Substitution decomposition of permutations in enumerative combinatorics

Mathilde Bouvel LaBRI, CNRS

CIRM Workshop on Graph Decomposition, Oct. 2010

- 1 Introduction to substitution decomposition of permutations
 - Context
 - Definition
- 2 Applications in combinatorics
 - Enumerative combinatorics
 - Analytic combinatorics
 - → Analysis of algorithms: Perfect sorting by reversals
- 3 Perspectives

Substitution decomposition

- General framework of [Möhring & Radermacher 84]
- Modular decomposition of graphs
- Substitution decomposition or strong interval decomposition of permutations

Relies on:

Substitution decomposition

- a principle for building objects (permutations, graphs) from smaller objects: the substitution.
- some "basic objects" for this construction: simple permutations, prime graphs.

Required properties:

- every object can be decomposed using only "basic objects".
- this decomposition is unique.

Substitution Decomposition of Permutations: Context and Definition

Substitution for permutations

Substitution decomposition

Substitution or inflation : $\sigma = \pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}].$

Example : Here,
$$\pi=132$$
, and

Example : Here,
$$\pi=132$$
, and
$$\begin{cases} \alpha^{(1)}=21= \\ \alpha^{(2)}=132= \\ \alpha^{(3)}=1= \\ \end{cases}$$

Hence $\sigma = 132[21, 132, 1] = 214653$.

Simple permutations

Substitution decomposition

Interval (or block) = set of elements of σ whose positions **and** values form intervals of integers

Example: 5746 is an interval of

2574613

Simple permutation = permutation that has no interval, except the trivial intervals: 1, 2, ..., n and σ

Example: 3174625 is simple.

The smallest simple: 12,21,2413,3142

Substitution decomposition of permutations

Theorem: Every σ (\neq 1) is uniquely decomposed as

- 12... $k[\alpha^{(1)},...,\alpha^{(k)}]$, where the $\alpha^{(i)}$ are \oplus -indecomposable
- $k \dots 21[\alpha^{(1)}, \dots, \alpha^{(k)}]$, where the $\alpha^{(i)}$ are \ominus -indecomposable
- $\blacksquare \pi[\alpha^{(1)}, \dots, \alpha^{(k)}]$, where π is simple of size k > 4

Remarks:

- \blacksquare \oplus -indecomposable : that cannot be written as $12[\alpha^{(1)}, \alpha^{(2)}]$
- First appeared in combinatorics in [Albert & Atkinson 05]
- The $\alpha^{(i)}$ are the maximal strong intervals of σ

Substitution decomposition

Substitution decomposition of permutations

Theorem: Every σ (\neq 1) is uniquely decomposed as

- 12... $k[\alpha^{(1)},...,\alpha^{(k)}]$, where the $\alpha^{(i)}$ are \oplus -indecomposable
- $k \dots 21[\alpha^{(1)}, \dots, \alpha^{(k)}]$, where the $\alpha^{(i)}$ are \ominus -indecomposable
- $\pi[\alpha^{(1)}, \ldots, \alpha^{(k)}]$, where π is simple of size $k \geq 4$

Decomposing recursively inside the $\alpha^{(i)} \Rightarrow$ decomposition tree

- \oplus = 12... k and \ominus = k... 21 = linear nodes.
- π simple of size \geq 4 = prime node.
- No edge $\oplus \oplus$ nor $\ominus \ominus$.
- Ordered trees.

Computation and examples of application

Computation: in linear time. [Uno & Yagiura 00] [Bui Xuan, Habib & Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]

In algorithms:

- Computation of modular decomposition trees through factorizing permutations [Habib, Paul & Viennot 98] [Habib, Montgolfier & Paul 04] [Tedder, Corneil, Habib & Paul 08] [Capelle, Habib & Montgolfier 02] [Bui Xuan, Habib & Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]
- Pattern matching [Bose, Buss & Lubiw 98] [Ibarra 97] [B. & Rossin 06] [B., Rossin & Vialette 07]
- Algorithms for bio-informatics [Bérard, Bergeron, Chauve & Paul 07] [Bérard, Chateau, Chauve, Paul & Tannier 08] [B., Chauve, Mishna & Rossin 09]

Computation and examples of application

Computation: in linear time. [Uno & Yagiura 00] [Bui Xuan, Habib & Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]

In combinatorics:

- Simple permutations [Albert, Atkinson & Klazar 03]
- Classes closed by substitution product [Atkinson & Stitt 02]
 [Brignall 07] [Atkinson, Ruškuc & Smith 09]
- Exhibit the structure of classes [Albert & Atkinson 05] [Brignall, Huczynska & Vatter 08a,08b] [Brignall, Ruškuc & Vatter 08]
 [Bassino, B. & Rossin 08] [Bassino, B., Pierrot & Rossin 09,10]

Substitution Decomposition in Enumerative Combinatorics

- Quick reminder on enumerative combinatorics
- Enumeration of simple permutations
- General results for the enumeration of permutation classes

Enumerative combinatorics: main ideas

C a family of combinatorial objects (permutations)

- Notion of size $(|\sigma| = n \text{ for } \sigma \text{ permutation on } \{1, ..., n\})$
- For any n, finite number of objects of size n
- c_n = number of objects of size n in C

Many ways of providing the enumeration of C:

- Closed formula of c_n
- \blacksquare Recurrence satisfied by c_n
- Asymptotic equivalent of c_n
- **Explicit** expression of the generating function $C(z) = \sum c_n z^n$
- Equations or properties satisfied by the generating function

Enumeration of simple permutations

[Albert, Atkinson & Klazar 03]

Substitution decomposition

- The enumeration sequence of simple permutations is not P-recursive
- \hookrightarrow No hope for a closed formula
 - Asymptotic equivalent: $\frac{n!}{e^2}(1-\frac{4}{n}+\mathcal{O}(\frac{1}{n^2}))$
- \Rightarrow Asymptotically, a proportion $\frac{1}{e^2}$ of decomposition trees are reduced to one prime node.

prime node

Rmk: Asymptotically, the proportion of decomposition trees of this shape is 1 [B., Chauve, Mishna & Rossin 09]

Permutation Represented by $\sigma(1)\sigma(2)\cdots\sigma(n)$ or on a grid

Pattern [Knuth 73] Sub-permutation with normalization Example: $2134 \le 312854796$ since $3279 \equiv 2134$

 $\sigma = 312854796$

Permutation Represented by $\sigma(1)\sigma(2)\cdots\sigma(n)$ or on a grid

Pattern [Knuth 73] Sub-permutation with normalization Example: $2134 \le 312854796$ since $3279 \equiv 2134$

 $\sigma = 312854796$

Permutation Represented by $\sigma(1)\sigma(2)\cdots\sigma(n)$ or on a grid

Pattern [Knuth 73] Sub-permutation with normalization Example: $2134 \le 312854796$ since $3279 \equiv 2134$

 $\sigma = 312854796$

Permutation Represented by $\sigma(1)\sigma(2)\cdots\sigma(n)$ or on a grid

Pattern [Knuth 73] Sub-permutation with normalization Example: $2134 \le 312854796$ since $3279 \equiv 2134$

Substitution Decomposition in Enumerative Combinatorics: Enumeration of Permutation Classes

Permutations, patterns, and permutation classes

Permutation Represented by $\sigma(1)\sigma(2)\cdots\sigma(n)$ or on a grid

Pattern [Knuth 73] Sub-permutation with normalization Example: $2134 \le 312854796$ since $3279 \equiv 2134$

Substitution Decomposition in Enumerative Combinatorics: Enumeration of Permutation Classes

Permutations, patterns, and permutation classes

Permutation Represented by $\sigma(1)\sigma(2)\cdots\sigma(n)$ or on a grid

Pattern [Knuth 73] Sub-permutation with normalization Example: $2134 \le 312854796$ since $3279 \equiv 2134$

Permutation Represented by $\sigma(1)\sigma(2)\cdots\sigma(n)$ or on a grid

Pattern [Knuth 73] Sub-permutation with normalization Example: $2134 \le 312854796$ since $3279 \equiv 2134$

Class Set downward-closed for \preccurlyeq . Characterized by a *(finite or infinite)* basis B of excluded patterns: C = Av(B)

Some results

- Enumeration for many specific B's
- General enumerative result: Stanley-Wilf ex-conjecture [Marcus & Tardos 04] $\exists c$ s.t. $|C \cap S_n| \leq c^n$
- Since 2005: Finding general properties of permutation classes

Substitution decomposition for general enumerative results

Theorem [Albert & Atkinson 05]: If \mathcal{C} contains a finite number of simple permutations, then

- \blacksquare \mathcal{C} has a finite basis
- ullet C has an algebraic generating function

Proof: relies on the substitution decomposition.

Construction: compute the gen. fun. from the simples in $\mathcal C$

Algorithmically:

- Semi-decision procedure
- \hookrightarrow Find simples of size 4, 5, 6, ... until k and k+1 for which there are 0 simples [Schmerl & Trotter 93]
 - Disastrous complexity ($\sim n!$) for computing the simples in C

Substitution decomposition for general enumerative results

Theorem [Brignall, Ruškuc & Vatter 08]: It is decidable whether C given by its finite basis contains a finite number of simples.

Complexity of this procedure: 2ExpTime

Improvement of the complexity:

[Bassino, B., Pierrot & Rossin 09,10]

- For substitution-closed classes: $\mathcal{O}(n \log n)$ with $n = \sum_{\pi \in B} |\pi|$
- In general: $\mathcal{O}(n^{3k})$ with $n = \max_{\pi \in B} |\pi|$ and k = |B|

Proof: relies on the substitution decomposition of pin-permutations

Open questions

- Efficient algorithm for finding the simples in a class instead of the $\mathcal{O}(n!)$ procedure
- Compute algorithmically the generating function automatizing the proof of [Albert & Atkinson 05]
- Perform random generation in permutation classes starting with substitution-closed classes

Substitution Decomposition in **Analytic Combinatorics**

- Analytic combinatorics for analysis of algorithms
- Example of the perfect sorting by reversals

Perfect sorting by reversals

Perfect reversal on a signed permutation $\sigma = \sigma(1) \dots \sigma(n)$

= Reverse the orientation and the signs of a contiguous fragment of the permutation, without breaking any interval

Problem:

Substitution decomposition

- Input: A signed permutation σ
- lacktriangle Output: A parsimonious perfect scenario from σ to Id or Id

Complexity:

- *NP*-hard problem [Figeac & Varré 04]
- FPT algorithm [Bérard, Bergeron, Chauve & Paul 07]: uses the decomposition tree, in time $\mathcal{O}(2^p \cdot n^{\mathcal{O}(1)})$
- Complexity parametrized byp = number of prime nodes (with a prime parent)

$\sigma = 5\overline{6}\overline{7}94\overline{3}12\overline{8}\overline{10}\overline{17}13\overline{15}1211\overline{14}18\overline{19}\overline{16}$

$\sigma = 5\ \overline{6}\ \overline{7}\ 9\ 4\ \overline{3}\ 1\ 2\ \overline{8}\ \overline{10}\ \overline{17}\ 13\ \overline{15}\ 12\ 11\ \overline{14}\ 18\ \overline{19}\ \overline{16}$

$\sigma = 5\ \overline{6}\ \overline{7}\ 9\ 4\ \overline{3}\ 1\ 2\ \overline{8}\ \overline{10}\ \overline{17}\ 13\ \overline{15}\ 12\ 11\ \overline{14}\ 18\ \overline{19}\ \overline{16}$

Substitution Decomposition in Analytic Combinatorics: Analysis of Perfect Sorting by Reversals

Idea of the algorithm on an example

$\sigma = 5\overline{6}\overline{7}94\overline{3}12\overline{8}\overline{10}\overline{17}13\overline{15}1211\overline{14}18\overline{19}\overline{16}$

$\sigma = 5\ \overline{6}\ \overline{7}\ 9\ 4\ \overline{3}\ 1\ 2\ \overline{8}\ \overline{10}\ \overline{17}\ 13\ \overline{15}\ 12\ 11\ \overline{14}\ 18\ \overline{19}\ \overline{16}$

$\sigma = 5\ \overline{6}\ \overline{7}\ 9\ 4\ \overline{3}\ 1\ 2\ \overline{8}\ \overline{10}\ \overline{17}\ 13\ \overline{15}\ 12\ 11\ \overline{14}\ 18\ \overline{19}\ \overline{16}$

Complexity results

Substitution decomposition

Previous results [Bérard, Bergeron, Chauve & Paul 07]:

- $\mathcal{O}(2^p n \sqrt{n \log n})$, where p = number of prime nodes
- **polynomial** on separable permutations (p = 0)

Complexity analysis [B., Chauve, Mishna & Rossin 09]:

- polynomial on average
- \hookrightarrow with lemmas on the number of trees with p prime nodes
 - in a parsimonious scenario for separable permutations
 - average number of reversals $\sim 1.2n$
 - average size of a reversal $\sim 1.02\sqrt{n}$
- with bivariate generating functions and analytic combinatorics

Probability distribution: always uniform

Substitution Decomposition in Analytic Combinatorics: Analysis of Perfect Sorting by Reversals

Average value of parameters with [Flajolet & Sedgewick 09]

Average number of reversals for separable permutations $= \begin{cases} \text{average number of internal nodes (except root)} \\ + \text{ average number of leaves with label different from its parent} \\ = \text{ average number of internal nodes } -1 + n/2 \end{cases}$

Bivariate generating function: $S(x,y) = \sum s_{n,k} x^n y^k$ where $s_{n,k} =$ number of trees with n leaves and k internal nodes

Equation on
$$S(x, y)$$
 giving $S(x, y) = \frac{(x+1) - \sqrt{(x+1)^2 - 4x(y+1)}}{2(y+1)}$

Average number of internal nodes
$$=\frac{\sum_{k} k s_{n,k}}{\sum_{k} s_{n,k}} = \frac{[x^n] \frac{\partial S(x,y)}{\partial y}|_{y=1}}{[x^n] S(x,1)}$$

Asymptotic equivalent
$$\frac{[x^n]\frac{\partial S(x,y)}{\partial y}|_{y=1}}{[x^n]S(x,1)} \sim \frac{n}{\sqrt{2}}$$

Conclusion Asymptotically $\frac{1+\sqrt{2}}{2}n$ reversals on average

Open questions

- Not only the average of the parameters but also variance and distribution
- Extend this analysis to decomposition trees containing some (constrained) prime nodes
- Apply similar methods to other algorithms involving decomposition trees (ex: Double-Cut and Join)

Substitution decomposition

From graphs to permutations and vice-versa

- Further results in combinatorics of permutation classes with substitution decomposition, making use of the many concepts and results on graph decomposition
- Investigate combinatorial or enumerative questions about graphs by adapting the methods that have been developed for permutations