Bubble Sort and Permutation Classes

Mathilde Bouvel

LaBRI, CNRS

Joint work with M.H. Albert, M.D. Atkinson, A. Claesson and M. Dukes

B = one pass of **bubble sort**. On sequences that are **permutations**.

Definition(s):

- Algorithmically:
- $\hookrightarrow B$ processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i) > \sigma(i+1)$.
 - Recursively:

$$\begin{cases} B(\sigma_1 n \sigma_2) = B(\sigma_1) \sigma_2 n \text{ if } \sigma = \sigma_1 n \sigma_2 \in S_n \\ B(\varepsilon) = \varepsilon \end{cases}$$

• Explicitely:

NB Stack-sorting operator S $S(\sigma_1 n \sigma_2) = S(\sigma_1)S(\sigma_2)n$

 \hookrightarrow If $\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

On sequences that are **permutations**.

Definition(s):

- Algorithmically:
- \hookrightarrow *B* processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i) > \sigma(i+1)$.

• Recursively:

 $B(\sigma_1 n \sigma_2) = B(\sigma_1) \sigma_2 n$ if $\sigma = \sigma_1 n \sigma_2 \in S_n$

 $B(\varepsilon) = \varepsilon$

• Explicitely:

NB Stack-sorting operator S $S(\sigma_1 n \sigma_2) = S(\sigma_1) S(\sigma_2) n$

 \hookrightarrow If $\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

On sequences that are **permutations**.

Definition(s):

- Algorithmically:
- \hookrightarrow *B* processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i) > \sigma(i+1)$.
 - Recursively:

• Explicitely:

 $S(\sigma_1 n \sigma_2) = S(\sigma_1) S(\sigma_2) n$ where n_1 are the left to right

 $\rightarrow \text{ If } \sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k \text{ where } n_1, \ldots, n_k \text{ are the left to right} \\ \text{maxima of } \sigma \text{ then } B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k.$

On sequences that are **permutations**.

Definition(s):

- Algorithmically:
- \hookrightarrow *B* processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i) > \sigma(i+1)$.
 - Recursively:

$$\begin{cases} B(\sigma_1 n \sigma_2) = B(\sigma_1) \sigma_2 n \text{ if } \sigma = \sigma_1 n \sigma_2 \in S_n \\ B(\varepsilon) = \varepsilon \\ \text{Explicitely} \\ \end{cases}$$

NB Stack-sorting operator S $S(\sigma_1 n \sigma_2) = S(\sigma_1)S(\sigma_2)n$

 \hookrightarrow If $\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

On sequences that are permutations.

Definition(s):

- Algorithmically:
- \hookrightarrow *B* processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i) > \sigma(i+1)$.
 - Recursively:

$$\begin{cases} B(\sigma_1 n \sigma_2) = B(\sigma_1) \sigma_2 n \text{ if } \sigma = \sigma_1 n \sigma_2 \in S_n \\ B(\varepsilon) = \varepsilon \end{cases}$$

$$NB State$$

• Explicitely:

 \rightarrow

NB Stack-sorting operator S $S(\sigma_1 n \sigma_2) = S(\sigma_1)S(\sigma_2)n$

 $\hookrightarrow \text{ If } \sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k \text{ where } n_1, \ldots, n_k \text{ are the left to right} \\ \text{maxima of } \sigma \text{ then } B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k.$

Permutations

- S_n = permutations σ of $\{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

 $\sigma = 312854796$

Permutations

- S_n = permutations σ of $\{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

 $\sigma = 312854796$

Permutations

- S_n = permutations σ of $\{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

 $\sigma = 312854796$

Permutations

- S_n = permutations σ of $\{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Permutations

- S_n = permutations σ of $\{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Permutations

- S_n = permutations σ of $\{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Permutations

- S_n = permutations σ of $\{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Occurrence of a pattern

• Occurrence = subpermutation without normalization Example : $3279 \subseteq 312854796$

Classes

- Subset of $S = \cup_n S_n$ downward closed for \preccurlyeq
- Characterization by a basis of excluded patterns: $\mathcal{C} = Av(\mathcal{B})$
- Principal classes: $C = Av(\pi)$

Permutations

- S_n = permutations σ of $\{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Occurrence of a pattern

• Occurrence = subpermutation without normalization Example : $3279 \subseteq 312854796$

Classes

- Subset of $S = \cup_n S_n$ downward closed for \preccurlyeq
- Characterization by a basis of excluded patterns: C = Av(B)

• Principal classes:
$$C = Av(\pi)$$

The permutations that are sorted by B are a class. Namely: $B(\sigma) = Id$ iff $\sigma \in Av(231, 321)$.

Proof: by induction.

Decompose $\sigma = \sigma_1 n \sigma_2$ around its maximum *n*.

Recall that $B(\sigma) = B(\sigma_1)\sigma_2 n$.

 σ is sorted by B

 $\Leftrightarrow \sigma_1$ is sorted by B, σ_2 is increasing, and $\sigma_1 < \sigma_2$

 $\Leftrightarrow \sigma_1 \in Av(231, 321), \sigma_2 \text{ is increasing, and } \sigma_1 < \sigma_2$ $\Leftrightarrow \sigma \in Av(231, 321)$

The permutations that are sorted by B are a class. Namely: $B(\sigma) = Id$ iff $\sigma \in Av(231, 321)$.

Proof: by induction.

Decompose $\sigma = \sigma_1 n \sigma_2$ around its maximum *n*.

```
Recall that B(\sigma) = B(\sigma_1)\sigma_2 n.
```

```
\sigma is sorted by B
```

 $\Leftrightarrow \ \sigma_1 \text{ is sorted by } B, \ \sigma_2 \text{ is increasing, and } \sigma_1 < \sigma_2$

$$\Leftrightarrow \ \sigma_1 \in {\sf Av}(231,321)$$
, σ_2 is increasing, and $\sigma_1 < \sigma_2$

 $\Leftrightarrow \sigma \in Av(231, 321)$

- B-sortable permutations
- $\hookrightarrow B^{-1}(Av(21)) = Av(231, 321)$
 - SB-sortable permutations?
- \rightarrow (SB)⁻¹(Av(21)) = B⁻¹(Av(231))
- *B*²-sortable permutations?
- $\hookrightarrow (BB)^{-1}(Av(21)) = B^{-1}(Av(231,321))$
 - In general, what can we say about $B^{-1}(\mathcal{C})$?

For C = Av(π) a principal permutation class, we can determine
 when B⁻¹(Av(π)) is a class,

• and in this case give its basis.

- B-sortable permutations
- $\hookrightarrow B^{-1}(Av(21)) = Av(231, 321)$
 - SB-sortable permutations?
- \hookrightarrow (SB)⁻¹(Av(21)) = B⁻¹(Av(231))
 - *B*²-sortable permutations?
- $\hookrightarrow (BB)^{-1}(Av(21)) = B^{-1}(Av(231,321))$
 - In general, what can we say about $B^{-1}(\mathcal{C})$?

For C = Av(π) a principal permutation class, we can determine
 when B⁻¹(Av(π)) is a class,

• and in this case give its basis.

- B-sortable permutations
- $\hookrightarrow B^{-1}(Av(21)) = Av(231, 321)$
 - SB-sortable permutations?
- \hookrightarrow (SB)⁻¹(Av(21)) = B⁻¹(Av(231))
 - *B*²-sortable permutations?
- $\hookrightarrow (BB)^{-1}(Av(21)) = B^{-1}(Av(231, 321))$

• In general, what can we say about $B^{-1}(\mathcal{C})$?

For $\mathcal{C} = Av(\pi)$ a principal permutation class, we can determine

- when $B^{-1}(Av(\pi))$ is a class,
- and in this case give its basis.

- B-sortable permutations
- $\hookrightarrow B^{-1}(Av(21)) = Av(231, 321)$
 - SB-sortable permutations?
- \hookrightarrow (SB)⁻¹(Av(21)) = B⁻¹(Av(231))
 - *B*²-sortable permutations?
- \hookrightarrow (BB)⁻¹(Av(21)) = B⁻¹(Av(231, 321))
 - In general, what can we say about $B^{-1}(\mathcal{C})$?

For $C = Av(\pi)$ a principal permutation class, we can determine • when $B^{-1}(Av(\pi))$ is a class,

• and in this case give its basis.

- B-sortable permutations
- $\hookrightarrow B^{-1}(Av(21)) = Av(231, 321)$
 - SB-sortable permutations?
- \hookrightarrow (SB)⁻¹(Av(21)) = B⁻¹(Av(231))
 - B²-sortable permutations?

$$\hookrightarrow (BB)^{-1}(Av(21)) = B^{-1}(Av(231, 321))$$

• In general, what can we say about $B^{-1}(\mathcal{C})$?

For $\mathcal{C}=\mathcal{A} v(\pi)$ a principal permutation class, we can determine

- when $B^{-1}(Av(\pi))$ is a class,
- and in this case give its basis.

Summary of results

π	$B^{-1}(Av(\pi))$	Basis
1	is a class	1
12	is a class	12,21
21	is a class	231, 321
$n\alpha, \alpha \neq \varepsilon$	is a class	$n(n+1)\alpha, (n+1)n\alpha$
$(n-1)\alpha n, \alpha \neq \varepsilon$	is a class	$(n-1)n\alpha, n(n-1)\alpha$
а α b β , $\beta \neq \varepsilon$	is a class	$R(\pi)$
$a\alpha b\beta n, \ \beta \neq \varepsilon$	is a class	R(alpha beta)
$(n-2)\alpha(n-1)n$	is a class	$(n-2)(n-1)\alpha n, (n-1)(n-2)\alpha n, (n-2)n \alpha(n-1), n(n-2)\alpha (n-1)$
$a\alpha b\beta c\gamma, \ \gamma \neq \varepsilon$	is not a class	

Remarks: n, (n-1), (n-2), a, b and c are LtoR-maxima.

6 / 28

There are no permutations σ of length $n \ge 1$ such that $B(\sigma)$ avoids 1. Hence $B^{-1}(Av(1)) = \{\varepsilon\} = Av(1)$.

Proposition

The only permutations σ such that $B(\sigma)$ avoids 12 are ε and 1. Hence $B^{-1}(Av(12)) = \{\varepsilon, 1\} = Av(12, 21)$.

Proof: $B(\sigma)$ always ends with its maximum.

Proposition

The permutations σ such that $B(\sigma)$ avoids 21 are the B-sortable permutations. Hence $B^{-1}(Av(21)) = Av(231, 321)$.

There are no permutations σ of length $n \ge 1$ such that $B(\sigma)$ avoids 1. Hence $B^{-1}(Av(1)) = \{\varepsilon\} = Av(1)$.

Proposition

The only permutations σ such that $B(\sigma)$ avoids 12 are ε and 1. Hence $B^{-1}(Av(12)) = \{\varepsilon, 1\} = Av(12, 21)$.

Proof: $B(\sigma)$ always ends with its maximum.

Proposition

The permutations σ such that $B(\sigma)$ avoids 21 are the B-sortable permutations. Hence $B^{-1}(Av(21)) = Av(231, 321)$.

There are no permutations σ of length $n \ge 1$ such that $B(\sigma)$ avoids 1. Hence $B^{-1}(Av(1)) = \{\varepsilon\} = Av(1)$.

Proposition

The only permutations σ such that $B(\sigma)$ avoids 12 are ε and 1. Hence $B^{-1}(Av(12)) = \{\varepsilon, 1\} = Av(12, 21)$.

Proof: $B(\sigma)$ always ends with its maximum.

Proposition

The permutations σ such that $B(\sigma)$ avoids 21 are the B-sortable permutations. Hence $B^{-1}(Av(21)) = Av(231, 321)$.

π	$B^{-1}(Av(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231, 321	\checkmark
$\mathbf{n}\alpha, \ \alpha \neq \varepsilon$	is a class	$n(n+1)\alpha, (n+1)n\alpha$	
$(n-1)\alpha n, \alpha \neq \varepsilon$	is a class	$(n-1)n\alpha, n(n-1)\alpha$	
$a\alpha b\beta, \ \beta \neq \varepsilon$	is a class	$R(\pi)$	
$a\alpha b\beta n, \beta \neq \varepsilon$	is a class	R(alpha beta)	
$(n-2)\alpha(n-1)n$	is a class	$(n-2)(n-1)\alpha n,$ $(n-1)(n-2)\alpha n,$ $(n-2)n \alpha(n-1),$ $n(n-2)\alpha (n-1)$	
$a\alpha b\beta c\gamma, \gamma \neq \varepsilon$	is not a class		

Lemma

If $\pi \in S_n$ with $n \ge 3$ is such that $\pi(n) = n$ but $\pi(n-1) \ne n-1$, then setting $\pi' = \pi(1)\pi(2)\ldots\pi(n-1)$ we have $B^{-1}(Av(\pi)) = B^{-1}(Av(\pi'))$.

Proof:

•
$$\sigma \in B^{-1}(Av(\pi')) \Rightarrow B(\sigma)$$
 avoids π'
 $\Rightarrow B(\sigma)$ avoids $\pi \Rightarrow \sigma \in B^{-1}(Av(\pi))$
• $\sigma \in B^{-1}(Av(\pi)) \Rightarrow B(\sigma)$ avoids $\pi = \pi' n$
But $B(\sigma) = B(\sigma_1)\sigma_2 m$ ends with its maximum m

Hence $B(\sigma_1)\sigma_2$ avoids π' .

But π' does not end with its maximum.

Hence $B(\sigma) = B(\sigma_1)\sigma_2 m$ avoids π' and $\sigma \in B^{-1}(Av(\pi'))$.

Lemma

If $\pi \in S_n$ with $n \ge 3$ is such that $\pi(n) = n$ but $\pi(n-1) \ne n-1$, then setting $\pi' = \pi(1)\pi(2)\ldots\pi(n-1)$ we have $B^{-1}(Av(\pi)) = B^{-1}(Av(\pi'))$.

Proof:

•
$$\sigma \in B^{-1}(Av(\pi')) \Rightarrow B(\sigma)$$
 avoids π'
 $\Rightarrow B(\sigma)$ avoids $\pi \Rightarrow \sigma \in B^{-1}(Av(\pi))$

• $\sigma \in B^{-1}(Av(\pi)) \Rightarrow B(\sigma)$ avoids $\pi = \pi' n$ But $B(\sigma) = B(\sigma_1)\sigma_2 m$ ends with its maximum m. Hence $B(\sigma_1)\sigma_2$ avoids π' . But π' does not end with its maximum. Hence $B(\sigma) = B(\sigma_1)\sigma_2 m$ avoids π' and $\sigma \in B^{-1}(Av(\pi))$

Lemma

If $\pi \in S_n$ with $n \ge 3$ is such that $\pi(n) = n$ but $\pi(n-1) \ne n-1$, then setting $\pi' = \pi(1)\pi(2)\ldots\pi(n-1)$ we have $B^{-1}(Av(\pi)) = B^{-1}(Av(\pi'))$.

Proof:

•
$$\sigma \in B^{-1}(Av(\pi')) \Rightarrow B(\sigma)$$
 avoids π'
 $\Rightarrow B(\sigma)$ avoids $\pi \Rightarrow \sigma \in B^{-1}(Av(\pi))$
• $\sigma \in B^{-1}(Av(\pi)) \Rightarrow B(\sigma)$ avoids $\pi = \pi'n$
But $B(\sigma) = B(\sigma_1)\sigma_2 m$ ends with its maximum m .
Hence $B(\sigma_1)\sigma_2$ avoids π' .
But π' does not end with its maximum.
Hence $B(\sigma) = B(\sigma_1)\sigma_2 m$ avoids π' and $\sigma \in B^{-1}(Av(\pi'))$.

Lemma

If $\pi \in S_n$ with $n \ge 3$ is such that $\pi(n) = n$ but $\pi(n-1) \ne n-1$, then setting $\pi' = \pi(1)\pi(2)\ldots\pi(n-1)$ we have $B^{-1}(Av(\pi)) = B^{-1}(Av(\pi'))$.

Proof:

•
$$\sigma \in B^{-1}(Av(\pi')) \Rightarrow B(\sigma)$$
 avoids π'
 $\Rightarrow B(\sigma)$ avoids $\pi \Rightarrow \sigma \in B^{-1}(Av(\pi))$
• $\sigma \in B^{-1}(Av(\pi)) \Rightarrow B(\sigma)$ avoids $\pi = \pi'n$
But $B(\sigma) = B(\sigma_1)\sigma_2 m$ ends with its maximum m .
Hence $B(\sigma_1)\sigma_2$ avoids π' .
But π' does not end with its maximum.
Hence $B(\sigma) = B(\sigma_1)\sigma_2 m$ avoids π' and $\sigma \in B^{-1}(Av(\pi'))$.

π	$B^{-1}(Av(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231, 321	\checkmark
$\mathbf{n}\alpha, \ \alpha \neq \varepsilon$	is a class	$n(n+1)\alpha, (n+1)n\alpha$	
$(n-1)\alpha n, \alpha \neq \varepsilon$	is a class	$(n-1)n\alpha, n(n-1)\alpha$	\checkmark
$a\alpha b\beta, \ \beta \neq \varepsilon$	is a class	$R(\pi)$	
$a\alpha b\beta n, \beta \neq \varepsilon$	is a class	R(alpha beta)	\checkmark
$(n-2)\alpha(n-1)n$	is a class	$(n-2)(n-1)\alpha n,$ $(n-1)(n-2)\alpha n,$ $(n-2)n \alpha(n-1),$ $n(n-2)\alpha (n-1)$	
$a\alpha b\beta c\gamma, \gamma \neq \varepsilon$	is not a class		

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n+1)\theta_1$. Notice that $\theta_1 \preccurlyeq \theta_2$.

• Clearly, $B(\theta_1) = \pi$ and $\theta_1 \notin B^{-1}(Av(\pi))$.

• $B(\theta_2) = ba\alpha n\beta c\gamma(n+1)$ Since $B(\theta_2)$ is only one term longer than π , we easily check that $B(\theta_2)$ avoids π . Hence $\theta_2 \in B^{-1}(Av(\pi))$.

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n+1)\theta_1$. Notice that $\theta_1 \preccurlyeq \theta_2$.

• Clearly, $B(heta_1)=\pi$ and $heta_1
ot\in B^{-1}(Av(\pi)).$

•
$$B(\theta_2) = ba\alpha n\beta c\gamma(n+1)$$

Since $B(\theta_2)$ is only one term longer than π , we easily check that $B(\theta_2)$ avoids π . Hence $\theta_2 \in B^{-1}(Av(\pi))$.

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n+1)\theta_1$. Notice that $\theta_1 \preccurlyeq \theta_2$.

- Clearly, $B(\theta_1) = \pi$ and $\theta_1 \notin B^{-1}(Av(\pi))$.
- $B(\theta_2) = ba\alpha n\beta c\gamma(n+1)$ Since $B(\theta_2)$ is only one term longer than π , we easily check that $B(\theta_2)$ avoids π . Hence $\theta_2 \in B^{-1}(Av(\pi))$.

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n+1)\theta_1$. Notice that $\theta_1 \preccurlyeq \theta_2$.

• Clearly,
$$B(heta_1)=\pi$$
 and $heta_1
ot\in B^{-1}(Av(\pi)).$

•
$$B(\theta_2) = ba\alpha n\beta c\gamma(n+1)$$

Since $B(\theta_2)$ is only one term longer than π , we easily check that $B(\theta_2)$ avoids π . Hence $\theta_2 \in B^{-1}(Av(\pi))$.

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n+1)\theta_1$. Notice that $\theta_1 \preccurlyeq \theta_2$.

• Clearly,
$$B(heta_1)=\pi$$
 and $heta_1
ot\in B^{-1}(Av(\pi)).$

• $B(\theta_2) = ba\alpha n\beta c\gamma(n+1)$ Since $B(\theta_2)$ is only one term longer than π , we easily check that $B(\theta_2)$ avoids π . Hence $\theta_2 \in B^{-1}(Av(\pi))$.

π	$B^{-1}(Av(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231, 321	\checkmark
$n\alpha, \alpha \neq \varepsilon$	is a class	$n(n+1)\alpha, (n+1)n\alpha$	
$(n-1)\alpha n, \ \alpha \neq \varepsilon$	is a class	$(n-1)n\alpha, n(n-1)\alpha$	\checkmark
$a\alpha b\beta, \ \beta \neq \varepsilon$	is a class	$R(\pi)$	
$a\alpha b\beta n, \ \beta \neq \varepsilon$	is a class	R(alpha beta)	\checkmark
$(n-2)\alpha(n-1)n$	is a class	$(n-2)(n-1)\alpha n,$ $(n-1)(n-2)\alpha n,$ $(n-2)n \alpha(n-1),$ $n(n-2)\alpha (n-1)$	
$a\alpha b\beta c\gamma, \gamma \neq \varepsilon$	is not a class		\checkmark

Lemma

For any pattern π , if there exists a set \mathcal{R} of permutations such that $\forall \sigma, \pi \preccurlyeq B(\sigma) \Leftrightarrow \rho \preccurlyeq \sigma$ for some $\rho \in \mathcal{R}$, then $B^{-1}(Av(\pi))$ is a class. Furthermore, if \mathcal{R} is minimal, it is the basis of $B^{-1}(Av(\pi))$.

Proof: Show that $B^{-1}(A\nu(\pi))$ is downward closed for \preccurlyeq .

 $\sigma \not\in B^{-1}(Av(\pi))$

- $\Rightarrow \ B(\sigma) \not\in Av(\pi)$
- $\Leftrightarrow \pi \preccurlyeq B(\sigma)$

 $\Leftrightarrow \exists \rho \in \mathcal{R}, \rho \preccurlyeq \sigma$

so that $\sigma \in B^{-1}(Av(\pi)) \Leftrightarrow \forall \rho \in \mathcal{R}, \rho \not\preccurlyeq \sigma$.

This show that $B^{-1}(Av(\pi))$ is a downset, hence a class.

This also shows that the minimal ${\mathcal R}$ is its basis.

Lemma

For any pattern π , if there exists a set \mathcal{R} of permutations such that $\forall \sigma, \pi \preccurlyeq B(\sigma) \Leftrightarrow \rho \preccurlyeq \sigma$ for some $\rho \in \mathcal{R}$, then $B^{-1}(Av(\pi))$ is a class. Furthermore, if \mathcal{R} is minimal, it is the basis of $B^{-1}(Av(\pi))$.

Proof: Show that $B^{-1}(Av(\pi))$ is downward closed for \preccurlyeq .

 $\sigma \notin B^{-1}(Av(\pi))$ $\Leftrightarrow B(\sigma) \notin Av(\pi)$ $\Leftrightarrow \pi \preccurlyeq B(\sigma)$ $\Leftrightarrow \exists \rho \in \mathcal{R}, \rho \preccurlyeq \sigma$ so that $\sigma \in B^{-1}(Av(\pi)) \Leftrightarrow \forall \rho \in \mathcal{R}, \rho \preccurlyeq \sigma.$

This show that $B^{-1}(Av(\pi))$ is a downset, hence a class.

This also shows that the minimal \mathcal{R} is its basis.

If $\pi \in S_n$ is such that $\pi = n\alpha$ for $\alpha \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is a class whose basis is $\{n(n+1)\alpha, (n+1)n\alpha\}$.

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p\lambda \subseteq B(\sigma)$. Then there exists $q > p > \lambda$ such that $pq\lambda \subseteq \sigma$ or $qp\lambda \subseteq \sigma$. Hence $n(n + 1)\alpha$ or $(n + 1)n\alpha \preccurlyeq \sigma$.

Lemma

If $n(n + 1)\alpha$ or $(n + 1)n\alpha \preccurlyeq \sigma$, consider an occurrence $pq\lambda$ or $qp\lambda \subseteq \sigma$. Then $p\lambda \subseteq B(\sigma)$. Hence $\pi \preccurlyeq B(\sigma)$.

If $\pi \in S_n$ is such that $\pi = n\alpha$ for $\alpha \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is a class whose basis is $\{n(n+1)\alpha, (n+1)n\alpha\}$.

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p\lambda \subseteq B(\sigma)$. Then there exists $q > p > \lambda$ such that $pq\lambda \subseteq \sigma$ or $qp\lambda \subseteq \sigma$. Hence $n(n + 1)\alpha$ or $(n + 1)n\alpha \preccurlyeq \sigma$.

Lemma

If $n(n + 1)\alpha$ or $(n + 1)n\alpha \preccurlyeq \sigma$, consider an occurrence $pq\lambda$ or $qp\lambda \subseteq \sigma$. Then $p\lambda \subseteq B(\sigma)$. Hence $\pi \preccurlyeq B(\sigma)$.

Proof of the first lemma for $\pi = \mathbf{n}\alpha$ with $\alpha \neq \varepsilon$

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p\lambda \subseteq B(\sigma)$. Then there exists $q > p > \lambda$ such that $pq\lambda \subseteq \sigma$ or $qp\lambda \subseteq \sigma$. Hence $n(n + 1)\alpha$ or $(n + 1)n\alpha \preccurlyeq \sigma$.

Proof: by induction on $|\sigma|$.

- If $|\sigma| \leq 2$, result vacuously true (since $B(\sigma)$ ends with its maximum).
- If $\sigma = \sigma_1 m \sigma_2$ with $m = |\sigma| > 2$, then $p\lambda \subseteq B(\sigma_1)\sigma_2 m$. Because $p\lambda$ does not end with its maximum, $p\lambda \subseteq B(\sigma_1)\sigma_2$.
- * If $\lambda = \lambda_1 \lambda_2$ with $\lambda_1 \neq \varepsilon$, $p\lambda_1 \subseteq B(\sigma_1)$ and $\lambda_2 \subseteq \sigma_2$, then by induction $p\lambda_1 \subseteq B(\sigma_1)$ implies that $\exists q > p$ such that $pq\lambda_1 \subseteq \sigma_1$ or $qp\lambda_1 \subseteq \sigma_1$. Hence $\sigma = \sigma_1 m \sigma_2$ contains an occurrence of $pq\lambda_1\lambda_2$ or of $qp\lambda_1\lambda_2$. * If $p \subseteq B(\sigma_1)$ and $\lambda \subseteq \sigma_2$, then $p \subseteq \sigma_1$ and $pm\lambda \subseteq \sigma_1 m \sigma_2 = \sigma$. * If $p\lambda \subseteq \sigma_2$, then $mp\lambda \subseteq m\sigma_2 \subseteq \sigma$.

Proof of the second lemma for $\pi = n\alpha$ with $\alpha \neq \varepsilon$

Lemma

If $n(n + 1)\alpha$ or $(n + 1)n\alpha \preccurlyeq \sigma$, consider an occurrence $pq\lambda$ or $qp\lambda \subseteq \sigma$. Then $p\lambda \subseteq B(\sigma)$. Hence $\pi \preccurlyeq B(\sigma)$.

Proof:

Recall that if $\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

Hence, the order of the elements not LtoR-maxima is preserved by B.

- If $qp\lambda \subseteq \sigma$, $p\lambda$ are not LtoR-maxima. Hence $p\lambda \subseteq B(\sigma)$.
- This also holds when $pq\lambda \subseteq \sigma$ and p is not a LtoR-maximum.
- If pqλ ⊆ σ and p is a LtoR-maximum, then there exists some r between p and q (possibly r = q) in σ that is a LtoR-maximum. This implies that p still precedes λ in B(σ), hence pλ ⊆ B(σ).

π	$B^{-1}(Av(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231, 321	\checkmark
$\mathbf{n}\alpha, \ \alpha \neq \varepsilon$	is a class	$n(n+1)\alpha, (n+1)n\alpha$	\checkmark
$(n-1)\alpha n, \alpha \neq \varepsilon$	is a class	$(n-1)n\alpha, n(n-1)\alpha$	\checkmark
$a\alpha b\beta, \ \beta \neq \varepsilon$	is a class	$R(\pi)$	
$a\alpha b\beta n, \beta \neq \varepsilon$	is a class	R(alpha beta)	\checkmark
$(n-2)\alpha(n-1)n$	is a class	$(n-2)(n-1)\alpha n,$ $(n-1)(n-2)\alpha n,$ $(n-2)n \alpha (n-1),$ $n(n-2)\alpha (n-1)$	
$a\alpha b\beta c\gamma, \gamma \neq \varepsilon$	is not a class		\checkmark

Introducing ambiguity in diagram representations

- A set of points in the plane that are pairwise neither horizontally nor vertically aligned represents a permutation.
- When some points are horizontally or vertically aligned, sets of permutations are represented (considering all possible disambiguations).

- $\{a, b, c, d\}$ represents 3142.
- {a, b, c, d, x, y} represents the set
 {241563, 241653, 341562, 341652}

Introducing ambiguity in diagram representations

- A set of points in the plane that are pairwise neither horizontally nor vertically aligned represents a permutation.
- When some points are horizontally or vertically aligned, sets of permutations are represented (considering all possible disambiguations).

- $\{a, b, c, d\}$ represents 3142.
- {a, b, c, d, x, y} represents the set
 {241563, 241653, 341562, 341652}.

Definition of $R(\pi)$ for $\pi = a\alpha b\beta$ with $\beta \neq \varepsilon$

 $R(\pi)$ is the set of minimal permutations in the set

When x is above β and y is to the eft of α , x and y coalesce into a unique point.

Remark

 $R(\pi)$ contains exactly

- 4 one-point extensions of π
- 4 $|lpha|(\mathit{n}-\mathit{a}-1)$ two-points extensions of π

Definition of $R(\pi)$ for $\pi = a\alpha b\beta$ with $\beta \neq \varepsilon$

 $R(\pi)$ is the set of **minimal** permutations in the set

When x is above β and y is to the left of α , x and y coalesce into a unique point.

Remark

 $R(\pi)$ contains exactly

- 4 one-point extensions of π
- 4 $|lpha|(\mathit{n}-\mathit{a}-1)$ two-points extensions of π

Definition of $R(\pi)$ for $\pi = a\alpha b\beta$ with $\beta \neq \varepsilon$

 $R(\pi)$ is the set of **minimal** permutations in the set

When x is above β and y is to the left of α , x and y coalesce into a unique point.

Remark

 $R(\pi)$ contains exactly

- 4 one-point extensions of π
- 4 $|\alpha|(n-a-1)$ two-points extensions of π

Patterns $\pi \in S_n$ with two LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi \in S_n$ is such that $\pi = a\alpha b\beta$ for $\beta \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is a class whose basis is $R(\pi)$.

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p\lambda q\mu \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Lemma

If σ contains an occurrence of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π .

Patterns $\pi \in S_n$ with two LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi \in S_n$ is such that $\pi = a\alpha b\beta$ for $\beta \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is a class whose basis is $R(\pi)$.

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p\lambda q\mu \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Lemma

If σ contains an occurrence of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π .

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p\lambda q\mu \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Proof: We prove that $p \times \lambda_1 y \lambda_2 z \mu$ or $x p \lambda_1 y \lambda_2 z \mu \subseteq \sigma$ with $\begin{cases} \lambda = \lambda_1 \lambda_2, & p < x \\ y \text{ and } z \text{ are the two largest terms of this sequence} \\ \text{if } \lambda_1 = \varepsilon \text{ and } x > \mu, \text{ then } x \text{ and } y \text{ coalesce} \end{cases}$ Such a sequence is a permutation in $R(\pi)$.

The proof follows by induction on $|\sigma|$.

• If $|\sigma| \leq 3$, result vacuously true (since $B(\sigma)$ ends with its maximum).

• If $\sigma = \sigma_1 m \sigma_2$ with $m = |\sigma| > 3$, then $p\lambda q\mu \subseteq B(\sigma_1)\sigma_2 m$. Because $p\lambda q\mu$ does not end with its maximum, $p\lambda q\mu \subseteq B(\sigma_1)\sigma_2$

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p\lambda q\mu \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Proof: We prove that $px\lambda_1y\lambda_2z\mu$ or $xp\lambda_1y\lambda_2z\mu \subseteq \sigma$ with $\begin{cases} \lambda = \lambda_1\lambda_2, & p < x \\ y \text{ and } z \text{ are the two largest terms of this sequence} \\ \text{if } \lambda_1 = \varepsilon \text{ and } x > \mu, \text{ then } x \text{ and } y \text{ coalesce} \end{cases}$ Such a sequence is a permutation in $R(\pi)$. The proof follows by induction on $|\sigma|$.

• If $|\sigma| \leq 3$, result vacuously true (since $B(\sigma)$ ends with its maximum).

• If $\sigma = \sigma_1 m \sigma_2$ with $m = |\sigma| > 3$, then $p\lambda q\mu \subseteq B(\sigma_1)\sigma_2 m$. Because $p\lambda q\mu$ does not end with its maximum, $p\lambda q\mu \subseteq B(\sigma_1)\sigma_2$.

Proof of the first lemma, continued

As before, distinguish how $p\lambda q\mu$ can lie across $B(\sigma_1)\sigma_2$.

- * If $\mu = \mu_1 \mu_2$ with $\mu_1 \neq \varepsilon$, $p\lambda q\mu_1 \subseteq B(\sigma_1)$ and $\mu_2 \subseteq \sigma_2$ then by induction σ_1 contains a subsequence of the form $px\lambda_1y\lambda_2z\mu_1$ or $xp\lambda_1y\lambda_2z\mu_1$ to which μ_2 can be appended.
- * If $p\lambda q \subseteq B(\sigma_1)$ and $\mu \subseteq \sigma_2$, then by a previous lemma $\exists t > p$ such that $tp\lambda$ or $pt\lambda \subseteq \sigma_1$. If q is to the left of λ in σ , then $pq\lambda m\mu$ or $qp\lambda m\mu \subseteq \sigma$ is of the required form. Otherwise, q and t can play the rôle of y and x, and appending $m\mu$ gives the desired subsequence.
- * If $\lambda = \lambda_1 \lambda_2$ with $\lambda_1 \neq \varepsilon$, $p\lambda_1 \subseteq B(\sigma_1)$ and $\lambda_2 q\mu \subseteq \sigma_2$, then as before $\exists x > p$ such that $xp\lambda_1$ or $px\lambda_1 \subseteq \sigma_1$. Appending $m\lambda_2 q\mu$ gives the desired subsequence.
- * If $p \subseteq B(\sigma_1)$ and $\lambda q \mu \subseteq \sigma_2$, then $pm\lambda q \mu \subseteq \sigma_1 m \sigma_2 = \sigma$ is of the desired form, with x and y coalesing in m.
- * If $p\lambda q\mu \subseteq \sigma_2$, then $mp\lambda q\mu \subseteq \sigma$. Again, x and y coalese in m.

Lemma

If σ contains an occurrence $px\lambda_1y\lambda_2q\mu$ or $xp\lambda_1y\lambda_2q\mu$ of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π .

Proof: Recall that if $\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

Hence $\lambda \mu \subseteq B(\sigma)$. Notice also that $p\lambda q\mu$ is an occurrence of π in σ .

- 1. We show that p is to the left of λ in $B(\sigma)$.
 - If p is not a LtoR-maximum, this is true.
 - If p is a LtoR-maximum, then $px\lambda_1y\lambda_2q\mu \subseteq \sigma$ and there exists some t between p and x (possibly t = x) in σ that is a LtoR-maximum. This implies that p still precedes λ in $B(\sigma)$.

2. We show that there exists r in $B(\sigma)$ between λ and μ with $r > p\lambda\mu$ (to be continued).

Lemma

If σ contains an occurrence $px\lambda_1y\lambda_2q\mu$ or $xp\lambda_1y\lambda_2q\mu$ of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π .

Proof: Recall that if $\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

Hence $\lambda \mu \subseteq B(\sigma)$. Notice also that $p\lambda q\mu$ is an occurrence of π in σ .

1. We show that p is to the left of λ in $B(\sigma)$.

2. We show that there exists r in $B(\sigma)$ between λ and μ with $r > p\lambda\mu$.

• If q is not a LtoR-maximum, choose r = q.

 If q is a LtoR-maximum, choose r = the LtoR-maximum of σ immediately to the left of q. Then pλrμ ⊆ B(σ). By contradiction, assume that r < y then in σ we have

 \star either $\cdots y \cdots r \cdots q \cdots$, and r is not a LtoR-maximum,

* or $\cdots r \cdots y \cdots q \cdots$, and there is a LtoR-maximum between r and q. Hence $r \ge y$, and $r > p\lambda\mu$ as desired.

π	$B^{-1}(Av(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231, 321	\checkmark
$\mathbf{n}\alpha, \ \alpha \neq \varepsilon$	is a class	$n(n+1)\alpha, (n+1)n\alpha$	\checkmark
$(n-1)\alpha n, \alpha \neq \varepsilon$	is a class	$(n-1)n\alpha, n(n-1)\alpha$	\checkmark
$a\alpha b\beta, \ \beta \neq \varepsilon$	is a class	$R(\pi)$	\checkmark
$a\alpha b\beta n, \beta \neq \varepsilon$	is a class	R(alpha beta)	\checkmark
$(n-2)\alpha(n-1)n$	is a class	$(n-2)(n-1)\alpha n,$ $(n-1)(n-2)\alpha n,$ $(n-2)n \alpha(n-1),$ $n(n-2)\alpha (n-1)$	
$a\alpha b\beta c\gamma, \gamma \neq \varepsilon$	is not a class		\checkmark

Patterns $\pi \in S_n$ with 3 LtoR-max. $\pi(1)$, $\pi(n-1)$ and $\pi(n)$

Proposition

If $\pi \in S_n$ is such that $\pi = (n-2)\alpha(n-1)n$, then $B^{-1}(Av(\pi))$ is a class whose basis is $\{(n-2)(n-1)\alpha n, (n-1)(n-2)\alpha n, (n-2)n\alpha(n-1), n(n-2)\alpha(n-1)\}.$

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p\lambda qr \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern among the four above.

Lemma

If σ contains an occurrence of some pattern among the four above, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π .

Patterns $\pi \in S_n$ with 3 LtoR-max. $\pi(1)$, $\pi(n-1)$ and $\pi(n)$

Proposition

If $\pi \in S_n$ is such that $\pi = (n-2)\alpha(n-1)n$, then $B^{-1}(Av(\pi))$ is a class whose basis is $\{(n-2)(n-1)\alpha n, (n-1)(n-2)\alpha n, (n-2)n\alpha(n-1), n(n-2)\alpha(n-1)\}.$

Lemma

If $\pi \preccurlyeq B(\sigma)$, consider an occurrence $p\lambda qr \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern among the four above.

Lemma

If σ contains an occurrence of some pattern among the four above, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π .

π	$B^{-1}(Av(\pi))$	Basis	Proof
1	is a class	1	\checkmark
12	is a class	12,21	\checkmark
21	is a class	231, 321	\checkmark
$\mathbf{n}\alpha, \ \alpha \neq \varepsilon$	is a class	$n(n+1)\alpha, (n+1)n\alpha$	\checkmark
$(n-1)\alpha n, \alpha \neq \varepsilon$	is a class	$(n-1)n\alpha, n(n-1)\alpha$	\checkmark
$a\alpha b\beta, \ \beta \neq \varepsilon$	is a class	$R(\pi)$	\checkmark
$a\alpha b\beta n, \beta \neq \varepsilon$	is a class	R(alpha beta)	\checkmark
$(n-2)\alpha(n-1)n$	is a class	$(n-2)(n-1)\alpha n,$ $(n-1)(n-2)\alpha n,$ $(n-2)n \alpha (n-1),$ $n(n-2)\alpha (n-1)$	✓
$a\alpha b\beta c\gamma, \gamma \neq \varepsilon$	is not a class		\checkmark

Q1. When is $B^{-1}(Av(\mathcal{B}))$ a class, for $|\mathcal{B}| \geq 2$?

Partial answer: $B^{-1}(Av(\mathcal{B}))$ is a class when $B^{-1}(Av(\pi))$ is a class for every $\pi \in \mathcal{B}$, but not only.

•
$$B^{-1}(Av(\mathcal{B})) = \cap_{\pi \in \mathcal{B}} B^{-1}(Av(\pi)).$$

• An example is Γ_2 = the set of permutations of length 4 ending with 1: $B^{-1}(Av(\Gamma_2))$ is a class, although Γ_2 contains 2341 and $B^{-1}(Av(2341))$ is not a class.

Q2. Are the growth rates of C and $B^{-1}(C)$ related? Growth rate of a permutation class $C = \limsup_{n \to \infty} \sqrt[n]{c_n}$ where c_n is the number of permutations of length n in C Q1. When is $B^{-1}(Av(\mathcal{B}))$ a class, for $|\mathcal{B}| \ge 2$?

Partial answer: $B^{-1}(Av(\mathcal{B}))$ is a class when $B^{-1}(Av(\pi))$ is a class for every $\pi \in \mathcal{B}$, but not only.

•
$$B^{-1}(Av(\mathcal{B})) = \cap_{\pi \in \mathcal{B}} B^{-1}(Av(\pi)).$$

• An example is Γ_2 = the set of permutations of length 4 ending with 1: $B^{-1}(Av(\Gamma_2))$ is a class, although Γ_2 contains 2341 and $B^{-1}(Av(2341))$ is not a class.

Q2. Are the growth rates of C and $B^{-1}(C)$ related? Growth rate of a permutation class $C = \limsup_{n \to \infty} \sqrt[n]{c_n}$ where c_n is the number of permutations of length n in C

Composing sorting operators

• SB-sortable permutations:

 \hookrightarrow (SB)⁻¹(Av(21)) = B⁻¹(Av(231)) = Av(3241, 2341, 4231, 2431)

- *B*²-sortable permutations:
- $\hookrightarrow (BB)^{-1}(Av(21)) = B^{-1}(Av(231, 321)) = Av(\Gamma_2)$
 - *B^k*-sortable permutations:

$$\hookrightarrow (B^k)^{-1}(Av(21)) = Av(\Gamma_{k+2}) \text{ with} \\ \Gamma_{k+2} = \text{the set of permutations of length } k+2 \text{ ending with } 1$$

Other sorting operators:

- built from B, S, \ldots and symmetries of the permutations (i, r, c)
- with a queue
- definition of *abstract* sorting operator

Composing sorting operators

• SB-sortable permutations:

 \hookrightarrow (SB)⁻¹(Av(21)) = B⁻¹(Av(231)) = Av(3241, 2341, 4231, 2431)

- *B*²-sortable permutations:
- $\hookrightarrow (BB)^{-1}(Av(21)) = B^{-1}(Av(231, 321)) = Av(\Gamma_2)$
 - *B^k*-sortable permutations:

$$(B^k)^{-1}(Av(21)) = Av(\Gamma_{k+2}) \text{ with}$$

$$\Gamma_{k+2} = \text{the set of permutations of length } k+2 \text{ ending with } 1.$$

Other sorting operators:

- built from B, S, \ldots and symmetries of the permutations (i, r, c)
- with a queue
- definition of *abstract* sorting operator