A variant of the tandem duplication - random loss model of genome rearrangement

Mathilde Bouvel Dominique Rossin

November 21, 2007

Séminaire des thésards LIAFA-PPS

Outline of the talk

Motivations and the model

- Biological motivations and the combinatorial model
- 2 Previous results: the whole genome duplication random loss model
- 3 Some combinatorial properties of the classes $\mathcal{C}(K,1)$ and $\mathcal{C}(K,p)$
- 4 Other algorithmic questions to be considered

Duplications and losses in the biological models of genome rearrangement

- Complete genome sequences at disposal:
- ⇒ study molecular evolution and compute distance between genomes
 - Classical models of genome rearrangement:
- - On the tandem duplication-random loss model of genome rearrangement [2005]:
- Chaudhuri, Chen, Mihaescu and Rao isolate the duplication-loss problem

The tandem duplication - random loss model

Genes =
$$\{1, 2, \dots, n\}$$
; Genome = Permutation $\sigma = \sigma_1 \dots \sigma_n \in S_n$

Definition

One tandem duplication - random loss step:

- 1 duplication of a contiguous fragment of the genome, inserted immediately after the original fragment
- 2 loss of one of the two copies of every duplicated gene

$$12\overline{3456}$$
 7 \rightsquigarrow 12 $\overline{3456}$ $\overline{3456}$ 7 \rightsquigarrow 12,345,63,45,67 \rightsquigarrow 1245367

Beware! Duplication-loss steps are not symmetric!

The tandem duplication - random loss model

Genes
$$=\{1,2,\ldots,n\}$$
 ; Genome $=$ Permutation $\sigma=\sigma_1\ldots\sigma_n\in\mathcal{S}_n$

Definition

One tandem duplication - random loss step:

- 1 duplication of a contiguous fragment of the genome, inserted immediately after the original fragment
- 2 loss of one of the two copies of every duplicated gene

$$12\overline{3456}$$
 7 \leadsto $12\overline{3456}$ $\overline{3456}$ 7 \leadsto $12\cancel{3}45\cancel{6}$ 3 $\cancel{4}\cancel{5}$ 6 7 \leadsto 1245367

Beware! Duplication-loss steps are not symmetric!

$$123456 \rightarrow 246135 \not\sim 123456$$

Motivations and the model

Distances and costs in the duplication-loss model

$$cost = c(4)$$
1 2 3 7 4 5 6

$$c(6)$$
1 3 7 4 6 2 5

$$c(3)$$
1 2 3 4 5 6 7

$$c(7)$$
2 3 5 7 1 4 6

$$c(7)$$
3 7 1 4 6 2 5

$$c(3)$$
1 3 7 4 6 2 5

$$c(4)$$
1 3 4 6 7 2 5

$$c(3)$$

Motivations and the model

Distances and costs in the duplication-loss model

$$cost = c(4)$$
1 2 3 7 4 5 6

$$c(6)$$
1 3 7 4 6 2 5

$$c(3)$$
1 2 3 4 5 6 7

$$c(7)$$
2 3 5 7 1 4 6

$$c(7)$$
3 7 1 4 6 2 5

$$c(3)$$
1 3 7 4 6 2 5

$$c(4)$$
1 3 4 6 7 2 5

$$c(3)$$

Combinatorial properties

- "Oriented distance" = minimum cost of a path from σ_1 to σ_2
- Compute $cost(12...n \hookrightarrow \sigma) = cost(\sigma) =$ the minimum cost of a duplication-loss scenario from 12...n to σ

Motivations and the model

Some possible cost functions c

- Power cost function: width $k \Rightarrow \cos \alpha^k$ for some $\alpha > 1$
- \hookrightarrow Paper of Chaudhuri, Chen, Mihaescu and Rao ($\alpha = 1 \text{ or } \geq 2$)

Combinatorial properties

- Linear or affine cost function
- - Piecewise constant cost function:

width
$$k \Rightarrow \text{cost} \begin{cases} 1 \text{ if } k \leq K \\ \infty \text{ if } k > K \end{cases}$$

$$1 \quad 2 \quad 3 \quad \underbrace{4 \quad 5 \quad 6 \cdots n}_{\text{width}} \leq K$$

Previous results on the model with power cost function

Duplication-loss on a fragment of width $k \Rightarrow \cos \alpha^k$

- $\alpha = 1$: whole genome duplication-random loss model
- \hookrightarrow the cost of any step is 1
- $\hookrightarrow cost(\sigma)$ is known, together with a corresponding scenario (radix sort algorithm)
 - $\alpha \geq 2$: reduces to width = 2
- $\hookrightarrow cost(\sigma) = \alpha^2 \times number$ of inversions in σ (Kendall-Tau or bubblesort distance)
 - $1 < \alpha < 2$: open question

Whole genome duplication - random loss model

Definition

Motivations and the model

There is a *descent* at position i in σ if $\sigma_i > \sigma_{i+1}$. $desc(\sigma) = \text{number of descents of } \sigma$.

number of maximal increasing substrings of $\sigma = desc(\sigma) + 1$

$\mathsf{\Gamma}\mathsf{heorem}$

$$cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$$

- Lower bound: in one duplication-loss step, each maximal increasing substring splits in at most two maximal increasing substrings
- Upper bound: radix sort algorithm

Combinatorial properties

Whole genome duplication - random loss model

Definition

Motivations and the model

There is a *descent* at position i in σ if $\sigma_i > \sigma_{i+1}$. $desc(\sigma) = number of descents of \sigma$.

number of maximal increasing substrings of $\sigma = desc(\sigma) + 1$

$\mathsf{Theorem}$

$$cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$$

- Lower bound: in one duplication-loss step, each maximal increasing substring splits in at most two maximal increasing substrings
- Upper bound: radix sort algorithm

Computing an optimal duplication-loss scenario for $\sigma \in \mathcal{S}_n$

Radix sort algorithm:

- $1 \pi = 12 \dots n$
- 2 Partition σ into maximal increasing substrings
- $j \in i^{th}$ maximal increasing substring gets label binary(i-1)
- 4 For j=1 to $\lceil \log_2(desc(\sigma)+1) \rceil$, perform a duplication-loss step on π : first copy = elements with a 0 in the j^{th} least significant bit of its label

```
Example: \sigma = 78563412 = 78 56 34 12 is obtained in 2 steps through the scenario: \frac{11}{10} \frac{10}{01} \frac{01}{00} \frac{00}{11} \frac{*1}{01} 00 \frac{*1}{10} \frac{10}{01} \frac{00}{01} \frac{*1}{10} \frac{10}{01} \frac{00}{11} \frac{10}{01} \frac{10}{
```

Patterns in permutations

 $\sigma \in S_n, \ \tau \in S_k \text{ with } k < n$

- Permutation σ involves pattern τ ($\tau \prec \sigma$) if \exists $1 \le i_1 < i_2 < \ldots < i_k \le n$ such that $\sigma_{i_1} \sigma_{i_2} \ldots \sigma_{i_k}$ is order isomorphic to au : $\sigma_{\emph{i}_p} < \sigma_{\emph{i}_a}$ if and only if $au_p < au_a$
- Otherwise. σ avoids τ
- For example, 135624 involves 132 and avoids 321

Notation: S(B) = the set of all permutations avoiding simultaneously all the patterns in the basis B

Patterns in permutations

$$\sigma \in S_n$$
, $\tau \in S_k$ with $k \leq n$

- Permutation σ involves pattern τ $(\tau \prec \sigma)$ if \exists $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ such that $\sigma_{i_1}\sigma_{i_2}\ldots\sigma_{i_k}$ is order isomorphic to τ : $\sigma_{i_p} < \sigma_{i_q}$ if and only if $\tau_p < \tau_q$
- Otherwise, σ avoids τ
- For example, **1**35**6**2**4** involves 132 and avoids 321

Notation: S(B) = the set of all permutations avoiding simultaneously all the patterns in the basis B

Proposition: a set S of permutations stable for \prec is a class of pattern-avoiding permutations of basis B= the minimal permutations not in $S=\{\sigma\notin S: \forall \tau\prec\sigma, \tau\neq\sigma, \tau\in S\}$

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

$\mathsf{Theorem}$

Motivations and the model

$$cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$$

Equivalently: permutations obtainable in at most p steps = permutations with at most $2^p - 1$ descents

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

$\mathsf{Theorem}$

Motivations and the model

$$cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$$

Equivalently: permutations obtainable in at most p steps = permutations with at most $2^p - 1$ descents

Fact: permutations obtainable in at most p steps: set stable for \prec

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

Theorem

Motivations and the model

$$cost(\sigma) = \lceil \log_2(desc(\sigma) + 1) \rceil$$

Equivalently: permutations obtainable in at most p steps = permutations with at most $2^p - 1$ descents

Fact: permutations obtainable in at most p steps: set stable for \prec

Consequence (Pattern-avoiding permutation class)

Permutations obtainable in at most p steps = S(B)with B = the minimal permutations (for \prec) with 2^p descents.

+ local characterization of the permutations in the basis B

Some combinatorial properties of the classes C(K, 1) and C(K, p)

The variant of the model we considered

Piecewise constant cost function: width $k \Rightarrow \cos \begin{cases} 1 \text{ if } k \leq K \\ \infty \text{ if } k > K \end{cases}$

Equivalently: Duplication of fragments of width at most KCost = number of steps

Problems to consider:

- Characterization of the permutations obtained in *p* steps in terms of excluded patterns?
- Cost of obtaining a permutation ? on average ? in the worst case ?
- Finding an optimal sequence of steps from 12...n to σ , *i.e.* a sequence of minimal cost ?

The variant of the model we considered

Piecewise constant cost function: width $k \Rightarrow \cos \begin{cases} 1 \text{ if } k \leq K \\ \infty \text{ if } k > K \end{cases}$

Equivalently: Duplication of fragments of width at most KCost = number of steps

Problems to consider:

- Characterization of the permutations obtained in p steps in terms of excluded patterns?
- Cost of obtaining a permutation ? on average ? in the worst case ?
- Finding an optimal sequence of steps from 12...n to σ , *i.e.* a sequence of minimal cost ?

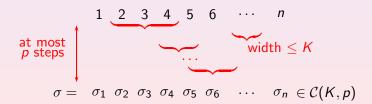
Some combinatorial properties of the classes $\mathcal{C}(K,1)$ and $\mathcal{C}(K,p)$

Definition of the classes C(K, p)

Definition

 $\mathcal{C}(K,p)=$ the class of all permutations obtained from $12\ldots n$ (for any n) after p duplication-loss steps of width at most K.

Notice: C(K, p) is stable for \prec



Some combinatorial properties of the classes $\mathcal{C}(K,1)$ and $\mathcal{C}(K,p)$

$\mathcal{C}(K,1)$ is a class of pattern-avoiding permutations

Focus on C(K,1): one duplication-loss step from $12 \dots n$

Example: $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8 \rightsquigarrow 1\ 2\ 5\ 3\ 4\ 6\ 7\ 8$

Theorem

$$\mathcal{C}(K,1)=S(B).$$

The basis B is $\{321, 3142, 2143\} \cup D$, D being the set of all permutations of S_{K+1} that do not start with 1 nor end with K+1, and containing exactly one descent.

 $\mathcal{C}(K,1)$ is stable for $\prec \Rightarrow$ the excluded patterns are the minimal permutations not in $\mathcal{C}(K,1)$ (minimal in the sense of \prec):

$$B = \{ \sigma \notin \mathcal{C}(K, 1) : \forall \tau \prec \sigma, \tau \neq \sigma, \tau \in \mathcal{C}(K, 1) \}$$

Some combinatorial properties of the classes $\mathcal{C}(K,1)$ and $\mathcal{C}(K,p)$

$\mathcal{C}(K,1)$ is a class of pattern-avoiding permutations

Focus on C(K,1): one duplication-loss step from $12 \dots n$

Example: $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8 \rightsquigarrow 1\ 2\ 5\ 3\ 4\ 6\ 7\ 8$

Theorem

$$\mathcal{C}(K,1)=S(B).$$

The basis B is $\{321, 3142, 2143\} \cup D$, D being the set of all permutations of S_{K+1} that do not start with 1 nor end with K+1, and containing exactly one descent.

 $\mathcal{C}(K,1)$ is stable for $\prec \Rightarrow$ the excluded patterns are the minimal permutations not in $\mathcal{C}(K,1)$ (minimal in the sense of \prec):

$$B = \{ \sigma \notin \mathcal{C}(K, 1) : \forall \tau \prec \sigma, \tau \neq \sigma, \tau \in \mathcal{C}(K, 1) \}$$

Is C(K, p) also a pattern-avoiding class?

$\mathsf{Theorem}$

Motivations and the model

The class C(K, p) is a class of pattern-avoiding permutations S(B). Its basis B is finite and contains only patterns of size at $most (Kp + 2)^2 - 2.$

 $\mathcal{C}(K,p)$ is stable for the pattern relation \prec \Rightarrow show that the basis is finite + bound the size of the patterns

Idea of the proof:

Consider the minimal permutations $\sigma \notin \mathcal{C}(K,p)$, and bound the necessary moves of elements to go from $12 \dots n$ to σ

How many steps from $12 \dots n$ to σ ?

- Lower bound: $\Omega(\log n + \frac{n^2}{K^2})$ steps in the worst case and on average
 - \hookrightarrow log *n* from the whole genome duplication random loss model
 - $\hookrightarrow \frac{n^2}{K^2}$ considering the number of invertions
- Algorithm (upper bound): $\Theta(\frac{n}{K} \log K + \frac{n^2}{K^2})$ steps in the worst case and on average
 - $\hookrightarrow \frac{n^2}{K^2}$ for long moves
 - $\hookrightarrow \frac{n}{K} \log K$ for local reorderings

Lower and upper bound **coincide** up to a constant factor except when $\frac{n}{\log n} \ll K = K(n) \ll n$ (in particular when K = constant)

On a given σ our algorithm may yield a scenario **far from optimal** (e.g. n steps instead of \sqrt{n} when $K(n) = \sqrt{n}$)

Other algorithmic questions to be considered

How many steps from $12 \dots n$ to σ ?

- Lower bound: $\Omega(\log n + \frac{n^2}{K^2})$ steps in the worst case and on average
 - \hookrightarrow log n from the whole genome duplication random loss model
 - $\hookrightarrow \frac{n^2}{K^2}$ considering the number of invertions
- Algorithm (upper bound): $\Theta(\frac{n}{K} \log K + \frac{n^2}{K^2})$ steps in the worst case and on average
 - $\hookrightarrow \frac{n^2}{K^2}$ for long moves
 - $\hookrightarrow \frac{n}{K} \log K$ for local reorderings

Lower and upper bound **coincide** up to a constant factor except when $\frac{n}{\log n} \ll K = K(n) \ll n$ (in particular when K = constant)

On a given σ our algorithm may yield a scenario **far from optima** (e.g. n steps instead of \sqrt{n} when $K(n) = \sqrt{n}$)

Other algorithmic questions to be considered

How many steps from $12 \dots n$ to σ ?

- Lower bound: $\Omega(\log n + \frac{n^2}{K^2})$ steps in the worst case and on average
 - \hookrightarrow log *n* from the whole genome duplication random loss model
 - $\hookrightarrow \frac{n^2}{K^2}$ considering the number of invertions
- Algorithm (upper bound): $\Theta(\frac{n}{K} \log K + \frac{n^2}{K^2})$ steps in the worst case and on average
 - $\hookrightarrow \frac{n^2}{K^2}$ for long moves
 - $\hookrightarrow \frac{n}{K} \log K$ for local reorderings

Lower and upper bound **coincide** up to a constant factor except when $\frac{n}{\log n} \ll K = K(n) \ll n$ (in particular when K = constant)

On a given σ our algorithm may yield a scenario far from optimal (e.g. n steps instead of \sqrt{n} when $K(n) = \sqrt{n}$)

Other algorithmic questions to be considered

Open questions

Algorithmic:

- Formula for $cost(\sigma)$?
- Optimal sequence of steps from 12...n to σ ?
- Characterization of those sequences ? with a decreasing energy function ?
- Does our algorithm compute a f(K)-approximation of such an optimal scenario ?

Combinatorics:

- Description of the excluded patterns in C(K, p) ?
- Order of the cardinality of C(K,1) and C(K,p)?