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The Bubble Sort Operator B

B = one pass of bubble sort.
On sequences that are permutations.
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The Bubble Sort Operator B

B = one pass of bubble sort.
On sequences that are permutations.

Definition(s):
o Algorithmically:

< B processes a permutation ¢ from left to right, and modifies o
dynamically exchanging o(i) and o(i + 1) when o(i) > o(i + 1).
@ Recursively:
{B(alnaz) = B(o1)o2n if 0 = o1nop € S,
(_)

B(e) =¢ NB Stack-sorting operator S
S(o1no2) = S(01)S(02)n
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The Bubble Sort Operator B

B = one pass of bubble sort.
On sequences that are permutations.

Definition(s):

—

Algorithmically:

B processes a permutation ¢ from left to right, and modifies o
dynamically exchanging o(i) and o(i + 1) when o(i) > o(i + 1).

Recursively:
B(o1nop) = B(o1)oan if 0 = o1noy € S,
{B(s) =¢
Explicitely:
If 0 = mAinoAs -+ ngAg where ny, ..., ng are the left to right

maxima of o then B(c) = AiniAany -+ Agng.
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Permutation Classes

Permutations
e S, = permutations o of {1,2,...,n}
@ Representation by a word: o(1)o(2)---o(n), by its diagram,

°
0=312854796
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Permutation Classes

Permutations
e S, = permutations o of {1,2,...,n}
@ Representation by a word: o(1)c(2)---o(n), by its diagram, ...

Patterns

@ Subpermutation of o

@ Subword or subset of points of the diagram
Example: 2134 5312854796

° 0=312854796
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Permutation Classes

Permutations
e S, = permutations o of {1,2,...,n}
@ Representation by a word: o(1)o(2)---o(n), by its diagram, ...

Patterns

@ Subpermutation of ¢

@ Subword or subset of points of the diagram that is normalized
Example: 2134 312854796 since 3279=2134

Occurrence of a pattern

@ Occurrence = subpermutation without normalization
Example : 3279 C 312854796

Mathilde Bouvel (LaBRI, CNRS) Bubble Sort and Permutation Classes 3/28



Permutation Classes

Permutations
e S, = permutations o of {1,2,...,n}
@ Representation by a word: o(1)o(2)---o(n), by its diagram, ...

Patterns

@ Subpermutation of ¢

@ Subword or subset of points of the diagram that is normalized
Example: 2134 312854796 since 3279=2134

Occurrence of a pattern
@ Occurrence = subpermutation without normalization
Example : 3279 C 312854796

Classes
@ Subset of S = U, S, downward closed for <
o Characterization by a basis of excluded patterns: C = Av(B)
@ Principal classes: C = Av(n)
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B-sortable permutations

Proposition

The permutations that are sorted by B are a class.
Namely: B(o) = Id iff o € Av(231,321).
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B-sortable permutations

Proposition

The permutations that are sorted by B are a class.
Namely: B(o) = Id iff o € Av(231,321).

Proof: by induction.
Decompose ¢ = g1no, around its maximum n.
Recall that B(o) = B(o1)o2n.

o is sorted by B
< o1 is sorted by B, oy is increasing, and o1 < 07
< 01 € Av(231,321), o5 is increasing, and o1 < 03
< o € Av(231,321)
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Motivation and main result

@ B-sortable permutations
— B71(Av(21)) = Av(231,321)
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Motivation and main result

@ B-sortable permutations
— B71(Av(21)) = Av(231,321)
@ SB-sortable permutations?
— (SB)"1(Av(21)) = B71(Av(231))
e B2-sortable permutations?
— (BB)"!(Av(21)) = B71(Av(231,321))

o In general, what can we say about B~1(C)?

For C = Av(m) a principal permutation class, we can determine
e when B~1(Av(7)) is a class,

@ and in this case give its basis.

This result is proved by considering the LtoR-maxima of .
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Summary of results

B~Y(Av(r)) | Basis
1 is a class 1
12 is a class 12,21
21 is a class 231,321
no, o # € is a class n(n+1)a, (n+ 1)na
(n—1)an, a # ¢ | is a class (n—1)na,n(n— 1)«
aabp, B # ¢ is a class R(m)
aabfn, B # ¢ is a class R(aabp)
. n—2)(n—1)a n,(n—1)(n—2)an,
(n—2)a(n—1)n | is a class E” _ 2%51 a(n)— 1), 57(” - )2()a (n)— 1)
aabfcy, v # € is not a class

Remarks: n, (n—1), (n—2), a, b and ¢ are LtoR-maxima.

ob —o—eb
fr= L] , then R(m) is the set of permutations [o] :
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Short patterns «

Proposition

There are no permutations o of length n > 1 such that B(c) avoids 1.
Hence B~Y(Av(1)) = {e} = Av(1).
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Short patterns «

Proposition

There are no permutations o of length n > 1 such that B(c) avoids 1.
Hence B~Y(Av(1)) = {e} = Av(1).

Proposition

The only permutations o such that B(o) avoids 12 are ¢ and 1.
Hence B~1(Av(12)) = {¢,1} = Av(12,21).

Proof: B(o) always ends with its maximum.
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Short patterns «

Proposition

There are no permutations o of length n > 1 such that B(c) avoids 1.
Hence B~Y(Av(1)) = {e} = Av(1).

Proposition

The only permutations o such that B(o) avoids 12 are ¢ and 1.
Hence B~1(Av(12)) = {¢,1} = Av(12,21).

Proof: B(o) always ends with its maximum.

Proposition

The permutations o such that B(c) avoids 21 are the B-sortable
permutations.
Hence B~1(Av(21)) = Av(231,321).
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Summary of results

™ B~1(Av(r)) | Basis Proof
1 is a class 1 v
12 is a class 12,21 v
21 is a class 231,321 v
no, o # € is a class n(n+1)a, (n+ 1)na
(n—1)an, a # ¢ | is a class (n—1)na, n(n — 1)
aabp, B # ¢ is a class R(m)
aabfBn, B # ¢ is a class R(aabf3)
(n—=2)(n—1)a n,
(n—2)a(n—1)n | is a class EZ : ;;ﬁna_(j)_afi’
n(n—2)a (n—1)
aablBcy, v # € is not a class
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Patterns m € S, ending with n but not with (n — 1)n

If € S, with n > 3 is such that w(n) = n but m(n—1) # n— 1, then
setting 7' = w(1)w(2)...7(n— 1) we have B=}(Av(n)) = B71(Av(r)).
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Patterns m € S, ending with n but not with (n — 1)n

If € S, with n > 3 is such that w(n) = n but m(n—1) # n— 1, then
setting 7' = w(1)w(2)...7(n— 1) we have B=}(Av(n)) = B71(Av(r)).

Proof:

e 0 € B~ Y(Av(n')) = B(c) avoids 7’
= B(c) avoids m = o € B1(Av(7))
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Patterns m € S, ending with n but not with (n — 1)n

If € S, with n > 3 is such that w(n) = n but m(n—1) # n— 1, then
setting 7' = w(1)w(2)...7(n— 1) we have B=}(Av(n)) = B71(Av(r)).

Proof:

e 0 € B~ Y(Av(n')) = B(c) avoids 7’
= B(c) avoids m = o € B1(Av(7))

e 0 € B~ Y(Av(n)) = B(c) avoids 7 = 7'n
But B(o) = B(o1)o2m ends with its maximum m.
Hence B(c1)o, avoids 7',
But " does not end with its maximum.
Hence B(o) = B(o1)oam avoids 7’ and o € B~(Av(7')).

This lemmas applies in particular for 7 = (n — 1)an with a # ¢ and
m = aabfn with § # €.
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Summary of results

™ B~1(Av(r)) | Basis Proof
1 is a class 1 v
12 is a class 12,21 v
21 is a class 231,321 v
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Patterns m € S, with at least three LtoR-maxima # 7(n)

Proposition

If m = aabBcry, with a, b and c the first three LtoR-maxima of m and
v # ¢, then B™1(Av(x)) is not a class.

Proof:

By the previous lemma, we may assume that © = aabBcyn.
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Set 01 = baanfcy and 6, = (n+ 1)0;. Notice that 61 < 6>.
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Proof:

By the previous lemma, we may assume that © = aabBcyn.
Set 01 = baanfcy and 6, = (n+ 1)0;. Notice that 61 < 6>.
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Patterns m € S, with at least three LtoR-maxima # 7(n)

Proposition

If m = aabBcry, with a, b and c the first three LtoR-maxima of m and
v # ¢, then B™1(Av(x)) is not a class.

Proof:
By the previous lemma, we may assume that © = aabBcyn.
Set 01 = baanfcy and 6, = (n+ 1)0;. Notice that 61 < 6>.

o Clearly, B(f1) = 7 and 01 ¢ B~1(Av(r)).

e B(62) = baanfBcy(n+ 1)
Since B(#7) is only one term longer than 7, we easily check that
B(62) avoids 7. Hence 6, € B~Y(Av(r)).
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Proof:
By the previous lemma, we may assume that © = aabBcyn.
Set 01 = baanfcy and 6, = (n+ 1)0;. Notice that 61 < 6>.

o Clearly, B(f1) = 7 and 01 ¢ B~1(Av(r)).

e B(62) = baanfBcy(n+ 1)
Since B(#7) is only one term longer than 7, we easily check that
B(62) avoids 7. Hence 6, € B~Y(Av(r)).

We have B~Y(Av(r)) # 01 < 62 € B~1(Av(x)). Consequently,
B~1(Av(n)) is not a class.
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11/ 28



Summary of results

™ B~1(Av(r)) | Basis Proof
1 is a class 1 v
12 is a class 12,21 v
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Common framework for the remaining cases

For any pattern m, if there exists a set R of permutations such that
Vo,m < B(0) & p < o for some p € R, then B~1(Av()) is a class.
Furthermore, if R is minimal, it is the basis of B~1(Av(r)).
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Common framework for the remaining cases

For any pattern m, if there exists a set R of permutations such that

Vo,m < B(0) & p < o for some p € R, then B~1(Av()) is a class.

Furthermore, if R is minimal, it is the basis of B~1(Av(r)).

Proof: Show that B~1(Av(7)) is downward closed for <.
o & B~Y(Av(n))
< B(o) € Av(m)
< 7 < B(o)
< dpeR,p=xo
so that 0 € B7Y(Av(r)) & Vp e R,p £ 0.

This shows that B~1(Av(r)) is a downset, hence a class.

This also shows that the minimal R is its basis.
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Patterns 7w € S, starting with n

Proposition

If T € S, is such that m = na for o # ¢, then B~Y(Av (7)) is a class whose
basis is {n(n+ 1)a, (n + 1)na}.
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Patterns 7w € S, starting with n

Proposition

If T € S, is such that m = na for o # ¢, then B~Y(Av (7)) is a class whose
basis is {n(n+ 1)a, (n + 1)na}.

If 1 < B(o), consider an occurrence pA C B(o).
Then there exists g > p > A\ such that pg\ C o or gpA C o.
Hence n(n+ 1) or (n+ 1)na < o

If n(n+ 1)« or (n+ 1)na < o, consider an occurrence pg\ or gpA C o.
Then pX C B(o).
Hence m < B(0).
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Proof of the first lemma for m = na with o # ¢

If 1 < B(o), consider an occurrence pA C B(o).
Then there exists g > p > A such that pg\ C o or gpA C 0.
Hence n(n+ 1)a or (n+ 1)na < o.

Proof: by induction on |o|.

e If |o| < 2, result vacuously true (since B(o) ends with its maximum).
e If 0 = o1moy with m = |o| > 2, then pA C B(o1)oam.
Because p\ does not end with its maximum, pA C B(o1)o3.

* If A= A1 A2 with A1 # ¢, pA1 € B(o1) and Az C o5, then by
induction pA\; C B(o1) implies that 3g > p such that pgA; C o or
gpA1 C o1.

Hence o = o1 moy contains an occurrence of pgAi Ay or of gpAi ;.

* If pC B(o1) and A C oy, then p C o1 and pm\ C o1mop = 0.

* If p\ C o5, then mpA C moy C 0.

Mathilde Bouvel (LaBRI, CNRS) Bubble Sort and Permutation Classes 15 / 28



Proof of the second lemma for 7 = na with o # ¢

If n(n+ 1)« or (n+ 1)na < o, consider an occurrence pg\ or gpA C o.
Then pX C B(o).

Hence m < B(0).

Proof:

Recall that if ¢ = niA1no)a - - - ng Ak where nq, ..., ng are the left to right

maxima of o then B(c) = AinmAany -+ Agng.

Hence, the order of the elements not LtoR-maxima is preserved by B.
e If gpA C o, pX are not LtoR-maxima. Hence pA C B(o).
@ This also holds when pg\ C ¢ and p is not a LtoR-maximum.

o If pgA C o and p is a LtoR-maximum, then there exists some r
between p and g (possibly r = @) in o that is a LtoR-maximum.
This implies that p still precedes A in B(c), hence pA C B(o).
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Summary of results

™ B~1(Av(r)) | Basis Proof
1 is a class 1 v
12 is a class 12,21 v
21 is a class 231,321 v
na, o # € is a class n(n+Da,(n+1)na | v
(n—1)an, a # ¢ | is a class (n—1na,n(n—1)a | v
aabp, B # ¢ is a class R(m)
aabfBn, B # ¢ is a class R(aabf3) v
(n—=2)(n—1)a n,
(n—2)a(n—1)n | is a class EZ : ;;ﬁna_(j)_afi’
n(n—2)a (n—1)
aablBcy, v # € is not a class v
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Introducing ambiguity in diagram representations

@ A set of points in the plane that are pairwise neither horizontally nor
vertically aligned represents a permutation.

Example:
®cC
e {a, b, c,d} represents 3142.
ae
®d
]
b
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Introducing ambiguity in diagram representations

@ A set of points in the plane that are pairwise neither horizontally nor
vertically aligned represents a permutation.
@ When some points are horizontally or vertically aligned, sets of

permutations are represented (considering all possible
disambiguations).

Example:
oc
‘ e {a,b,c,d} represents 3142.
X
ae : e {a,b,c,d,x,y} represents the set
- ?’ Tttt -0-d - {241563, 241653, 341562, 341652} .
®o '
b
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Definition of R(7) for m = aabf with § # ¢

R(m) is the set of
permutations

in the set

L ab
——0O—0
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Definition of R(7) for m = aabf with § # ¢

R(m) is the set of When x is above 3 and y is to the
minimal permutations left of o, x and y coalesce into a
in the set unique point.
o @b N S ob
a a
3 o 5
a o
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Definition of R(7) for m = aabf with § # ¢

R(m) is the set of When x is above 3 and y is to the
minimal permutations left of o, x and y coalesce into a
in the set unique point.
o @b N S ob
a a
3 o 5
a o

R(m) contains exactly

@ 4 one-point extensions of

@ 4|a|(n — a — 1) two-points extensions of
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Patterns = € S, with two LtoR-maxima # 7(n)

Proposition

If T € S, is such that = = aabf for 3 # ¢, then B™1(Av(r)) is a class
whose basis is R(r).
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Patterns = € S, with two LtoR-maxima # 7(n)

If T € S, is such that ™ = aabf for 3 # ¢, then B~1(Av(x)) is a class
whose basis is R(r).

v
Lemma

If 1 < B(o), consider an occurrence pAqu C B(o).
Then there exists a subsequence of o which is an occurrence of some

pattern in R(r).

V.
Lemma

If o contains an occurrence of some pattern in R(m), then there exists a
subsequence of B(c) which is an occurrence of .

A
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Proof of the first lemma

If 1 < B(o), consider an occurrence pAqu C B(o).
Then there exists a subsequence of o which is an occurrence of some

pattern in R(m).

Proof: We prove that pxA1yAsxzu or xpAi1yAazp C o with
A=A, p<x
y and z are the two largest terms of this sequence

if A1 = ¢ and x > u, then x and y coalesce
Such a sequence is a permutation in R(7).
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Proof of the first lemma

If 1 < B(o), consider an occurrence pAqu C B(o).
Then there exists a subsequence of o which is an occurrence of some

pattern in R(m).

Proof: We prove that pxA1yAsxzu or xpAi1yAazp C o with
A=A, p<x
y and z are the two largest terms of this sequence

if A =¢ and x > p, then x and y coalesce
Such a sequence is a permutation in R(7).

The proof follows by induction on |o|.
o If |o| < 3, result vacuously true (since B(o) ends with its maximum).
o If 0 = o1moy with m = |o| > 3, then pAgu C B(o1)oam.
Because pAqu does not end with its maximum, pAgu C B(o1)o2.
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Proof of the first lemma, continued

As before, distinguish how pAgu can lie across B(o1)os.

* If = pape with pg # e, pAqui € B(o1) and pp C o then by
induction o7 contains a subsequence of the form pxA1yA>zuy or
XpA1yA2zp1 to which o can be appended.

* If pAq C B(o1) and p C 02, then by a previous lemma 3t > p such
that tpA or ptA C 1. If g is to the left of A in o, then pgAmpu or
gpAmy C o is of the required form. Otherwise, g and t can play the
role of y and x, and appending myu gives the desired subsequence.

* If A= A2 with Ay # &, pA1 € B(o1) and Aaqu C 02, then as
before Ix > p such that xpA; or pxA; C 1. Appending mAaqu gives
the desired subsequence.

* If p C B(o1) and Agu C o, then pmAqu C o1moy = o is of the
desired form, with x and y coalesing in m.

* If pAgu C o2, then mpAgu C o. Again, x and y coalese in m.
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Proof of the second lemma

If o contains an occurrence pxA1yAaqu or xpA1yA2qu of some pattern in
R(m), then there exists a subsequence of B(c) which is an occurrence of .

Proof: Recall that if o = niAimAy - - A\ where ny, ..., ng are the left
to right maxima of o then B(o) = AiniAang -+ - Agn.

Hence A € B(o). Notice also that pAgu is an occurrence of 7 in o.
1. We show that p is to the left of X in B(o).
@ If pis not a LtoR-maximum, this is true.

o If pis a LtoR-maximum, then pxA\i1yAxgu C o and there exists some
t between p and x (possibly t = x) in o that is a LtoR-maximum.
This implies that p still precedes A in B(o).

2. We show that there exists r in B(o) between X\ and p with r > pAu
(to be continued).
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Proof of the second lemma

If o contains an occurrence px\1yaqp or xpA\1yAoqu of some pattern in
R(7), then there exists a subsequence of B(c) which is an occurrence of 7.

Proof: Recall that if 0 = niAimAy - ng A\ where ny, ..., n, are the left
to right maxima of o then B(o) = AiniAany -« - Agng.
Hence Aw C B(o). Notice also that pAgu is an occurrence of 7 in o.
1. We show that p is to the left of A in B(o). v
2. We show that there exists r in B(o) between X\ and p with r > pApu.
@ If g is not a LtoR-maximum, choose r = g.
o If g is a LtoR-maximum, choose r = the LtoR-maximum of ¢
immediately to the left of g. Then pAru C B(o).
By contradiction, assume that r < y then in o we have
* either ---y--.r---g---, and r is not a LtoR-maximum,
* OF---r---y---q---,and there is a LtoR-maximum between r and q.
Hence r > y, and r > pAu as desired.
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Summary of results

™ B~1(Av(r)) | Basis Proof
1 is a class 1 v
12 is a class 12,21 v
21 is a class 231,321 v
na, o # € is a class n(n+Da,(n+1)na | v
(n—1)an, a # ¢ | is a class (n—1na,n(n—1)a | v
aabp, B # ¢ is a class R(m) v
aabfBn, B # ¢ is a class R(aabf3) v
(n—=2)(n—1)a n,
(n—2)a(n—1)n | is a class EZ : ;;ﬁna_(j)_afi’
n(n—2)a (n—1)
aablBcy, v # € is not a class v
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Patterns m € S, with 3 LtoR-max. 7(1), 7(n—1) and m(n)

Proposition

If T € S, is such that m = (n — 2)a(n — 1)n, then B~1(Av(x)) is a class
whose basis is

{(n—=2)(n—1)an,(n—1)(n—2)an,(n—2)na(n—1),n(n—2)a(n—1)}.

Mathilde Bouvel (LaBRI, CNRS) Bubble Sort and Permutation Classes

25 / 28



Patterns m € S, with 3 LtoR-max. 7(1), 7(n—1) and m(n)

If T € S, is such that m = (n — 2)a(n — 1)n, then B~1(Av(x)) is a class
whose basis is
{(n—=2)(n—1)an,(n—1)(n—2)an,(n—2)na(n—1),n(n—2)a(n—1)}

v

Lemma

If 1 < B(0), consider an occurrence pAqr C B(o).
Then there exists a subsequence of o which is an occurrence of some
pattern among the four above.

v

If o contains an occurrence of some pattern among the four above, then
there exists a subsequence of B(o) which is an occurrence of 7.
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Summary of results

™ B~1(Av(r)) | Basis Proof
1 is a class 1 v
12 is a class 12,21 v
21 is a class 231,321 v
na, o # € is a class n(n+Da,(n+1)na | v
(n—1)an, a # ¢ | is a class (n—1na,n(n—1)a | v
aabp, B # ¢ is a class R(m) v
aabfBn, B # ¢ is a class R(aabf3) v
(n—=2)(n—1)a n,
(n—2)a(n—1)n | is a class EZ : ;;ﬁna_(j)_afi’ v
n(n—2)a (n—1)
aablBcy, v # € is not a class v
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Some open questions

Q1. When is B~Y(Av(B)) a class, for |B| > 27
Partial answer: B~1(Av(B)) is a class when B~1(Av(r)) is a class for
every m € B, but not only.

o B7Y(Av(B)) = NzesB1(Av(T)).

@ An example is ['3 = the set of permutations of length 4 ending with 1:

B~1(Av(I3)) is a class, although I3 contains 2341 and
B~1(Av(2341)) is not a class.
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Some open questions

Q1. When is B~Y(Av(B)) a class, for |B| > 27
Partial answer: B~1(Av(B)) is a class when B~1(Av(r)) is a class for
every m € B, but not only.
o B7Y(Av(B)) = NzesB1(Av(T)).
@ An example is ['3 = the set of permutations of length 4 ending with 1:
B~1(Av(I3)) is a class, although I3 contains 2341 and
B~1(Av(2341)) is not a class.

Q2. Are the growth rates of C and B~1(C) related?

Growth rate of a permutation class C = limsup,,_, . ¥/cn
where ¢, is the number of permutations of length nin C
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Composing sorting operators

@ SB-sortable permutations:
— (SB)71(Av(21)) = B71(Av(231)) = Av(3241,2341,4231,2431)
e B2-sortable permutations:
< (BB)71(Av(21)) = B71(Av(231,321)) = Av(I>)
e Bk-sortable permutations:
— (B*)1(Av(21)) = Av(k) with
Ik = the set of permutations of length k 4+ 1 ending with 1.
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Composing sorting operators

@ SB-sortable permutations:
— (SB)"!(Av(21)) = B71(Av(231)) = Av(3241,2341,4231,2431)
e B2-sortable permutations:
< (BB)71(Av(21)) = B71(Av(231,321)) = Av(I>)
e Bk-sortable permutations:
— (B*)1(Av(21)) = Av(k) with
Ik = the set of permutations of length k 4+ 1 ending with 1.

Other sorting operators:
@ built from B, S, ...and symmetries of the permutations (i, r, c)
@ with a queue

o definition of abstract sorting operator
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