Some Statistics on Permutations avoiding Generalized Patterns

Antonio Bernini Mathilde Bouvel Luca Ferrari

September 14th 2006

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

1 Introduction

2 S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$

- 3 The two other symmetry classes
- Permutations avoiding a pair of generalized patterns
- 5 Conclusion and perspectives

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$ The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Outline

Introduction

- Some definitions and previous results
- Graphical representation of permutations and ECO construction

2 S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$

3 The two other symmetry classes

Permutations avoiding a pair of generalized patterns

5 Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$ The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results

Graphical representation of permutations and ECO construction

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

Classical Pattern Avoidance

 $\pi \in S_n$, $\tau \in S_k$ with $k \leq n$

- The permutation π contains the pattern τ iff \exists $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ such that $\pi_{i_1}\pi_{i_2}\ldots\pi_{i_k}$ is order-isomorphic to $\tau : \pi_{i_p} < \pi_{i_q}$ iff $\tau_p < \tau_q$
- Otherwise, π avoids τ
- For example, 135624 contains 132 and avoids 321

Notation : $S_n(\tau) =$ the set of τ -avoiding permutations of length n $S(\tau) =$ the set of τ -avoiding permutations

S(1-23) and the symmetry class {1-23, 32-1, 3-21, 12-3} The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

Generalized Pattern Avoidance

 ${\sf Generalized \ pattern} = {\sf classical \ pattern} + {\sf dashes}$

• Example : au = 13 - 26 - 574 is a generalized pattern

Generalized pattern avoidance : classical pattern avoidance + the elements that are adjacent in the pattern must correspond to adjacent elements in the permutation.

• Example : 7256134 contains 13 - 2 (7**25**61**3**4) but avoids 1 - 32

S(1-23) and the symmetry class {1-23, 32-1, 3-21, 12-3} The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

Three Symmetry Classes

- Reverse of a pattern $p : p^r = p$ read from right to left Complement of $p : p_i^c = n + 1 - p_i$ (dashes unchanged)
- Generalized patterns of length 3 are organised in 3 symmetry classes {p, p^r, p^c, p^{rc}} :
 - $\{1-23, 32-1, 3-21, 12-3\}, |S_n(p)| = B_n$ (Bell)
 - $\{3-12, 21-3, 1-32, 23-1\}, |S_n(p)| = B_n$ (Bell)
 - $\{2-13, 31-2, 2-31, 13-2\}, |S_n(p)| = C_n$ (Catalan)

S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$ The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

Staff Representation of permutations

Example of 632514

	•			
_				

Staff = portée pentagramma

Antonio Bernini, Mathilde Bouvel, Luca Ferrari

Some Statistics on Permutations avoiding Generalized Patterns

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$ The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

Staff Representation of permutations

Example of 632514

Antonio Bernini, Mathilde Bouvel, Luca Ferrari

Some Statistics on Permutations avoiding Generalized Patterns

S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$ The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

Staff Representation of permutations

Example of 632514

S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$ The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

Staff Representation of permutations

Example of 632514

Some Statistics on Permutations avoiding Generalized Patterns

S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$ The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

ECO construction on staff representation

Active sites = n + 1 regions on the right

Antonio Bernini, Mathilde Bouvel, Luca Ferrari

Some Statistics on Permutations avoiding Generalized Patterns

S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$ The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

ECO construction on staff representation

7426153 is obtained from 632514

S(1-23) and the symmetry class {1-23, 32-1, 3-21, 12-3} The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

A simple but crucial remark

- In this ECO construction, starting from a τ -avoiding permutation, the pattern τ can appear only if it uses the new element inserted.
- It allows us to determine which of the n + 1 regions are active sites.

S(1-23) and the symmetry class {1-23, 32-1, 3-21, 12-3} The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

Some definitions and previous results Graphical representation of permutations and ECO construction

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

- Enumeration of $S(\tau)$ according to the length and the value of the last (or the first) element for every generalized pattern τ of length 3
- Two examples of extension to permutations avoiding 2 or 3 generalized patterns

ECO construction and generating tree for S(1-23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1-23

(日) (同) (E) (E) (E)

Outline

1 Introduction

S(1-23) and the symmetry class {1-23, 32-1, 3-21, 12-3}
ECO construction and generating tree for S(1-23)
Distribution according to the length and the last value
The remaining patterns in the symmetry class of 1-23

3 The two other symmetry classes

Permutations avoiding a pair of generalized patterns

5 Conclusion and perspectives

ECO construction and generating tree for S(1 - 23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1 - 23

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Active sites : first case

ECO construction and generating tree for S(1 - 23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1 - 23

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Active sites : second case

ECO construction and generating tree for S(1 - 23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1 - 23

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Succession rule

- Each permutation of $S_n(1-23)$ with k active sites is labelled (k, n).
- Succession rule :

$$\begin{cases} (2,1) \\ (k,n) \rightsquigarrow (2,n+1)(3,n+1)\cdots(k,n+1)(n+2,n+1) \end{cases}$$

ECO construction and generating tree for S(1 - 23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1 - 23

Generating tree

Levels

Antonio Bernini, Mathilde Bouvel, Luca Ferrari

Some Statistics on Permutations avoiding Generalized Patterns

ECO construction and generating tree for S(1-23) Distribution according to the length and the last value The remaining patterns in the symmetry class of 1-23

Matrix M

- $M=(m_{i,j})_{i,j\geq 1}$
 - $m_{i,j}$ is the number of labels j + 1 at level i in the generating tree.
 - i.e. $m_{i,j}$ is the number of permutations of $S_i(1-23)$ with j+1 active sites.

	1	0	0	0	0	0	÷)	
	1	1	0	0	0	0	÷	
	2	1	2	0	0	0	÷	
<i>M</i> =	5	3	2	5	0	0	÷	
	15	10	7	5	15	0	÷	
	52	37	27	20	15	52	÷	
								≜ × × ≣

Antonio Bernini, Mathilde Bouvel, Luca Ferrari

Some Statistics on Permutations avoiding Generalized Patterns

3

A =

ECO construction and generating tree for S(1-23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1-23

Matrix A, known as the Bell triangle

$$= (a_{i,j})_{i,j \ge 1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \vdots \\ 1 & 1 & 0 & 0 & 0 & 0 & \vdots \\ 2 & 2 & 1 & 0 & 0 & 0 & \vdots \\ 5 & 5 & 3 & 2 & 0 & 0 & \vdots \\ 15 & 15 & 10 & 7 & 5 & 0 & \vdots \\ 52 & 52 & 37 & 27 & 20 & 15 & \vdots \\ \dots & \dots & \dots & \dots & \dots & \ddots \end{pmatrix}$$

 $a_{i,j}$ is the number of 1 - 23-avoiding permutations of length i ending with j.

Antonio Bernini, Mathilde Bouvel, Luca Ferrari

Some Statistics on Permutations avoiding Generalized Patterns

ECO construction and generating tree for S(1 - 23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1 - 23

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○○

Introducing the backward difference operator : ∇

for
$$k \geq 3$$
, $a_{n,k} = a_{n,k-1} - a_{n-1,k-1} = \nabla a_{n,k-1}$

So recursively :

for
$$k \ge 3$$
, $a_{n,k} = \nabla a_{n,k-1}$
= $\nabla^2 a_{n,k-2}$
= \cdots
= $\nabla^{k-2} a_{n,2} = \nabla^{k-2} B_{n-1}$ (which holds also for $k = 2$

ECO construction and generating tree for S(1 - 23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1 - 23

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○○

Stating our first result

The distribution of $1-23\-$ avoiding permutations according to their length and to the value of their last entry is given by :

$$\begin{split} |\{\pi\in S_n(1-23):\pi_n=1\}| &= B_{n-1}, \ n\geq 1;\\ \{\pi\in S_n(1-23):\pi_n=k\}| &= \nabla^{k-2}(B_{n-1}), \ 2\leq k\leq n. \end{split}$$

ECO construction and generating tree for S(1-23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1-23

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

S(32-1): the reverse

If $\pi \in S_n(1-23)$ ends with k, then $\pi^r \in S_n(32-1)$, and $\pi_1^r = k$. Consequently :

$$|\{\pi \in S_n(32-1) : \pi_1 = 1\}| = B_{n-1}, n \ge 2$$

 $|\{\pi \in S_n(32-1) : \pi_1 = k\}| = \nabla^{k-2}(B_{n-1}), 2 \le k \le n$

ECO construction and generating tree for S(1-23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1-23

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○○

S(3-21) and S(12-3)

• Complement :

$$|\{\pi \in S_n(3-21) : \pi_n = n\}| = B_{n-1}, n \ge 1$$

$$|\{\pi \in S_n(3-21) : \pi_n = k\}| = \nabla^{n-k-1}(B_{n-1}), \ 1 \le k \le n-1$$

• Reverse-complement :

$$|\{\pi \in S(12-3) : \pi_1 = n\}| = B_{n-1}, \ n \ge 1$$

 $|\{\pi \in S(12-3) : \pi_1 = k\}| = \nabla^{n-k-1}(B_{n-1}), \ 1 \le k \le n-1$

 $\label{eq:linear} \begin{array}{l} \mbox{Fhe symmetry class } \{3-12,21-3,1-32,23-1\} \\ \mbox{Fhe symmetry class } \{2-13,31-2,2-31,13-2\} \end{array}$

(日) (同) (E) (E) (E)

Outline

Introduction

2 S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$

The two other symmetry classes
The symmetry class {3 - 12, 21 - 3, 1 - 32, 23 - 1}
The symmetry class {2 - 13, 31 - 2, 2 - 31, 13 - 2}

4 Permutations avoiding a pair of generalized patterns

5 Conclusion and perspectives

The symmetry class $\{3 - 12, 21 - 3, 1 - 32, 23 - 1\}$ The symmetry class $\{2 - 13, 31 - 2, 2 - 31, 13 - 2\}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

- One pattern in the class
- Succession rule
- Matrix of the distribution
- Recursive relation defining the entries of the matrix
- Extension to the remaining patterns in the symmetry class

The symmetry class $\{3 - 12, 21 - 3, 1 - 32, 23 - 1\}$ The symmetry class $\{2 - 13, 31 - 2, 2 - 31, 13 - 2\}$

・ロト ・同ト ・ヨト ・ヨト

M strikes again

The distribution of permutations avoiding 3-12 according to their length (row index) and their last value (column index) is given by :

	(1	0	0	0	0	0	Ξ)
	1	1	0	0	0	0	÷
	2	1	2	0	0	0	÷
<i>M</i> =	5	3	2	5	0	0	÷
	15	10	7	5	15	0	÷
	52	37	27	20	15	52	÷
							· /

١

The symmetry class $\{3-12,21-3,1-32,23-1\}$ The symmetry class $\{2-13,31-2,2-31,13-2\}$

・ロト ・同ト ・ヨト ・ヨト

Catalan triangle

The distribution of permutations avoiding 2-13 according to their length (row index) and their last value (column index) is given by :

$$M' = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \vdots \\ 1 & 1 & 0 & 0 & 0 & 0 & \vdots \\ 2 & 2 & 1 & 0 & 0 & 0 & \vdots \\ 5 & 5 & 3 & 1 & 0 & 0 & \vdots \\ 14 & 14 & 9 & 4 & 1 & 0 & \vdots \\ 42 & 42 & 28 & 14 & 5 & 1 & \vdots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

S(1-23,1-32) : an easy case $S(1{-}23,21{-}3)=S(1{-}23,21{-}3,12{-}3)$: a not so easy case

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Outline

Introduction

2 S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$

3 The two other symmetry classes

Permutations avoiding a pair of generalized patterns
S(1-23,1-32): an easy case
S(1-23,21-3) = S(1-23,21-3,12-3): a not so easy case

5 Conclusion and perspectives

S(1-23) and the symmetry class {1-23, 32-1, 3-21, 12-3} The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

S(1-23,1-32) : an easy case $S(1{-}23,21{-}3)=S(1{-}23,21{-}3,12{-}3)$: a not so easy case

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Avoiding more than one pattern

- Claesson and Mansour [2003] : enumeration of permutations avoiding any pair of generalized patterns of length 3, according to their length
- Bernini, Ferrari and Pinzani [2005] : enumeration of permutations avoiding any triple of generalized patterns of length 3, according to their length

Refine those enumerations according to the first or last entry ? Two examples.

5(1-23) and the symmetry class {1-23, 32-1, 3-21, 12-3} The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

S(1-23,1-32) : an easy case S(1-23,21-3)=S(1-23,21-3,12-3) : a not so easy case

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○○

Labelling and succession rule

• $|S_n(1-23, 1-32)| = I_n$ *n*-th involution number

 $\pi \in S(1-23, 1-32)$ is labelled (k, n) where k is the number of active sites of π .

• k = 1 when $\pi_n \neq 1$

•
$$k = n + 1$$
 when $\pi_n = 1$

Succession rule :

$$\begin{cases} (2,1) \\ (1,n) \rightsquigarrow (n+2,n+1) \\ (n+1,n) \rightsquigarrow (1,n+1)^n (n+2,n+1) \end{cases}$$

S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$ The two other symmetry classes Permutations avoiding a pair of generalized patterns Conclusion and perspectives

S(1-23,1-32) : an easy case $S(1\!-\!23,21\!-\!3)=S(1\!-\!23,21\!-\!3,12\!-\!3)$: a not so easy ca

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Subsequent matrix

0	1	0	0	0	0	0	0	÷
1	0	1	0	0	0	0	0	÷
2	0	0	2	0	0	0	0	÷
6	0	0	0	4	0	0	0	÷
16	0	0	0	0	10	0	0	÷
50	0	0	0	0	0	26	0	÷
156	0	0	0	0	0	0	76	÷
								·)

Antonio Bernini, Mathilde Bouvel, Luca Ferrari Some Statistics on Permutations avoiding Generalized Patterns

 $S(1-23) \text{ and the symmetry class } \{1-23, 32-1, 3-21, 12-3\} \\ The two other symmetry classes \\ \textbf{Permutations avoiding a pair of generalized patterns \\ Conclusion and perspectives } \label{eq:spectral}$

S(1-23,1-32) : an easy case $S(1\!-\!23,21\!-\!3)=S(1\!-\!23,21\!-\!3,12\!-\!3)$: a not so easy case

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○○

Main steps

 $|S_n(1-23,21-3)| = |S_n(1-23,21-3,12-3)| = M_n$ n-th Motzkin number

- Succession rule with coloured labels.
- Generating tree.
- Matrix recording the number of labels at each level in the tree.
- Interpretation of this matrix as the distribution of S(1-23,21-3) according to the length and the last value
- Recursive description of the entries of the matrix.
- Generating function of each column of the matrix.

Distribution of S(1 - 23, 21 - 3) according to the length and the last value

/							
1	0	0	0	0	0	:	
1	1	0	0	0	0	÷	
2	2	0	0	0	0	÷	
4	4	1	0	0	0	÷	
9	9	3	0	0	0	÷	
21	21	8	1	0	0	÷	
51	51	21	4	0	0	÷	
127	127	55	13	1	0	÷	
323	323	145	39	5	0	÷	
835	835	385	113	19	1	÷	

Outline

1 Introduction

2 S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$

3 The two other symmetry classes

Permutations avoiding a pair of generalized patterns

5 Conclusion and perspectives

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○○

The end

- For any generalized pattern *p* of length 3, distribution of the *p*-avoiding permutations according to the length and the value of the first or last element
- Similar distributions for two sets of patterns

Can we get such a distribution for other sets of up to 3 patterns ? for all of them ?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○○