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A bit of history

Generating trees were introduced in the nineties independently by

J. West, for pattern-avoiding permutations;

the Florentine combinatorics group (R. Pinzani, E. Barcucci, A. Del
Lungo, . . . ), for a variety of combinatorial objects, including
pattern-avoiding permutations.
(They use the name “ECO method”.)

Once combined with the kernel method on functional equations for
generating functions (as explained by M. Bousquet-Mélou), it is a general
method that can be used to enumerate some families of discrete objects.

In this talk, I present this method, illustrated by several examples.

Note: I have another talk ready, about how generating trees can be used
to establish local and scaling limit results for permutations (results of J.
Borga), but not the topic here.
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A toy example:
312-avoiding permutations



Permutations

A permutation of size n is a sequence containing exactly once each symbol
between 1 and n.

Ex: 5 3 7 2 4 1 6 8 is a permutation of size 8.

Notation: We usually write a permutation σ = σ1σ2 . . . σn.

We often represent a permutation by its diagram: the n × n grid which
contains a dot in each column i , in row σi .
(Rows are numbered from bottom to top.)

Ex: The diagram of our example is
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Patterns in permutations

For σ a permutation of size n and π a permutation of size k ≤ n,
we say that σ contains π as a pattern when
there exists i1 < i2 < · · · < ik such that σia < σib if and only if πa < πb.

This is written π ≼ σ.

The subsequence σi1σi2 . . . σik is an occurrence of π.

Ex: σ = 53 7 2 4 1 6 8 contains the pattern π = 31 2 4, an occurrence
being σ1σ4σ5σ7 = 52 4 6.

We can see patterns
and occurrences on
the diagrams:
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Pattern-avoiding permutations

σ avoids π when π has no occurrence in σ.

For B any set of patterns, we denote by Av(B) the set of permutations (of
all sizes) avoiding all patterns in B.

Ex: 5 3 7 2 4 1 6 8 /∈ Av(3124), but 2 5 1 3 4 7 6 8 ∈ Av(321).

In this first part, we
consider the permutation
class Av(312), which we
will enumerate using
generating trees.

Mathilde Bouvel Generating trees 6 / 38



Letting permutations grow on the right

One way of building all permutations of size n + 1:

Start from all permutations σ of size n

For each such σ, append to σ a new final value a ∈ {1, 2, . . . , n + 1},
adding 1 to any σi such that σi ≥ a.

Ex: Appending 3 to 35124 gives 461253

On diagrams:
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Restriction to Av(312)

To build all permutations of size n + 1 in Av(312), we can

Start from all permutations of size n avoiding 312

For each such σ, append a new final value as before, in all possible
“places” which do not create an occurrence of 312.

Such places are called active sites (◦), the others are inactive sites (×).

Ex:

Remark: For every family Av(B) defined by the avoidance of (classical)
patterns, it is possible to build permutations appending a new final value.
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The combinatorial generating tree for Av(312) growing on
the right

It is the infinite tree

whose root is
(the permutation of size 1),

and where the children of
any permutation σ are the
permutations obtained
appending a new final
value to σ,
in all possible ways which do
not create a pattern 312.

Remark: The nodes at level n are the 312-avoiding permutations of size n.
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Combinatorial generating tree for a class of discrete objects

In general, a combinatorial generating tree for a combinatorial class C is

an infinite tree,

whose nodes are the elements of C, each occurring exactly once,

whose root is the element of size 1 in C (assumed to exist and be unique),

and where the children of any node c are obtained from c by
performing local expansions according to some prescribed rules.

These rules must be carefully chosen to ensure that every element of C
appears, and does not appear multiple times.

Remarks:

Objects of size n are at level n in the tree. Hence enumerating C
amounts to counting the number of nodes at each level.

There may be several combinatorial generating trees for C, depending
on the “local expansion rule” which is chosen.
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Labels in the combinatorial generating tree of Av(312) . . .

. . . or how to find a simplified or concise description of this tree.

To each 312-avoiding
permutation, assign a label:
its number of active sites.

Conjecture:
If a permutation has label k,
then its k children have labels 2, 3 . . . , k + 1.
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Proving the conjecture (active sites of Av(312))

Observe that the bottommost and topmost sites are always active.

Observe that a site cannot become active it if was previously inactive.

Number the active sites 1 to k from bottom to top.

When inserting in the j-th
active site for j ̸= k , all
active sites above it
become inactive, except
the topmost one.

So insertion in active site j produces a permutation with label j + 1.

Insertion in the topmost site produces a permutation with label k + 1.

Prop.: If σ has label k , then its children have labels 2, 3 . . . , k + 1.
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The “simplified” generating tree, and the rewriting rule

Keeping only the labels, the generating tree for Av(312) becomes

cn = |Avn(312)| is the number of nodes at level n.

This tree is completely described by the rewriting rule (or succession rule)

ΩCat =

{
(2)
(k) ⇝ (2), . . . , (k), (k + 1).
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Labels and rewriting rules in general

For a generating tree to be useful in some way, we need to identify

labels for the objects

a rewriting rule describing the labels of the children of an object from
just the label of that object.

Labels can be integers, pairs of integers, or . . . essentially anything.

We say that a generating tree is concise when, for all vertices v and w , the
subtrees rooted at v and w are isomorphic if and only if v and w have the
same label.

Remarks:

The simplified generating tree for Av(312) from above is concise.

Terminology introduced by B. Testart recently.

Most (if not all) generating trees used in the literature so far are
indeed concise.
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Enumerating Av(312)

from its generating tree:
one way using generating functions



From the rewriting rule to a functional equation

Recall the rewriting rule for 312-avoiding permutations:

ΩCat =

{
(2)
(k) ⇝ (2), . . . , (k), (k + 1).

Let cn,k be the number of 312-avoiding permutations having size n and
label k . Consider the bivariate generating function C (x ; y) =

∑
n,k

cn,kx
nyk .

Remark: C (x ; 1) is the generating function of 312-avoiding permutations.

The rewriting rule gives

C (x ; y) = xy2 +
∑
n,k

cn,kx
n+1(y2 + . . . yk + yk+1)

= xy2 +
∑
n,k

cn,kx
n+1y2

1− yk

1− y
.
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Putting the equation in kernel form

C (x ; y) = xy2 +
∑
n,k

cn,kx
n+1y2

1− yk

1− y

= xy2 +
xy2

1− y

∑
n,k

cn,kx
n −

∑
n,k

cn,kx
nyk


= xy2 +

xy2

1− y

(
C (x ; 1)− C (x ; y)

)

It follows that (1− y + xy2)C (x ; y) = xy2(1− y + C (x ; 1)).

The coefficient of C (x ; y) is the kernel of this equation.

Remark: Putting y = 1 in the equation gives no information on C (x ; 1).
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Solving the equation: the kernel method

Method:

Find a formal power series Y (x) which cancels the kernel.

Substituting y by Y (x) gives an equation for C (x ; 1).

Our example:

The equation is (1− y + xy2)C (x ; y) = xy2(1− y + C (x ; 1)).

The formal power series canceling the kernel is Y (x) = 1−
√
1−4x
2x .

Substitution gives C (x ; 1) = Y (x)− 1.

It follows that there are cn = 1
n+1

(2n
n

)
312-avoiding permutations of

any size n ≥ 1.

Remark: For “similar” generating trees with integer labels, the generating
functions are always algebraic.
See the “Generating functions for generating trees” paper.
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Generating trees
where labels are pairs of integers:

the case of Av(2 41 3)



The pattern 2 41 3

A permutation σ = σ1σ2 . . . σn contains the pattern 2413 if
there exists indices i < j < j + 1 < k such that σj+1 < σi < σk < σj
i.e. such that the subsequence σiσjσj+1σk is an occurrence of 2413.

Otherwise σ avoids 2 41 3.

Av(2 41 3) denotes the set of all permutations avoiding 2 41 3.
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Letting permutations avoiding 2 41 3 grow on the right

Remark: If σ1 . . . σnσn+1 avoids 2 41 3, then so does σ1 . . . σn.
(Be careful! Not true for any element removed, e.g. 25314!)

Thus, to build all 2 41 3-avoiding permutations of size n + 1, we can

Start from all 2 41 3-avoiding permutations of size n

For each such σ, append a new final
value in all active sites (= the sites
which do not create an occurrence
of 2 41 3).

This induces a combinatorial generating tree for Av(2 41 3).
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Non-empty descents are the reason for sites to be inactive

We say that a non-empty descent of σ is an occurrence of the pattern 2 31
in σ, i.e. a subsequence σiσjσj+1 (with i < j) such that σj > σi > σj+1.

A site is inactive if and only if it is above the 2 of a non-empty descent.
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Labels for 2 41 3-avoiding permutations

The non-empty descents determine the active sites.

Appending a new final value affects the set of non-empty descents of
σ = σ1σ2 . . . σn differently if we insert below or above σn.

Thus, we record separately the active sites below and above σn.

We take the label of σ of size n
avoiding 2 41 3 to be (h, k)

with h = number of active
sites below σn

and k = number of active
sites above σn.
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Labels of the children (1/3)

Remark: The site immediately below σn is always active.

For σ of label (h, k), insertion in the site immediately below σn produces
an empty descent. Hence, all active sites stay active.

The label of the corresponding child of σ is (h, k+1).
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Labels of the children (2/3)

Insertion in an active site above σn produces an ascent.
Hence, all active sites stay active.

For insertion in the i-th such active site from the top, the label of the
corresponding child of σ is (h + k − i+1, i).

Mathilde Bouvel Generating trees 25 / 38



Labels of the children (3/3)

Insertion in an active site below σn (and not immediately below) produces
a non-empty descent. Hence, all active sites between σn and the new final
element σn+1 become inactive (except the site immediately above σn+1).

For insertion in the i-th such active site from the bottom, the label of the
corresponding child of σ is (i , k+1).

Mathilde Bouvel Generating trees 26 / 38



Rewriting rule

The generating tree for permutations avoiding 2 41 3 growing on the right
is described by the following rewriting rule:

Ωsemi =


(1, 1)
(h, k)⇝ (1, k + 1), . . . ,(h, k + 1)

(h + k , 1), . . . , (h + 1, k).

Next steps:

Consider the trivariate generating function

S(y , z) = S(x ; y , z) =
∑
n,h,k

sn,h,kx
nyhzk ,

where sn,h,k is the number of 2 41 3-avoiding permutations
having size n and label (h, k).

Translate Ωsemi into a functional equation for S(y , z).

Apply the (obstinate) kernel method to solve this equation.
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The functional equation

Recall the rewriting rule Ωsemi =


(1, 1)
(h, k)⇝ (1, k + 1), . . . , (h, k + 1)

(h + k , 1), . . . , (h + 1, k).
Therefore,

S(y , z) = xyz +
∑

n,h,k≥1

sn,h,kx
n+1
(
(y + y2 + · · ·+ yh)zk+1

+ (yh+kz + yh+k−1z2 + · · ·+ yh+1zk)
)

= xyz +
∑

n,h,k≥1

sn,h,kx
n+1

(
1− yh

1− y
y zk+1 +

1−
( y
z

)k
1− y

z

yh+1zk

)
= xyz +

xyz

1− y
(S(1, z)− S(y , z)) +

xyz

z − y
(S(y , z)− S(y , y)) .
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Kernel form of the equation

We obtained

S(y , z) = xyz +
xyz

1− y
(S(1, z)− S(y , z)) +

xyz

z − y
(S(y , z)− S(y , y)) .

In kernel form, and substituting y with 1 + a, this is

K (a, z)S(1 + a, z) = xz(1 + a)− xz(1 + a)

a
S(1, z)

− xz(1 + a)

z − 1− a
S(1 + a, 1 + a),

where the kernel is K (a, z) = 1− xz(1 + a)

a
− xz(1 + a)

z − 1− a
.

Notation: We denote with R(x , a, z , S(1, z),S(1 + a, 1 + a)) the
right-hand side of the equation in kernel form.
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Canceling the kernel

Recall that the kernel is K (a, z) = 1− xz(1 + a)

a
− xz(1 + a)

z − 1− a
.

Solving for z the (quadratic) equation K (a, z) = 0 gives two solutions:

Z+(a) =
1

2

a+ x + ax − Q

x(1 + a)
= (1 + a) + (1 + a)2x + O(x2),

Z (a) =
1

2

a+ x + ax + Q

x(1 + a)
=

a

(1 + a)x
− a− (1 + a)2x + O(x2),

where Q =
√
a2 − 2ax − 6a2x + x2 + 2ax2 + a2x2 − 4a3x .

Substituting z for Z+, we obtain an equation relating the formal power
series Z+,S(1,Z+) and S(1 + a, 1 + a), namely:

R(x , a,Z+,S(1,Z+), S(1 + a, 1 + a)) = 0.

We would like to eliminate S(1,Z+) in order to find S(1 + a, 1 + a).
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Being obstinate in canceling the kernel

Look for the transformations leaving the kernel unchanged.

◦ Here observe that
K (a, z) = K ( z−1−a

1+a , z) and K (a, z) = K (a, z+za−1−a
z−1−a ).

◦ Therefore, define the involutions

Φ : (a, z) →
(
z−1−a
1+a , z

)
and Ψ : (a, z) →

(
a, z+za−1−a

z−1−a

)
.

Examine the group generated by Φ and Ψ.

◦ Here, they generate a group of order 10.
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Being obstinate in canceling the kernel, continued

Substituting z for Z+, each element (f1(a, z), f2(a, z)) in this group
cancels the kernel.

Find the pairs (f1(a, z), f2(a, z)) such that f1(a,Z+) and f2(a,Z+) are
formal power series in x .

◦ Here, we obtain the following pairs:

[a, z ]
Φ↔
[
z−1−a
1+a , z

]
Ψ↔
[
z−1−a
1+a , z−1

a

]
Φ↔
[
z−1−a

az , z−1
a

] Ψ↔
[
z−1−a

az , 1+a
a

]
.

Each such pair (f1(a,Z+), f2(a,Z+)) can be substituted in the kernel
equation K (a, z)S(1 + a, z) = R(x , a, z , S(1, z),S(1 + a, 1 + a)).

It results in an equation

involving only formal power series,
and where the kernel is 0.

Therefore, each pair satisfies
R(x , f1(a,Z+), f2(a,Z+),S(1, f2(a,Z+)),S(1 + f1(a,Z+), 1 + f1(a,Z+))) = 0.
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Combining kernel equations

We obtain the following system, with 5 equations and 6 unknowns:

0 = R(x , a,Z+,S(1,Z+), S(1 + a, 1 + a))

0 = R
(
x , Z+−1−a

1+a ,Z+,S(1,Z+), S(1 +
Z+−1−a

1+a , 1 + Z+−1−a
1+a )

)
0 = R

(
x , Z+−1−a

1+a , Z+−1
a , S(1, Z+−1

a ), S(1 + Z+−1−a
1+a , 1 + Z+−1−a

1+a )
)

0 = R
(
x , Z+−1−a

aZ+
, Z+−1

a , S(1, Z+−1
a ), S(1 + Z+−1−a

aZ+
, 1 + Z+−1−a

aZ+
)
)

0 = R
(
x , Z+−1−a

aZ+
, 1+a

a ,S(1, 1+a
a ),S(1 + Z+−1−a

aZ+
, 1 + Z+−1−a

aZ+
)
)
.

We eliminate all unknowns except S(1 + a, 1 + a) and S(1, 1+a
a ).
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A single resulting equation

We usually write ā = a−1. Observe that 1+a
a = 1 + ā.

Elimination from the previous system yields

S(1 + a, 1 + a) +
(1 + a)2x

a4
S (1, 1 + ā) = P(a,Z+),

where P(a, z) = (z − 1− a)(−za4 + z2a4 − za3 + z2a3 − z3a2 − 2a2 +
z2a2 + za2 − 4a+ 5az − 3az2 + z3a+ 3z − z2 − 2)/(za4(z − 1)).

In this equation, we can separate powers of a:

S(1 + a, 1 + a) involves only powers of a that are ≥ 0.
(1+a)2x

a4
S (1, 1 + ā) involves only powers of a that are ≤ −2.

Therefore, S(1 + a, 1 + a) = Ω≥[P(a,Z+)], where for

G (x ; a) =
∑
n≥0

∑
i∈Z

gn,ix
nai , we define Ω≥[G (x ; a)] =

∑
n≥0

∑
i≥0

gn,ix
nai .
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Who is P(a,Z+)?

Recall that Z+ is the unique formal power series canceling the kernel

K (a, z) = 1− xz(1+a)
a − xz(1+a)

z−1−a .

Therefore W = Z+ − (1 + a) is the unique formal power series solution of

W = xā(1 + a)(W + 1 + a)(W + a).

Then, P(a,Z+) can be expressed from W as P(a,Z+) = F (a,W ) for

F (a,W ) = (1 + a)2 x +

(
1

a5
+

1

a4
+ 2 + 2a

)
x W

+

(
− 1

a5
− 1

a4
+

1

a3
− 1

a2
− 1

a
+ 1

)
x W 2 +

(
1

a4
− 1

a2

)
x W 3.

This gives a more direct definition of Ω≥[P(a,Z+)] = S(1 + a, 1 + a).
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What about the number of 2 41 3-avoiding permutations?

There are an = [xn]S(1, 1) 2 41 3-avoiding permutations of size n.

It holds that [xn]S(1, 1) = [xna0]S(1 + a, 1 + a).

Since S(1 + a, 1 + a) = Ω≥[F (a,W )], it follows that

[xn]S(1, 1) = [xna0]S(1 + a, 1 + a) = [xna0]F (a,W ).

From the equation for W and the expression of F (a,W ), Lagrange
inversion gives an (ugly) summation formula for [xn]S(1, 1).

The method of creative telescoping of Zeilberger produces a nice
recursive formula for an:

an =
11n2 + 11n − 6

(n + 4)(n + 3)
an−1 +

(n − 3)(n − 2)

(n + 4)(n + 3)
an−2.

Nicer (previously conjectured) summation formulas for an then follow.

Mathilde Bouvel Generating trees 36 / 38



Here are the nicer formulas

The number an of 2 41 3-avoiding permutations of size n ≥ 2 is

an =
24

(n − 1)n2(n + 1)(n + 2)

n∑
j=0

(
n

j + 2

)(
n + 2

j

)(
n + j + 2

j + 1

)

=
24

(n − 1)n2(n + 1)(n + 2)

n∑
j=0

(
n + 1

j + 3

)(
n + 2

j + 1

)(
n + j + 3

j

)

=
24

(n − 1)n2(n + 1)(n + 2)

n∑
j=0

(
n

j + 2

)(
n + 1

j

)(
n + j + 2

j + 3

)

=
24

(n − 1)n(n + 1)2(n + 2)

n∑
j=0

(
n + 1

j

)(
n + 1

j + 3

)(
n + j + 2

j + 2

)
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Summary and perspectives

What is a combinatorial generating tree, and its (hopefully concise)
encoding by a rewriting rule.

How to turn a rewriting rule into a functional equation for the
multivariate generating function.

How to solve it with the (obstinate) kernel method.

Presented applications on pattern-avoiding permutations

Using generating trees to obtain local and scaling limit results (works
of J. Borga, partly joint with M. Maazoun).

Extensions to other objets.

Generalizations of the generating trees, to widen their scope of
application.

Next talk by Benjamin Testart in two weeks!
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Merci de votre présence !
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