A variant of the tandem duplication - random loss model of genome rearrangement

Mathilde Bouvel Dominique Rossin

October 29, 2007

LIAFA

Outline of the talk

1 Biological motivations and the combinatorial model

2 Previous results: the whole genome duplication - random loss model

3 Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

4 Other algorithmic questions to be considered

Duplications and losses in the biological models of genome rearrangement

■ Complete genome sequences at disposal:
\hookrightarrow study molecular evolution and compute distance between genomes
■ Classical models of genome rearrangement:
\hookrightarrow duplications and losses of genes not taken into account

- On the tandem duplication-random loss model of genome rearrangement [2005]:
\hookrightarrow Chaudhuri, Chen, Mihaescu and Rao isolate the duplication-loss problem

Mathilde Bouvel
A variant of the tandem duplication - random loss model of genome rearrangement

The tandem duplication - random loss model

Genes $=\{1,2, \ldots, n\} ;$ Genome $=$ Permutation $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}$

Definition

One tandem duplication - random loss step:
1 duplication of a contiguous fragment of the genome, inserted immediately after the original fragment
2 loss of one of the two copies of every duplicated gene

$$
12 \overbrace{3456} \rightsquigarrow 12 \overbrace{3456} \overbrace{34567 \rightsquigarrow 12 \not 245634567 \rightsquigarrow 1245367}
$$

Beware! Duplication-loss steps are not symmetric!

The tandem duplication - random loss model

Genes $=\{1,2, \ldots, n\} ;$ Genome $=$ Permutation $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}$

Definition

One tandem duplication - random loss step:
1 duplication of a contiguous fragment of the genome, inserted immediately after the original fragment
2 loss of one of the two copies of every duplicated gene
$12 \overbrace{3456} 7 \rightsquigarrow 12 \overbrace{3456} \overbrace{3456} 7 \rightsquigarrow 12 \not 245634567 \rightsquigarrow 1245367$

Beware! Duplication-loss steps are not symmetric!
$\overbrace{123456} \rightsquigarrow 246135$ y 423456
Mathilde Bouvel
A variant of the tandem duplication - random loss model of genome rearrangement

Distances and costs in the duplication-loss model

$$
\begin{aligned}
& \text { "Oriented distance" }=\text { minimum cost of a path from } \sigma_{1} \text { to } \sigma_{2} \\
& \text { Compute } \operatorname{cost}(12 \ldots n \hookrightarrow \sigma)=\operatorname{cost}(\sigma)=\text { the minimum cost } \\
& \text { of a duplication-loss scenario from } 12 \ldots n \text { to } \sigma
\end{aligned}
$$

Distances and costs in the duplication-loss model

■ "Oriented distance" $=$ minimum cost of a path from σ_{1} to σ_{2}
■ Compute $\operatorname{cost}(12 \ldots n \hookrightarrow \sigma)=\operatorname{cost}(\sigma)=$ the minimum cost of a duplication-loss scenario from $12 \ldots n$ to σ

Mathilde Bouvel
A variant of the tandem duplication - random loss model of genome rearrangement

Some possible cost functions c

- Power cost function:
width $k \Rightarrow \operatorname{cost} \alpha^{k}$ for some $\alpha \geq 1$
\hookrightarrow Paper of Chaudhuri, Chen, Mihaescu and Rao ($\alpha=1$ or ≥ 2)
- Linear or affine cost function
\hookrightarrow What they suggest to study
- Piecewise constant cost function:

$$
\text { width } k \Rightarrow \operatorname{cost}\left\{\begin{array}{l}
1 \text { if } k \leq K \\
\infty \text { if } k>K
\end{array}\right.
$$

\hookrightarrow Where we find combinatorial properties

Previous results on the model with power cost function

Duplication-loss on a fragment of width $k \Rightarrow \operatorname{cost} \alpha^{k}$
■ $\alpha=1$: whole genome duplication-random loss model
\hookrightarrow the cost of any step is 1
$\hookrightarrow \operatorname{cost}(\sigma)$ is known, together with a corresponding scenario (radix sort algorithm)

■ $\alpha \geq 2$: reduces to width $=2$
$\hookrightarrow \operatorname{cost}(\sigma)=\alpha^{2} \times$ number of inversions in σ (Kendall-Tau or bubblesort distance)

- $1<\alpha<2$: open question

Previous results: the whole genome duplication - random loss model

Whole genome duplication - random loss model

Definition

There is a descent at position i in σ if $\sigma_{i}>\sigma_{i+1}$. $\operatorname{desc}(\sigma)=$ number of descents of σ. number of maximal increasing substrings of $\sigma=\operatorname{desc}(\sigma)+1$

- Lower bound: in one duplication-loss step, each maximal increasing substring solits in at most two maximal increasirg substrings
- Upper bound: radix sort algorithm

Whole genome duplication - random loss model

Definition

There is a descent at position i in σ if $\sigma_{i}>\sigma_{i+1}$. $\operatorname{desc}(\sigma)=$ number of descents of σ.
number of maximal increasing substrings of $\sigma=\operatorname{desc}(\sigma)+1$

Theorem

$$
\operatorname{cost}(\sigma)=\left\lceil\log _{2}(\operatorname{desc}(\sigma)+1)\right\rceil
$$

■ Lower bound: in one duplication-loss step, each maximal increasing substring splits in at most two maximal increasing substrings
■ Upper bound: radix sort algorithm

Patterns in permutations

$\sigma \in S_{n}, \tau \in S_{k}$ with $k \leq n$
■ Permutation σ involves pattern $\tau(\tau \prec \sigma)$ if \exists $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \sigma_{i_{2}} \ldots \sigma_{i_{k}}$ is order isomorphic to $\tau: \sigma_{i_{p}}<\sigma_{i_{q}}$ if and only if $\tau_{p}<\tau_{q}$
■ Otherwise, σ avoids τ
■ For example, 135624 involves 132 and avoids 321
Notation: $S(B)=$ the set of all permutations avoiding simultaneously all the patterns in the basis B

Proposition: a set S of permutations stable for \prec is a class of pattern-avoiding permutations of basis $B=$ the minimal permutations not in $S=\{\sigma \notin S: \forall \tau \prec \sigma, \tau \neq \sigma, \tau \in S\}$

Patterns in permutations

$\sigma \in S_{n}, \tau \in S_{k}$ with $k \leq n$
■ Permutation σ involves pattern $\tau(\tau \prec \sigma)$ if \exists $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \sigma_{i_{2}} \ldots \sigma_{i_{k}}$ is order isomorphic to $\tau: \sigma_{i_{p}}<\sigma_{i_{q}}$ if and only if $\tau_{p}<\tau_{q}$
■ Otherwise, σ avoids τ
■ For example, 135624 involves 132 and avoids 321
Notation: $S(B)=$ the set of all permutations avoiding simultaneously all the patterns in the basis B

Proposition: a set S of permutations stable for \prec is a class of pattern-avoiding permutations of basis $B=$ the minimal permutations not in $S=\{\sigma \notin S: \forall \tau \prec \sigma, \tau \neq \sigma, \tau \in S\}$

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

Theorem

$\operatorname{cost}(\sigma)=\left\lceil\log _{2}(\operatorname{desc}(\sigma)+1)\right\rceil$
Equivalently: permutations obtainable in at most p steps $=$ permutations with at most $2^{p}-1$ descents

Permutations obtainable in at most p steps $=S(B)$
\square

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

Theorem

$\operatorname{cost}(\sigma)=\left\lceil\log _{2}(\operatorname{desc}(\sigma)+1)\right\rceil$
Equivalently: permutations obtainable in at most p steps $=$ permutations with at most $2^{p}-1$ descents

Fact: permutations obtainable in at most p steps: set stable for \prec
\square
Permutations obtainable in at most p steps $=S(B)$
with D - the minimal naumutations (for,) with $2 p$. escents

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

Theorem

$\operatorname{cost}(\sigma)=\left\lceil\log _{2}(\operatorname{desc}(\sigma)+1)\right\rceil$
Equivalently: permutations obtainable in at most p steps $=$ permutations with at most $2^{p}-1$ descents

Fact: permutations obtainable in at most p steps: set stable for \prec
Consequence (Pattern-avoiding permutation class)
Permutations obtainable in at most p steps $=S(B)$ with $B=$ the minimal permutations (for \prec) with 2^{p} descents.

+ local characterization of the permutations in the basis B

The variant of the model we considered

Piecewise constant cost function: width $k \Rightarrow$ cost $\left\{\begin{array}{l}1 \text { if } k \leq K \\ \infty \text { if } k>K\end{array}\right.$
Equivalently: Duplication of fragments of width at most K Cost $=$ number of steps

Problems to consider: - Characterization of the permutations obtained in p steps in terms of excluded patterns? - Cost of obtaining a permutation ? on average ? in the worst - Finding an optimal sequence of steps from 12 sequence of minimal cost ?

The variant of the model we considered

Piecewise constant cost function: width $k \Rightarrow \operatorname{cost}\left\{\begin{array}{l}1 \text { if } k \leq K \\ \infty \text { if } k>K\end{array}\right.$
Equivalently: Duplication of fragments of width at most K Cost $=$ number of steps

Problems to consider:

- Characterization of the permutations obtained in p steps in terms of excluded patterns ?
■ Cost of obtaining a permutation ? on average ? in the worst case ?

■ Finding an optimal sequence of steps from $12 \ldots n$ to σ, i.e. a sequence of minimal cost ?

Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

Definition of the classes $\mathcal{C}(K, p)$

Definition

$\mathcal{C}(K, p)=$ the class of all permutations obtained from $12 \ldots n$ (for any n) after p duplication-loss steps of width at most K.

Notice: $\mathcal{C}(K, p)$ is stable for \prec

Mathilde Bouvel
A variant of the tandem duplication - random loss model of genome rearrangement

Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

$\mathcal{C}(K, 1)$ is a class of pattern-avoiding permutations

Focus on $\mathcal{C}(K, 1)$: one duplication-loss step from $12 \ldots n$
Example: $1 \overbrace{2345} 678 \rightsquigarrow 12534678$

Theorem

$\mathcal{C}(K, 1)=S(B)$.
The basis B is $\{321,3142,2143\} \cup D, D$ being the set of all permutations of S_{K+1} that do not start with 1 nor end with $K+1$, and containing exactly one descent.
$\mathcal{C}(K, 1)$ is stable for $\prec \Rightarrow$ the excluded patterns are the minimal permutations not in $\mathcal{C}(K, 1)$ (minimal in the sense of \prec)

Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

$\mathcal{C}(K, 1)$ is a class of pattern-avoiding permutations

Focus on $\mathcal{C}(K, 1)$: one duplication-loss step from $12 \ldots n$
Example: $1 \overbrace{2345} 678 \rightsquigarrow 12534678$

Theorem

$\mathcal{C}(K, 1)=S(B)$.
The basis B is $\{321,3142,2143\} \cup D, D$ being the set of all permutations of S_{K+1} that do not start with 1 nor end with $K+1$, and containing exactly one descent.
$\mathcal{C}(K, 1)$ is stable for $\prec \Rightarrow$ the excluded patterns are the minimal permutations not in $\mathcal{C}(K, 1)$ (minimal in the sense of \prec):

$$
B=\{\sigma \notin \mathcal{C}(K, 1): \forall \tau \prec \sigma, \tau \neq \sigma, \tau \in \mathcal{C}(K, 1)\}
$$

Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

Is $\mathcal{C}(K, p)$ also a pattern-avoiding class ?

Theorem

The class $\mathcal{C}(K, p)$ is a class of pattern-avoiding permutations $S(B)$. Its basis B is finite and contains only patterns of size at most $(K p+2)^{2}-2$.
$\mathcal{C}(K, p)$ is stable for the pattern relation \prec
\Rightarrow show that the basis is finite + bound the size of the patterns
Idea of the proof:
Consider the minimal permutations $\sigma \notin \mathcal{C}(K, p)$, and bound the necessary moves of elements to go from $12 \ldots n$ to σ

How many steps from $12 \ldots n$ to σ ?

- Lower bound: $\Omega\left(\log n+\frac{n^{2}}{K^{2}}\right)$ steps in the worst case and on average
$\hookrightarrow \log n$ from the whole genome duplication - random loss model
$\hookrightarrow \frac{n^{2}}{K^{2}}$ considering the number of invertions
- Algorithm (upper bound): $\Theta\left(\frac{n}{K} \log K+\frac{n^{2}}{K^{2}}\right)$ steps in the worst case and on average
$\hookrightarrow \frac{n^{2}}{K^{2}}$ for long moves
$\hookrightarrow \frac{n}{K} \log K$ for local reorderings
Lower and upper bound coincide up to a constant factor except when $\frac{n}{\log n} \ll K=K(n) \ll n$ (in particular when $K=$ constant)

On a given σ our algorithm may yield a scenario far from optimal

How many steps from $12 \ldots n$ to σ ?

- Lower bound: $\Omega\left(\log n+\frac{n^{2}}{K^{2}}\right)$ steps in the worst case and on average
$\hookrightarrow \log n$ from the whole genome duplication - random loss model
$\hookrightarrow \frac{n^{2}}{K^{2}}$ considering the number of invertions
- Algorithm (upper bound): $\Theta\left(\frac{n}{K} \log K+\frac{n^{2}}{K^{2}}\right)$ steps in the worst case and on average
$\hookrightarrow \frac{n^{2}}{K^{2}}$ for long moves
$\hookrightarrow \frac{n}{K} \log K$ for local reorderings
Lower and upper bound coincide up to a constant factor except when $\frac{n}{\log n} \ll K=K(n) \ll n$ (in particular when $K=$ constant)

On a given σ our algorithm may yield a scenario far from optimal

How many steps from $12 \ldots n$ to σ ?

- Lower bound: $\Omega\left(\log n+\frac{n^{2}}{K^{2}}\right)$ steps in the worst case and on average
$\hookrightarrow \log n$ from the whole genome duplication - random loss model
$\hookrightarrow \frac{n^{2}}{K^{2}}$ considering the number of invertions
- Algorithm (upper bound): $\Theta\left(\frac{n}{K} \log K+\frac{n^{2}}{K^{2}}\right)$ steps in the worst case and on average
$\hookrightarrow \frac{n^{2}}{K^{2}}$ for long moves
$\hookrightarrow \frac{n}{K} \log K$ for local reorderings
Lower and upper bound coincide up to a constant factor except when $\frac{n}{\log n} \ll K=K(n) \ll n$ (in particular when $K=$ constant)

On a given σ our algorithm may yield a scenario far from optimal (e.g. n steps instead of \sqrt{n} when $K(n)=\sqrt{n}$)

Open questions

Algorithmic:

- Formula for $\operatorname{cost}(\sigma)$?
- Optimal sequence of steps from $12 \ldots n$ to σ ?

■ Characterization of those sequences ? with a decreasing energy function?
■ Does our algorithm compute a $f(K)$-approximation of such an optimal scenario ?
Combinatorics:

- Description of the excluded patterns in $\mathcal{C}(K, p)$?
- Order of the cardinality of $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$?

