
Definition of $R(\pi)$ for $\pi=a \alpha b \beta$ with $\beta \neq \varepsilon$

$R(\pi)$ is the set of minimal permutations in the set

When x is above β and y is to the left of α, x and y coalesce into a unique point.

Definition of $R(\pi)$ for $\pi=a \alpha b \beta$ with $\beta \neq \varepsilon$

$R(\pi)$ is the set of minimal permutations in the set

When x is above β and y is to the left of α, x and y coalesce into a unique point.

Remark

$R(\pi)$ contains exactly

- 4 one-point extensions of π
- $4|\alpha|(n-a-1)$ two-points extensions of π

Patterns $\pi \in S_{n}$ with two LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi \in S_{n}$ is such that $\pi=a \alpha b \beta$ for $\beta \neq \varepsilon$, then $B^{-1}(A v(\pi))$ is a class whose basis is $R(\pi)$.

Patterns $\pi \in S_{n}$ with two LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi \in S_{n}$ is such that $\pi=a \alpha b \beta$ for $\beta \neq \varepsilon$, then $B^{-1}(A v(\pi))$ is a class whose basis is $R(\pi)$.

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p \lambda q \mu \subseteq B(\sigma)$.
Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Lemma

If σ contains an occurrence of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π.

Proof of the first lemma

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p \lambda q \mu \subseteq B(\sigma)$.
Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Proof: We prove that $p x \lambda_{1} y \lambda_{2} z \mu$ or $x p \lambda_{1} y \lambda_{2} z \mu \subseteq \sigma$ with
$\left(\lambda=\lambda_{1} \lambda_{2}, \quad p<x\right.$
$\{y$ and z are the two largest terms of this sequence
if $\lambda_{1}=\varepsilon$ and $x>\mu$, then x and y coalesce
Such a sequence is a permutation in $R(\pi)$.
The proof follows by induction on σ

Proof of the first lemma

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p \lambda q \mu \subseteq B(\sigma)$.
Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Proof: We prove that $p x \lambda_{1} y \lambda_{2} z \mu$ or $x p \lambda_{1} y \lambda_{2} z \mu \subseteq \sigma$ with
$\int \lambda=\lambda_{1} \lambda_{2}, \quad p<x$
$\{y$ and z are the two largest terms of this sequence
if $\lambda_{1}=\varepsilon$ and $x>\mu$, then x and y coalesce
Such a sequence is a permutation in $R(\pi)$.
The proof follows by induction on $|\sigma|$.

- If $|\sigma| \leq 3$, result vacuously true (since $B(\sigma)$ ends with its maximum).
- If $\sigma=\sigma_{1} m \sigma_{2}$ with $m=|\sigma|>3$, then $p \lambda q \mu \subseteq B\left(\sigma_{1}\right) \sigma_{2} m$.

Because $p \lambda q \mu$ does not end with its maximum, $p \lambda q \mu \subseteq B\left(\sigma_{1}\right) \sigma_{2}$.

Proof of the first lemma, continued

As before, distinguish how $p \lambda q \mu$ can lie across $B\left(\sigma_{1}\right) \sigma_{2}$.
\star If $\mu=\mu_{1} \mu_{2}$ with $\mu_{1} \neq \varepsilon, p \lambda q \mu_{1} \subseteq B\left(\sigma_{1}\right)$ and $\mu_{2} \subseteq \sigma_{2}$ then by induction σ_{1} contains a subsequence of the form $p x \lambda_{1} y \lambda_{2} z \mu_{1}$ or $x p \lambda_{1} y \lambda_{2} z \mu_{1}$ to which μ_{2} can be appended.

* If $p \lambda q \subseteq B\left(\sigma_{1}\right)$ and $\mu \subseteq \sigma_{2}$, then by a previous lemma $\exists t>p$ such that $t p \lambda$ or $p t \lambda \subseteq \sigma_{1}$. If q is to the left of λ in σ, then $p q \lambda m \mu$ or $q p \lambda m \mu \subseteq \sigma$ is of the required form. Otherwise, q and t can play the rôle of y and x, and appending $m \mu$ gives the desired subsequence.
* If $\lambda=\lambda_{1} \lambda_{2}$ with $\lambda_{1} \neq \varepsilon, p \lambda_{1} \subseteq B\left(\sigma_{1}\right)$ and $\lambda_{2} q \mu \subseteq \sigma_{2}$, then as before $\exists x>p$ such that $x p \lambda_{1}$ or $p x \lambda_{1} \subseteq \sigma_{1}$. Appending $m \lambda_{2} q \mu$ gives the desired subsequence.
* If $p \subseteq B\left(\sigma_{1}\right)$ and $\lambda q \mu \subseteq \sigma_{2}$, then $p m \lambda q \mu \subseteq \sigma_{1} m \sigma_{2}=\sigma$ is of the desired form, with x and y coalesing in m.
* If $p \lambda q \mu \subseteq \sigma_{2}$, then $m p \lambda q \mu \subseteq \sigma$. Again, x and y coalese in m.

Proof of the second lemma

Lemma

If σ contains an occurrence $p x \lambda_{1} y \lambda_{2} q \mu$ or $x p \lambda_{1} y \lambda_{2} q \mu$ of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π.

Proof: Recall that if $\sigma=n_{1} \lambda_{1} n_{2} \lambda_{2} \cdots n_{k} \lambda_{k}$ where n_{1}, \ldots, n_{k} are the left to right maxima of σ then $B(\sigma)=\lambda_{1} n_{1} \lambda_{2} n_{2} \cdots \lambda_{k} n_{k}$. Hence $\lambda \mu \subseteq B(\sigma)$. Notice also that $p \lambda q \mu$ is an occurrence of π in σ.

1. We show that p is to the left of λ in $B(\sigma)$.

- If p is not a LtoR-maximum, this is true.
- If p is a LtoR-maximum, then $p x \lambda_{1} y \lambda_{2} q \mu \subseteq \sigma$ and there exists some t between p and x (possibly $t=x$) in σ that is a LtoR-maximum. This implies that p still precedes λ in $B(\sigma)$.

2. We show that there exists r in $B(\sigma)$ between λ and μ with $r>p \lambda \mu$ (to be continued).

Proof of the second lemma

Lemma

If σ contains an occurrence $p x \lambda_{1} y \lambda_{2} q \mu$ or $x p \lambda_{1} y \lambda_{2} q \mu$ of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π.

Proof: Recall that if $\sigma=n_{1} \lambda_{1} n_{2} \lambda_{2} \cdots n_{k} \lambda_{k}$ where n_{1}, \ldots, n_{k} are the left to right maxima of σ then $B(\sigma)=\lambda_{1} n_{1} \lambda_{2} n_{2} \cdots \lambda_{k} n_{k}$. Hence $\lambda \mu \subseteq B(\sigma)$. Notice also that $p \lambda q \mu$ is an occurrence of π in σ.

1. We show that p is to the left of λ in $B(\sigma)$.
2. We show that there exists r in $B(\sigma)$ between λ and μ with $r>p \lambda \mu$.

- If q is not a LtoR-maximum, choose $r=q$.
- If q is a LtoR-maximum, choose $r=$ the LtoR-maximum of σ immediately to the left of q. Then $p \lambda r \mu \subseteq B(\sigma)$.
By contradiction, assume that $r<y$ then in σ we have
* either $\cdots y \cdots r \cdots q \cdots$, and r is not a LtoR-maximum,
* or $\cdots r \cdots y \cdots q \cdots$, and there is a LtoR-maximum between r and q.

Hence $r \geq y$, and $r>p \lambda \mu$ as desired.

Summary of results

π	$B^{-1}(A v(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231,321	\checkmark
$n \alpha, \alpha \neq \varepsilon$	is a class	$n(n+1) \alpha,(n+1) n \alpha$	\checkmark
$(n-1) \alpha n, \alpha \neq \varepsilon$	is a class	$(n-1) n \alpha, n(n-1) \alpha$	\checkmark
$a \alpha b \beta, \beta \neq \varepsilon$	is a class	$R(\pi)$	\checkmark
$a \alpha b \beta n, \beta \neq \varepsilon$	is a class	$R(a \alpha b \beta)$	\checkmark
		$(n-2)(n-1) \alpha n$, $(n-1)(n-2) \alpha n$, $(n-2) n \alpha(n-1)$, $(n-2) \alpha(n-1) n$ is a class	
$a \alpha b \beta c \gamma, \gamma \neq \varepsilon$	is not a class		

Patterns $\pi \in S_{n}$ with 3 LtoR-max. $\pi(1), \pi(n-1)$ and $\pi(n)$

Proposition

If $\pi \in S_{n}$ is such that $\pi=(n-2) \alpha(n-1) n$, then $B^{-1}(\operatorname{Av}(\pi))$ is a class whose basis is
$\{(n-2)(n-1) \alpha n,(n-1)(n-2) \alpha n,(n-2) n \alpha(n-1), n(n-2) \alpha(n-1)\}$.

Patterns $\pi \in S_{n}$ with 3 LtoR-max. $\pi(1), \pi(n-1)$ and $\pi(n)$

Proposition

If $\pi \in S_{n}$ is such that $\pi=(n-2) \alpha(n-1) n$, then $B^{-1}(A v(\pi))$ is a class whose basis is $\{(n-2)(n-1) \alpha n,(n-1)(n-2) \alpha n,(n-2) n \alpha(n-1), n(n-2) \alpha(n-1)\}$.

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p \lambda q r \subseteq B(\sigma)$.
Then there exists a subsequence of σ which is an occurrence of some pattern among the four above.

Lemma

If σ contains an occurrence of some pattern among the four above, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π.

Summary of results

π	$B^{-1}(A v(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231,321	\checkmark
$n \alpha, \alpha \neq \varepsilon$	is a class	$n(n+1) \alpha,(n+1) n \alpha$	\checkmark
$(n-1) \alpha n, \alpha \neq \varepsilon$	is a class	$(n-1) n \alpha, n(n-1) \alpha$	\checkmark
$a \alpha b \beta, \beta \neq \varepsilon$	is a class	$R(\pi)$	\checkmark
$a \alpha b \beta n, \beta \neq \varepsilon$	is a class	$R(a \alpha b \beta)$	\checkmark
		$(n-2)(n-1) \alpha n$, $(n-1)(n-2) \alpha n$, $(n-2) n \alpha(n-1)$, $n-2) \alpha(n-1) n$	is a class
		$n-2) \alpha(n-1)$	\checkmark
$a \alpha b \beta c \gamma, \gamma \neq \varepsilon$	is not a class		\checkmark

Some open questions

Q1. When is $B^{-1}(\operatorname{Av}(\mathcal{B}))$ a class, for $|\mathcal{B}| \geq 2$?
Partial answer: $B^{-1}(\operatorname{Av}(\mathcal{B}))$ is a class when $B^{-1}(A v(\pi))$ is a class for every $\pi \in \mathcal{B}$, but not only.

- $B^{-1}(A v(\mathcal{B}))=\cap_{\pi \in \mathcal{B}} B^{-1}(A v(\pi))$.
- An example is $\Gamma_{2}=$ the set of permutations of length 4 ending with 1 : $B^{-1}\left(A v\left(\Gamma_{2}\right)\right)$ is a class, although Γ_{2} contains 2341 and $B^{-1}(A v(2341))$ is not a class.

Some open questions

Q1. When is $B^{-1}(\operatorname{Av}(\mathcal{B}))$ a class, for $|\mathcal{B}| \geq 2$?
Partial answer: $B^{-1}(A v(\mathcal{B}))$ is a class when $B^{-1}(A v(\pi))$ is a class for every $\pi \in \mathcal{B}$, but not only.

- $B^{-1}(A v(\mathcal{B}))=\cap_{\pi \in \mathcal{B}} B^{-1}(A v(\pi))$.
- An example is $\Gamma_{2}=$ the set of permutations of length 4 ending with 1 : $B^{-1}\left(A v\left(\Gamma_{2}\right)\right)$ is a class, although Γ_{2} contains 2341 and $B^{-1}(A v(2341))$ is not a class.

Q2. Are the growth rates of \mathcal{C} and $B^{-1}(\mathcal{C})$ related?
Growth rate of a permutation class $\mathcal{C}=\lim \sup _{n \rightarrow \infty} \sqrt[n]{c_{n}}$ where c_{n} is the number of permutations of length n in \mathcal{C}

Composing sorting operators

- $S B$-sortable permutations:
$\hookrightarrow(S B)^{-1}(A v(21))=B^{-1}(A v(231))=A v(3241,2341,4231,2431)$
- B^{2}-sortable permutations:
$\hookrightarrow(B B)^{-1}(A v(21))=B^{-1}(A v(231,321))=A v\left(\Gamma_{2}\right)$
- B^{k}-sortable permutations:
$\hookrightarrow\left(B^{k}\right)^{-1}(A v(21))=A v\left(\Gamma_{k+2}\right)$ with
$\Gamma_{k+2}=$ the set of permutations of length $k+2$ ending with 1.

Composing sorting operators

- $S B$-sortable permutations:
$\hookrightarrow(S B)^{-1}(A v(21))=B^{-1}(A v(231))=A v(3241,2341,4231,2431)$
- B^{2}-sortable permutations:
$\hookrightarrow(B B)^{-1}(A v(21))=B^{-1}(A v(231,321))=A v\left(\Gamma_{2}\right)$
- B^{k}-sortable permutations:
$\hookrightarrow\left(B^{k}\right)^{-1}(A v(21))=A v\left(\Gamma_{k+2}\right)$ with
$\Gamma_{k+2}=$ the set of permutations of length $k+2$ ending with 1.

Other sorting operators:

- built from B, S, \ldots and symmetries of the permutations (i, r, c)
- with a queue
- definition of abstract sorting operator

[^0]: Remark
 nt ' contains exactly

 - 4 one-point extensions of π
 - 4'a'(n-a-1) two-points extensions of π

