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The Bubble Sort Operator B

B = one pass of bubble sort.
On sequences that are permutations.

Definition(s):

Algorithmically:

↪→ B processes a permutation σ from left to right, and modifies σ
dynamically exchanging σ(i) and σ(i + 1) when σ(i) > σ(i + 1).

Recursively:

↪→

{
B(σ1nσ2) = B(σ1)σ2n if σ = σ1nσ2 ∈ Sn

B(ε) = ε

Explicitely:

↪→ If σ = n1λ1n2λ2 · · · nkλk where n1, . . . , nk are the left to right
maxima of σ then B(σ) = λ1n1λ2n2 · · ·λknk .

NB Stack-sorting operator S
S(σ1nσ2) = S(σ1)S(σ2)n
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Permutation Classes

Permutations

Sn = permutations σ of {1, 2, . . . , n}
Representation by a word: σ(1)σ(2) · · ·σ(n), by its diagram, . . .

Patterns

Subpermutation of σ
Subword or subset of points of the diagram that is normalized

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6 since 3 2 7 9 ≡ 2 1 3 4

i

σ(i)
σ = 3 1 2 8 5 4 7 9 6

Occurrence of a pattern

Occurrence = subpermutation without normalization

Example : 3 2 7 9 ⊆ 3 1 2 8 5 4 7 9 6

Classes

Subset of S = ∪nSn downward closed for 4
Characterization by a basis of excluded patterns: C = Av(B)
Principal classes: C = Av(π)
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B-sortable permutations

Proposition

The permutations that are sorted by B are a class.
Namely: B(σ) = Id iff σ ∈ Av(231, 321).

Proof: by induction.

Decompose σ = σ1nσ2 around its maximum n.

Recall that B(σ) = B(σ1)σ2n.

σ is sorted by B

⇔ σ1 is sorted by B, σ2 is increasing, and σ1 < σ2

⇔ σ1 ∈ Av(231, 321), σ2 is increasing, and σ1 < σ2

⇔ σ ∈ Av(231, 321)
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Motivation and main result

B-sortable permutations

↪→ B−1(Av(21)) = Av(231, 321)

SB-sortable permutations?

↪→ (SB)−1(Av(21)) = B−1(Av(231))

B2-sortable permutations?

↪→ (BB)−1(Av(21)) = B−1(Av(231, 321))

In general, what can we say about B−1(C)?

For C = Av(π) a principal permutation class, we can determine

when B−1(Av(π)) is a class,

and in this case give its basis.

This result is proved by considering the LtoR-maxima of π.
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Summary of results

π B−1(Av(π)) Basis

1 is a class 1

12 is a class 12, 21

21 is a class 231, 321

nα, α 6= ε is a class n(n + 1)α, (n + 1)nα

(n − 1)αn, α 6= ε is a class (n − 1)nα, n(n − 1)α

aαbβ, β 6= ε is a class R(π)

aαbβn, β 6= ε is a class R(aαbβ)

(n − 2)α(n − 1)n is a class
(n − 2)(n − 1)α n, (n − 1)(n − 2)αn,
(n − 2)n α(n − 1), n(n − 2)α (n − 1)

aαbβcγ, γ 6= ε is not a class

Remarks: n, (n − 1), (n − 2), a, b and c are LtoR-maxima.

If π = α
a β

b

, then R(π) is the set of permutations α
a β

b

.
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Short patterns π

Proposition

There are no permutations σ of length n ≥ 1 such that B(σ) avoids 1.
Hence B−1(Av(1)) = {ε} = Av(1).

Proposition

The only permutations σ such that B(σ) avoids 12 are ε and 1.
Hence B−1(Av(12)) = {ε, 1} = Av(12, 21).

Proof: B(σ) always ends with its maximum.

Proposition

The permutations σ such that B(σ) avoids 21 are the B-sortable
permutations.
Hence B−1(Av(21)) = Av(231, 321).
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Patterns π ∈ Sn ending with n but not with (n − 1)n

Lemma

If π ∈ Sn with n ≥ 3 is such that π(n) = n but π(n − 1) 6= n − 1, then
setting π′ = π(1)π(2) . . . π(n − 1) we have B−1(Av(π)) = B−1(Av(π′)).

Proof:

σ ∈ B−1(Av(π′))⇒ B(σ) avoids π′

⇒ B(σ) avoids π ⇒ σ ∈ B−1(Av(π))

σ ∈ B−1(Av(π))⇒ B(σ) avoids π = π′n
But B(σ) = B(σ1)σ2m ends with its maximum m.
Hence B(σ1)σ2 avoids π′.
But π′ does not end with its maximum.
Hence B(σ) = B(σ1)σ2m avoids π′ and σ ∈ B−1(Av(π′)).

This lemmas applies in particular for π = (n − 1)αn with α 6= ε and
π = aαbβn with β 6= ε.
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Patterns π ∈ Sn with at least three LtoR-maxima 6= π(n)

Proposition

If π = aαbβcγ, with a, b and c the first three LtoR-maxima of π and
γ 6= ε, then B−1(Av(π)) is not a class.

Proof:

By the previous lemma, we may assume that π = aαbβcγn.

Set θ1 = baαnβcγ and θ2 = (n + 1)θ1. Notice that θ1 4 θ2.

Clearly, B(θ1) = π and θ1 6∈ B−1(Av(π)).

B(θ2) = baαnβcγ(n + 1)
Since B(θ2) is only one term longer than π, we easily check that
B(θ2) avoids π. Hence θ2 ∈ B−1(Av(π)).

We have B−1(Av(π)) 63 θ1 4 θ2 ∈ B−1(Av(π)). Consequently,
B−1(Av(π)) is not a class.
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Summary of results

π B−1(Av(π)) Basis Proof

1 is a class 1 X
12 is a class 12, 21 X
21 is a class 231, 321 X
nα, α 6= ε is a class n(n + 1)α, (n + 1)nα

(n − 1)αn, α 6= ε is a class (n − 1)nα, n(n − 1)α X
aαbβ, β 6= ε is a class R(π)

aαbβn, β 6= ε is a class R(aαbβ) X

(n − 2)α(n − 1)n is a class

(n − 2)(n − 1)α n,
(n − 1)(n − 2)αn,
(n − 2)n α(n − 1),
n(n − 2)α (n − 1)

aαbβcγ, γ 6= ε is not a class X
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Common framework for the remaining cases

Lemma

For any pattern π, if there exists a set R of permutations such that
∀σ, π 4 B(σ)⇔ ρ 4 σ for some ρ ∈ R, then B−1(Av(π)) is a class.
Furthermore, if R is minimal, it is the basis of B−1(Av(π)).

Proof: Show that B−1(Av(π)) is downward closed for 4.

σ 6∈ B−1(Av(π))

⇔ B(σ) 6∈ Av(π)

⇔ π 4 B(σ)

⇔ ∃ρ ∈ R, ρ 4 σ

so that σ ∈ B−1(Av(π))⇔ ∀ρ ∈ R, ρ 64 σ.

This shows that B−1(Av(π)) is a downset, hence a class.

This also shows that the minimal R is its basis.
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Patterns π ∈ Sn starting with n

Proposition

If π ∈ Sn is such that π = nα for α 6= ε, then B−1(Av(π)) is a class whose
basis is {n(n + 1)α, (n + 1)nα}.

Lemma

If π 4 B(σ), consider an occurrence pλ ⊆ B(σ).
Then there exists q > p > λ such that pqλ ⊆ σ or qpλ ⊆ σ.
Hence n(n + 1)α or (n + 1)nα 4 σ.

Lemma

If n(n + 1)α or (n + 1)nα 4 σ, consider an occurrence pqλ or qpλ ⊆ σ.
Then pλ ⊆ B(σ).
Hence π 4 B(σ).
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Proof of the first lemma for π = nα with α 6= ε

Lemma

If π 4 B(σ), consider an occurrence pλ ⊆ B(σ).
Then there exists q > p > λ such that pqλ ⊆ σ or qpλ ⊆ σ.
Hence n(n + 1)α or (n + 1)nα 4 σ.

Proof: by induction on |σ|.
If |σ| ≤ 2, result vacuously true (since B(σ) ends with its maximum).

If σ = σ1mσ2 with m = |σ| > 2, then pλ ⊆ B(σ1)σ2m.
Because pλ does not end with its maximum, pλ ⊆ B(σ1)σ2.

? If λ = λ1λ2 with λ1 6= ε, pλ1 ⊆ B(σ1) and λ2 ⊆ σ2, then by
induction pλ1 ⊆ B(σ1) implies that ∃q > p such that pqλ1 ⊆ σ1 or
qpλ1 ⊆ σ1.
Hence σ = σ1mσ2 contains an occurrence of pqλ1λ2 or of qpλ1λ2.

? If p ⊆ B(σ1) and λ ⊆ σ2, then p ⊆ σ1 and pmλ ⊆ σ1mσ2 = σ.

? If pλ ⊆ σ2, then mpλ ⊆ mσ2 ⊆ σ.
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Proof of the second lemma for π = nα with α 6= ε

Lemma

If n(n + 1)α or (n + 1)nα 4 σ, consider an occurrence pqλ or qpλ ⊆ σ.
Then pλ ⊆ B(σ).
Hence π 4 B(σ).

Proof:

Recall that if σ = n1λ1n2λ2 · · · nkλk where n1, . . . , nk are the left to right
maxima of σ then B(σ) = λ1n1λ2n2 · · ·λknk .
Hence, the order of the elements not LtoR-maxima is preserved by B.

If qpλ ⊆ σ, pλ are not LtoR-maxima. Hence pλ ⊆ B(σ).

This also holds when pqλ ⊆ σ and p is not a LtoR-maximum.

If pqλ ⊆ σ and p is a LtoR-maximum, then there exists some r
between p and q (possibly r = q) in σ that is a LtoR-maximum.
This implies that p still precedes λ in B(σ), hence pλ ⊆ B(σ).
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Summary of results
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Introducing ambiguity in diagram representations

A set of points in the plane that are pairwise neither horizontally nor
vertically aligned represents a permutation.

When some points are horizontally or vertically aligned, sets of
permutations are represented (considering all possible
disambiguations).

Example:

x

y

a

b

c

d

{a, b, c , d} represents 3142.

{a, b, c , d , x , y} represents the set
{241563, 241653, 341562, 341652}.
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Definition of R(π) for π = aαbβ with β 6= ε

R(π) is the set of
minimal permutations
in the set

α

a
β

b

x

y

When x is above β and y is to the
left of α, x and y coalesce into a
unique point.

α

a
β

b

Remark

R(π) contains exactly

4 one-point extensions of π

4|α|(n − a− 1) two-points extensions of π
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Patterns π ∈ Sn with two LtoR-maxima 6= π(n)

Proposition

If π ∈ Sn is such that π = aαbβ for β 6= ε, then B−1(Av(π)) is a class
whose basis is R(π).

Lemma

If π 4 B(σ), consider an occurrence pλqµ ⊆ B(σ).
Then there exists a subsequence of σ which is an occurrence of some
pattern in R(π).

Lemma

If σ contains an occurrence of some pattern in R(π), then there exists a
subsequence of B(σ) which is an occurrence of π.
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Proof of the first lemma

Lemma

If π 4 B(σ), consider an occurrence pλqµ ⊆ B(σ).
Then there exists a subsequence of σ which is an occurrence of some
pattern in R(π).

Proof: We prove that pxλ1yλ2zµ or xpλ1yλ2zµ ⊆ σ with
λ = λ1λ2, p < x

y and z are the two largest terms of this sequence

if λ1 = ε and x > µ, then x and y coalesce

Such a sequence is a permutation in R(π).

The proof follows by induction on |σ|.

If |σ| ≤ 3, result vacuously true (since B(σ) ends with its maximum).

If σ = σ1mσ2 with m = |σ| > 3, then pλqµ ⊆ B(σ1)σ2m.
Because pλqµ does not end with its maximum, pλqµ ⊆ B(σ1)σ2.
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Proof of the first lemma, continued

As before, distinguish how pλqµ can lie across B(σ1)σ2.

? If µ = µ1µ2 with µ1 6= ε, pλqµ1 ⊆ B(σ1) and µ2 ⊆ σ2 then by
induction σ1 contains a subsequence of the form pxλ1yλ2zµ1 or
xpλ1yλ2zµ1 to which µ2 can be appended.

? If pλq ⊆ B(σ1) and µ ⊆ σ2, then by a previous lemma ∃t > p such
that tpλ or ptλ ⊆ σ1. If q is to the left of λ in σ, then pqλmµ or
qpλmµ ⊆ σ is of the required form. Otherwise, q and t can play the
rôle of y and x , and appending mµ gives the desired subsequence.

? If λ = λ1λ2 with λ1 6= ε, pλ1 ⊆ B(σ1) and λ2qµ ⊆ σ2, then as
before ∃x > p such that xpλ1 or pxλ1 ⊆ σ1. Appending mλ2qµ gives
the desired subsequence.

? If p ⊆ B(σ1) and λqµ ⊆ σ2, then pmλqµ ⊆ σ1mσ2 = σ is of the
desired form, with x and y coalesing in m.

? If pλqµ ⊆ σ2, then mpλqµ ⊆ σ. Again, x and y coalese in m.
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Proof of the second lemma

Lemma

If σ contains an occurrence pxλ1yλ2qµ or xpλ1yλ2qµ of some pattern in
R(π), then there exists a subsequence of B(σ) which is an occurrence of π.

Proof: Recall that if σ = n1λ1n2λ2 · · · nkλk where n1, . . . , nk are the left
to right maxima of σ then B(σ) = λ1n1λ2n2 · · ·λknk .

Hence λµ ⊆ B(σ). Notice also that pλqµ is an occurrence of π in σ.

1. We show that p is to the left of λ in B(σ).

If p is not a LtoR-maximum, this is true.

If p is a LtoR-maximum, then pxλ1yλ2qµ ⊆ σ and there exists some
t between p and x (possibly t = x) in σ that is a LtoR-maximum.
This implies that p still precedes λ in B(σ).

2. We show that there exists r in B(σ) between λ and µ with r > pλµ
(to be continued).
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Hence λµ ⊆ B(σ). Notice also that pλqµ is an occurrence of π in σ.

1. We show that p is to the left of λ in B(σ). X

2. We show that there exists r in B(σ) between λ and µ with r > pλµ.

If q is not a LtoR-maximum, choose r = q.
If q is a LtoR-maximum, choose r = the LtoR-maximum of σ
immediately to the left of q. Then pλrµ ⊆ B(σ).
By contradiction, assume that r < y then in σ we have
? either · · · y · · · r · · · q · · · , and r is not a LtoR-maximum,
? or · · · r · · · y · · · q · · · , and there is a LtoR-maximum between r and q.

Hence r ≥ y , and r > pλµ as desired.
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Summary of results

π B−1(Av(π)) Basis Proof

1 is a class 1 X
12 is a class 12, 21 X
21 is a class 231, 321 X
nα, α 6= ε is a class n(n + 1)α, (n + 1)nα X
(n − 1)αn, α 6= ε is a class (n − 1)nα, n(n − 1)α X
aαbβ, β 6= ε is a class R(π) X
aαbβn, β 6= ε is a class R(aαbβ) X

(n − 2)α(n − 1)n is a class

(n − 2)(n − 1)α n,
(n − 1)(n − 2)αn,
(n − 2)n α(n − 1),
n(n − 2)α (n − 1)

aαbβcγ, γ 6= ε is not a class X
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Patterns π ∈ Sn with 3 LtoR-max. π(1), π(n− 1) and π(n)

Proposition

If π ∈ Sn is such that π = (n − 2)α(n − 1)n, then B−1(Av(π)) is a class
whose basis is
{(n− 2)(n− 1)αn, (n− 1)(n− 2)αn, (n− 2)nα(n− 1), n(n− 2)α(n− 1)}.

Lemma

If π 4 B(σ), consider an occurrence pλqr ⊆ B(σ).
Then there exists a subsequence of σ which is an occurrence of some
pattern among the four above.

Lemma

If σ contains an occurrence of some pattern among the four above, then
there exists a subsequence of B(σ) which is an occurrence of π.
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Some open questions

Q1. When is B−1(Av(B)) a class, for |B| ≥ 2?

Partial answer: B−1(Av(B)) is a class when B−1(Av(π)) is a class for
every π ∈ B, but not only.

B−1(Av(B)) = ∩π∈BB−1(Av(π)).

An example is Γ3 = the set of permutations of length 4 ending with 1:
B−1(Av(Γ3)) is a class, although Γ3 contains 2341 and
B−1(Av(2341)) is not a class.

Q2. Are the growth rates of C and B−1(C) related?

Growth rate of a permutation class C = lim supn→∞ n
√

cn

where cn is the number of permutations of length n in C
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Composing sorting operators

SB-sortable permutations:

↪→ (SB)−1(Av(21)) = B−1(Av(231)) = Av(3241, 2341, 4231, 2431)

B2-sortable permutations:

↪→ (BB)−1(Av(21)) = B−1(Av(231, 321)) = Av(Γ2)

Bk -sortable permutations:

↪→ (Bk)−1(Av(21)) = Av(Γk) with
Γk = the set of permutations of length k + 1 ending with 1.

Other sorting operators:

built from B, S , . . . and symmetries of the permutations (i , r , c)

with a queue

definition of abstract sorting operator
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