A variant of the tandem duplication - random loss model of genome rearrangement

Mathilde Bouvel Dominique Rossin

October 29, 2007

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

LIAFA

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions

Outline of the talk

- 1 Biological motivations and the combinatorial model
- 2 Previous results: the whole genome duplication random loss model
- **3** Some combinatorial properties of the classes C(K, 1) and C(K, p)
- 4 Other algorithmic questions to be considered

Mathilde Bouvel

Motivations and the model •୦୦୦ Previous results

Combinatorial properties

Algorithmic questions

Biological motivations and the combinatorial model

Duplications and losses in the biological models of genome rearrangement

- Complete genome sequences at disposal:
- \hookrightarrow study molecular evolution and compute distance between genomes
 - Classical models of genome rearrangement:
- \hookrightarrow duplications and losses of genes not taken into account
 - On the tandem duplication-random loss model of genome rearrangement [2005]:
- → Chaudhuri, Chen, Mihaescu and Rao isolate the duplication-loss problem

Mathilde Bouvel

Motivations and the model Pre 0000 000

Previous results

Combinatorial properties

Algorithmic questions

Biological motivations and the combinatorial model

The tandem duplication - random loss model

 $\mathsf{Genes} = \{1, 2, \dots, n\}$; $\mathsf{Genome} = \mathsf{Permutation} \ \sigma = \sigma_1 \dots \sigma_n \in S_n$

Definition

One tandem duplication - random loss step:

- duplication of a contiguous fragment of the genome, inserted immediately after the original fragment
- 2 loss of one of the two copies of every duplicated gene

$$12\ \overline{3}\ \overline{4}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{3}\ \overline{4}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{3}\ \overline{4}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{6}\ \overline{3}\ \overline{4}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{5}\ \overline{6}\ 7 \ \rightarrow \ 12\ \overline{4}\ \overline{5}\ \overline{6}\ \overline{7}\ \rightarrow \ 12\ \overline{6}\ \overline{7}\ \overline{$$

Beware ! Duplication-loss steps are not symmetric ! $123456 \rightarrow 246135 \neq 123456$

Mathilde Bouvel

Motivations and the model Prev 0000 000

Previous results

Combinatorial properties

Algorithmic questions

Biological motivations and the combinatorial model

The tandem duplication - random loss model

Genes = $\{1, 2, \dots, n\}$; Genome = Permutation $\sigma = \sigma_1 \dots \sigma_n \in S_n$

Definition

One tandem duplication - random loss step:

- duplication of a contiguous fragment of the genome, inserted immediately after the original fragment
- 2 loss of one of the two copies of every duplicated gene

$$12\ \overline{3456}\ 7 \rightarrow 12\ \overline{3456}\ \overline{3456}\ 7 \rightarrow 12\ \overline{3456}\ 7 \rightarrow 12\ \overline{3456}\ 7 \rightarrow 12\ \overline{3456}\ 7 \rightarrow 12\ \overline{345}\ \overline{67}\ - 12\ \overline{45}\ \overline{367}\ - 12\ \overline{45}\ - 12\ - 12\ \overline{45}\ - 12\ - 12\ \overline{45}\ - 12\ - 1$$

Beware ! Duplication-loss steps are not symmetric ! $123456 \rightarrow 246135 \neq 123456$

Mathilde Bouvel

Motivations and the model Previous results

Combinatorial properties

Algorithmic questions

Biological motivations and the combinatorial model

Distances and costs in the duplication-loss model

"Oriented distance" = minimum cost of a path from σ₁ to σ₂
 Compute cost(12... n → σ) = cost(σ) = the minimum cost of a duplication-loss scenario from 12...n to σ

Mathilde Bouvel

 Motivations and the model
 Previous results

 ○○●○
 ○○○○

Combinatorial properties

Algorithmic questions

Biological motivations and the combinatorial model

Distances and costs in the duplication-loss model

"Oriented distance" = minimum cost of a path from σ₁ to σ₂
 Compute cost(12... n → σ) = cost(σ) = the minimum cost of a duplication-loss scenario from 12...n to σ

Mathilde Bouvel

 Motivations and the model
 Pre

 ○○○●
 ○○

Previous results

Combinatorial properties

Algorithmic questions

Biological motivations and the combinatorial model

Some possible cost functions c

- Power cost function:
 - width $k \Rightarrow \cos \alpha^k$ for some $\alpha \ge 1$
- \hookrightarrow Paper of Chaudhuri, Chen, Mihaescu and Rao ($lpha=1 ext{ or } \geq 2$)
 - Linear or affine cost function
- $\,\hookrightarrow\,$ What they suggest to study
 - Piecewise constant cost function:

width
$$k \Rightarrow \text{cost} \begin{cases} 1 \text{ if } k \leq K \\ \infty \text{ if } k > K \end{cases}$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \cdots n$$

width $\leq K$

 $\,\hookrightarrow\,$ Where we find combinatorial properties

Mathilde Bouvel

 Motivations and the model
 Previous results
 Combinatorial properties
 Algorithmic questions

 000
 000
 000
 00

Previous results on the model with power cost function

Duplication-loss on a fragment of width $k \Rightarrow \cot \alpha^k$

- $\alpha = 1$: whole genome duplication-random loss model
- \hookrightarrow the cost of any step is 1
- \hookrightarrow cost(σ) is known, together with a corresponding scenario (radix sort algorithm)
 - $\alpha \ge 2$: reduces to width = 2
- \hookrightarrow cost(σ) = $\alpha^2 \times$ number of inversions in σ (Kendall-Tau or bubblesort distance)
 - **1** < α < 2: open question

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions		
	0000				
Previous results: the whole genome duplication - random loss model					

Whole genome duplication - random loss model

Definition

There is a *descent* at position *i* in σ if $\sigma_i > \sigma_{i+1}$. *desc*(σ) = number of descents of σ .

number of maximal increasing substrings of $\sigma = desc(\sigma) + 1$

Theorem

 $cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$

- Lower bound: in one duplication-loss step, each maximal increasing substring splits in at most two maximal increasing substrings
- Upper bound: radix sort algorithm

Mathilde Bouvel

Motivations and the model Previous results Combinatorial properties Algorithmic questions oco coco previous results: the whole genome duplication - random loss model

Whole genome duplication - random loss model

Definition

There is a *descent* at position *i* in σ if $\sigma_i > \sigma_{i+1}$. *desc*(σ) = number of descents of σ .

number of maximal increasing substrings of $\sigma = desc(\sigma) + 1$

Theorem

 $cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$

- Lower bound: in one duplication-loss step, each maximal increasing substring splits in at most two maximal increasing substrings
- Upper bound: radix sort algorithm

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions
Previous results: the whole genome du	indication - random loss me	odel	00

Patterns in permutations

$\sigma \in S_n$, $\tau \in S_k$ with $k \leq n$

Permutation σ involves pattern τ ($\tau \prec \sigma$) if \exists $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ such that $\sigma_{i_1}\sigma_{i_2}\ldots\sigma_{i_k}$ is order isomorphic to τ : $\sigma_{i_p} < \sigma_{i_q}$ if and only if $\tau_p < \tau_q$

- Otherwise, σ avoids τ
- For example, 135624 involves 132 and avoids 321

Notation: S(B) = the set of all permutations avoiding simultaneously all the patterns in the basis B

Proposition: a set S of permutations stable for \prec is a class of pattern-avoiding permutations of basis B = the minimal permutations not in $S = \{\sigma \notin S : \forall \tau \prec \sigma, \tau \neq \sigma, \tau \in S\}$

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions
Previous results: the whole genome du	indication - random loss me	odel	00

Patterns in permutations

$\sigma \in S_n$, $\tau \in S_k$ with $k \leq n$

Permutation σ involves pattern τ ($\tau \prec \sigma$) if \exists $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ such that $\sigma_{i_1}\sigma_{i_2}\ldots\sigma_{i_k}$ is order isomorphic to τ : $\sigma_{i_p} < \sigma_{i_q}$ if and only if $\tau_p < \tau_q$

- Otherwise, σ avoids τ
- For example, 135624 involves 132 and avoids 321

Notation: S(B) = the set of all permutations avoiding simultaneously all the patterns in the basis B

Proposition: a set *S* of permutations stable for \prec is a class of pattern-avoiding permutations of basis *B* = the minimal permutations not in *S* = { $\sigma \notin S : \forall \tau \prec \sigma, \tau \neq \sigma, \tau \in S$ }

Mathilde Bouvel

 Motivations and the model
 Previous results
 Combinatorial properties
 Algorithmic questions

 000
 000
 000
 00

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

Theorem $cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$

Equivalently: permutations obtainable in at most p steps = permutations with at most $2^p - 1$ descents

Fact: permutations obtainable in at most p steps: set stable for \prec

Consequence (Pattern-avoiding permutation class)

Permutations obtainable in at most p steps = S(B)with B = the minimal permutations (for \prec) with 2^p descents.

+ local characterization of the permutations in the basis B

Mathilde Bouvel

 Motivations and the model
 Previous results
 Combinatorial properties
 Algorithmic questions

 000
 000
 000
 00

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

Theorem $cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$

Equivalently: permutations obtainable in at most p steps = permutations with at most $2^p - 1$ descents

Fact: permutations obtainable in at most p steps: set stable for \prec

Consequence (Pattern-avoiding permutation class)

Permutations obtainable in at most p steps = S(B)with B = the minimal permutations (for \prec) with 2^p descents.

+ local characterization of the permutations in the basis B

Mathilde Bouvel

 Motivations and the model
 Previous results
 Combinatorial properties
 Algorithmic questions

 000
 000
 000
 00

 Previous results: the whole genome duplication - random loss model
 000
 00

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

Theorem $cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$

Equivalently: permutations obtainable in at most p steps = permutations with at most $2^p - 1$ descents

Fact: permutations obtainable in at most p steps: set stable for \prec

Consequence (Pattern-avoiding permutation class)

Permutations obtainable in at most p steps = S(B)with B = the minimal permutations (for \prec) with 2^p descents.

+ local characterization of the permutations in the basis ${\it B}$

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic question		
0000	0000	0000			
Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$					

The variant of the model we considered

Piecewise constant cost function: width $k \Rightarrow \cot \begin{cases} 1 \text{ if } k \leq K \\ \infty \text{ if } k > K \end{cases}$

Equivalently: Duplication of fragments of width at most KCost = number of steps

Problems to consider:

- Characterization of the permutations obtained in p steps in terms of excluded patterns ?
- Cost of obtaining a permutation ? on average ? in the worst case ?
- Finding an optimal sequence of steps from 12...n to σ, i.e. a sequence of minimal cost ?

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties • 0 0 0	Algorithmic question
Some combinatorial properties of the	classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$		

The variant of the model we considered

Piecewise constant cost function: width $k \Rightarrow \cot \begin{cases} 1 \text{ if } k \leq K \\ \infty \text{ if } k > K \end{cases}$

Equivalently: Duplication of fragments of width at most KCost = number of steps

Problems to consider:

- Characterization of the permutations obtained in p steps in terms of excluded patterns ?
- Cost of obtaining a permutation ? on average ? in the worst case ?
- Finding an optimal sequence of steps from 12... n to σ, i.e. a sequence of minimal cost ?

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties ○●○○	Algorithmic questions
Some combinatorial properties of the	classes $\mathcal{C}(K,1)$ and $\mathcal{C}(K,p)$		

Definition of the classes C(K, p)

Definition

C(K, p) = the class of all permutations obtained from 12... *n* (for any *n*) after *p* duplication-loss steps of width at most *K*.

Notice: $\mathcal{C}(K, p)$ is stable for \prec

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions		
Some combinatorial properties of the classes $\mathcal{C}(K,1)$ and $\mathcal{C}(K,p)$					

$\mathcal{C}(K,1)$ is a class of pattern-avoiding permutations

Focus on $\mathcal{C}(\mathcal{K}, 1)$: one duplication-loss step from $12 \dots n$ Example: 1 2 3 4 5 6 7 8 \rightarrow 1 2 5 3 4 6 7 8

Theorem

 $\mathcal{C}(K,1)=S(B).$

The basis *B* is $\{321, 3142, 2143\} \cup D$, *D* being the set of all permutations of S_{K+1} that do not start with 1 nor end with K + 1, and containing exactly one descent.

 $\mathcal{C}(K,1)$ is stable for $\prec \Rightarrow$ the excluded patterns are the minimal permutations not in $\mathcal{C}(K,1)$ (minimal in the sense of \prec):

 $B = \{ \sigma \notin \mathcal{C}(K, 1) : \forall \tau \prec \sigma, \tau \neq \sigma, \tau \in \mathcal{C}(K, 1) \}$

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions		
Some combinatorial properties of the classes $\mathcal{C}(K,1)$ and $\mathcal{C}(K,p)$					

$\mathcal{C}(K,1)$ is a class of pattern-avoiding permutations

Focus on $\mathcal{C}(\mathcal{K}, 1)$: one duplication-loss step from $12 \dots n$ Example: 1 2 3 4 5 6 7 8 \rightarrow 1 2 5 3 4 6 7 8

Theorem

 $\mathcal{C}(K,1)=S(B).$

The basis B is $\{321, 3142, 2143\} \cup D$, D being the set of all permutations of S_{K+1} that do not start with 1 nor end with K + 1, and containing exactly one descent.

 $\mathcal{C}(K,1)$ is stable for $\prec \Rightarrow$ the excluded patterns are the minimal permutations not in $\mathcal{C}(K,1)$ (minimal in the sense of \prec):

$$B = \{\sigma \notin \mathcal{C}(K, 1) : orall au \prec \sigma, au
eq \sigma, au \in \mathcal{C}(K, 1)\}$$

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions
		0000	
Some combinatorial properties of the c	lasses $\mathcal{C}(K,1)$ and $\mathcal{C}(K,p)$		

Is $\mathcal{C}(K, p)$ also a pattern-avoiding class ?

Theorem

The class C(K, p) is a class of pattern-avoiding permutations S(B). Its basis B is finite and contains only patterns of size at most $(Kp + 2)^2 - 2$.

C(K, p) is stable for the pattern relation \prec \Rightarrow show that the basis is finite + bound the size of the patterns

Idea of the proof:

Consider the minimal permutations $\sigma \notin C(K, p)$, and bound the necessary moves of elements to go from $12 \dots n$ to σ

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions ●○	
Other algorithmic questions to be considered				

How many steps from $12 \dots n$ to σ ?

- Lower bound: $\Omega(\log n + \frac{n^2}{K^2})$ steps in the worst case and on average
 - \hookrightarrow log *n* from the whole genome duplication random loss model
 - $\hookrightarrow \frac{n^2}{K^2}$ considering the number of invertions
- Algorithm (upper bound): $\Theta(\frac{n}{K} \log K + \frac{n^2}{K^2})$ steps in the worst case and on average
 - $\hookrightarrow \frac{n^2}{K^2}$ for long moves
 - $\hookrightarrow \frac{n}{K} \log K$ for local reorderings

Lower and upper bound **coincide** up to a constant factor except when $\frac{n}{\log n} \ll K = K(n) \ll n$ (in particular when K = constant)

On a given σ our algorithm may yield a scenario **far from optimal** (*e.g. n* steps instead of \sqrt{n} when $K(n) = \sqrt{n}$)

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions ●○	
Other algorithmic questions to be considered				

How many steps from $12 \dots n$ to σ ?

- Lower bound: $\Omega(\log n + \frac{n^2}{K^2})$ steps in the worst case and on average
 - \hookrightarrow log *n* from the whole genome duplication random loss model
 - $\hookrightarrow \frac{n^2}{K^2}$ considering the number of invertions
- Algorithm (upper bound): $\Theta(\frac{n}{K} \log K + \frac{n^2}{K^2})$ steps in the worst case and on average
 - $\hookrightarrow \frac{n^2}{K^2}$ for long moves
 - $\hookrightarrow \frac{n}{K} \log K$ for local reorderings

Lower and upper bound **coincide** up to a constant factor except when $\frac{n}{\log n} \ll K = K(n) \ll n$ (in particular when K = constant)

On a given σ our algorithm may yield a scenario **far from optimal** (*e.g. n* steps instead of \sqrt{n} when $K(n) = \sqrt{n}$)

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions ●○	
Other algorithmic questions to be considered				

How many steps from $12 \dots n$ to σ ?

- Lower bound: $\Omega(\log n + \frac{n^2}{K^2})$ steps in the worst case and on average
 - \hookrightarrow log *n* from the whole genome duplication random loss model
 - $\hookrightarrow \frac{n^2}{K^2}$ considering the number of invertions
- Algorithm (upper bound): $\Theta(\frac{n}{K} \log K + \frac{n^2}{K^2})$ steps in the worst case and on average
 - $\hookrightarrow \frac{n^2}{K^2}$ for long moves
 - $\hookrightarrow \frac{n}{K} \log K$ for local reorderings

Lower and upper bound **coincide** up to a constant factor except when $\frac{n}{\log n} \ll K = K(n) \ll n$ (in particular when K = constant)

On a given σ our algorithm may yield a scenario far from optimal (e.g. *n* steps instead of \sqrt{n} when $K(n) = \sqrt{n}$)

Mathilde Bouvel

Motivations and the model	Previous results	Combinatorial properties	Algorithmic questions ○●	
Other algorithmic questions to be considered				

Open questions

Algorithmic:

- Formula for $cost(\sigma)$?
- Optimal sequence of steps from $12 \dots n$ to σ ?
- Characterization of those sequences ? with a decreasing energy function ?
- Does our algorithm compute a f(K)-approximation of such an optimal scenario ?

Combinatorics:

- Description of the excluded patterns in $\mathcal{C}(K, p)$?
- Order of the cardinality of $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$?

Mathilde Bouvel