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The context: Sorting by reversals

Biological motivations
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m Model for genome = signed
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m Reversal = reverse a window of the
permutation while changing the signs
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The context: Sorting by reversals

Sorting by reversals: the problem and solution

The problem:
m INPUT: Two signed permutations o4 and o2
B ouTpPuT: A parsimonious scenario from o1 to o2 or o2

Parsimonious = shortest, i.e. minimal number of reversals.
Without loss of generality, co = Id=12...n

The solution:
m Hannenhalli-Pevzner theory
m Polynomial algorithms: from O(n*) to O(n+/nlog n)

Remark: the problem is NP-hard when permutations are unsigned.
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The problem we consider: Perfect sorting by reversals

Definition and motivation

Perfect sorting by reversal: do not break common intervals.

Common interval between oy and o: windows of oy and o
containing the same elements (with no sign)
Example: oy =5137624ando,=6471325

When o> = Id, interval of o = window forming a range (in IN)
Example:c=4756312

Biological argument: groups of identical (or homologous) genes
appearing together in two species are likely

m together in the common ancestor
m never separated during evolution
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The problem we consider: Perfect sorting by reversals

Algorithm and complexity

The problem:
m INPUT: Two signed permutations o4 and o2

m outpuT: A parsimonious perfect scenario (=shortest among
perfect) from oy to o or o2

Without loss of generality, co = Id=12...n
Beware: Parsimonious perfect =5 parsimonious
Complexity: NP-hard problem

Algorithm [Bérard, Bergeron, Chauve, Paul]: take advantage of
decomposition trees to produce a “quasi-polynomial” algorithm
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The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

m Strong interval = does not overlap any other interval
m Inclusion order on strong intervals: a tree-like ordering

] 0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17 \

1,2,3,4,5,6,7,8 9,10, 11, 12,13

1

Computatlon: in linear time
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The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Two types of nodes:
m Linear nodes (O):

m increasing, i.e. quotient permutation=12...k

= label®
m decreasing, i.e. quotient permutation = k (k —1)...21

= label B
m Prime nodes (O): the quotient permutation is simple

Simple permutations: the only intervals are 1, 2,..., nand o
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The problem we consider: Perfect sorting by reversals

ldea of the algorithm

Put labels + or — on the nodes of the decomposition tree of o
m Leaf: sign of the element in o
m Linear node: + for @ (increasing) and — for 8 (decreasing)
m Prime node whose parent is linear: sign of its parent

m Other prime node: ?7?
— Test labels 4+ and — and choose the shortest scenario

Algorithm:

m Perform Hannenhalli-Pevzner (or improved version) on prime
nodes

m Signed node belongs to scenario iff its sign is different from
its linear parent
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The problem we consider: Perfect sorting by reversals

Complexity results

Complexity:

m O(2Pn+/nlog n), with p = § prime nodes
m polynomial on commuting permutations

Our work:
m polynomial with probability 1 asymptotically
m polynomial on average

m in a parsimonious scenario for commuting permutations

m average number of reversals ~ 1.2n
m average length of a reversal ~ 1.02+/n
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Average-case complexity analysis

Average shape of decomposition trees

Enumeration of simple permutations: asymptotically g—;

= Asymptotically, a proportion Z of decom-

-position trees are reduced to one prime node.

Thm: Asymptotically, the proportion of
decomposition trees made of a prime root R /E\ o

with children that are leaves or twins is 1

twin = linear node with only two children, that are leaves

Consequence: Asymptotically, with probability 1, the algorithm
runs in polynomial time.
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Average-case complexity analysis

Average complexity

Average complexity on permutations of size n:

2.p Blo- with p prime nodes} C 2Pn+/nlog n
n!

Thm: When p > 2,

number of permutations of size n with p prime nodes < 81!

2P

Proof: induction on p

Consequence: Average complexity on permutations of size n is
< 50Cn+/nlog n. In particular, polynomial on average.
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Restriction to the class of commuting permutations

Commuting (separable) permutations

Def.: No prime node in decomposition tree

In general, in the computed perfect sorting scenario, reversals =
m linear nodes with label different from its parent
m inside prime nodes

Consequence: For commuting permutations,
reversals = nodes with label different from its linear parent
all internal nodes except the root

leaves with label different from its parent

Remark: Here, scenario = set of intervals, in any order.
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Restriction to the class of commuting permutations

Bijection between commuting perm. and Schréder trees

Decomp. tree of commuting perm. Schréder trees
arity > 2

PR AN
VANDESEN VARPZNN
o NS /\J\ AN

oc=521346121011789
Only nodes @ and B
Labels @ and 8 alternate + label & on the root
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Restriction to the class of commuting permutations

Bijection preserved parameters

Decomp. tree of commuting perm. Schréder trees

N /T\
TN AT

/N (/Y /\J\ AN

+ label & on the root
size of o «— number of leaves
reversal (except leaf) «— internal node (except root)
length of areversal «— number of leaves in the subtree
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Restriction to the class of commuting permutations

Average number of reversals

Average number of reversals for commuting permutations
average number of internal nodes (except root)
+ average number of leaves with label different from its parent
= average number of internal nodes -1 + n/2

Focus on average number of internal nodes in Schréder trees:
using bivariate generating functions.

S(x.y) = > snkx"yk,

where s, x = number of Schréder trees with n leaves and k
internal nodes.
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Restriction to the class of commuting permutations

Generating function for average number of internal nodes

Definition: S(x,y) = 3 snkx"yk,
where s, x = number of Schrdder trees with n leaves and k
internal nodes.

s s

S:.

Functional equation: S(x,y) = x + y1s_(g(’£);)

H .
Solution: S(x, y) = Y= VO i -ax(y+1)

2(y+1)
IS(x.y)
.  Swksax XM= =
Average number of internal nodes = Yoo = IS(a)
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Restriction to the class of commuting permutations

From generating function to asymptotics

Development around singularity (here, 3 -2 V2):

2-v2 _ V3v2-4
m S(x 1)~ B2 - WA (- X2
=1 ~ 3-22 (1- = )—1/2
4V3V2-4 3-2v2
Equivalent of coefficients:

m []S(x 1) ~ L3+ 2v2) L

= [Xn]aS(Xy)lyf ~ 4332f (3+2\/_)

Analytic

. A 68 (x y
Combinatorics

v_7

[x7 8y,

. 3=2V2
x"1S(x.1) 3v2-4"
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Restriction to the class of commuting permutations

Results (1)

Average number of internal nodes in Schrdder trees:

n .
—— asymptotically

V2

This result is valid both for unsigned Schréder trees and for
Schréder trees with a sign (& or 8) on the root.

Average number of reversals for commuting permutations:

n n.  1+42
— -1+ —-ie.

V2 2 2

Remark: Many reversals of length 1: confirm biological
experiments.
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Restriction to the class of commuting permutations

Average length of a reversal

average sum of the lengths of all reversals

Average |ength of a reversal = average number of reversals

an internal node (except root)
a leaf with label different from its parent

A reversal =

Hence, average sum of the lengths of all reversals for commuting
permutations
= average sum of the sizes of all subtrees in a Schréder tree
—n (for the root) —n/2 (for the leaves)

Focus on this average sum.
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Restriction to the class of commuting permutations

Average sum of the lengths of all reversals

Use another bivariate generating function:

X,Y) = D snkx"yk,

where s,k = number of Schréder trees with n leaves and size of
subtrees summing to k,

Functional equation: S(x, y) = xy + %

Sksns  KNEEE o
Solution: Sk = ——rrgr s ~ 28/4 43 —2~2 Vrnd.
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Restriction to the class of commuting permutations

Results (2)

Average sum of the sizes of all subtrees in a Schréder tree:

23/4 |3 — 2 V2 +/zn3 asymptotically

Average sum of the lengths of the reversals: substracting gn does
not change the asymptotics.

Average length of a reversal for commuting permutations:

7/4 _
27/4 \I3 2\/§vn_

n=1.02vn
1+ 2
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Open problems and perspectives

Conclusion and perspectives

Perfect sorting by reversals for signed permutations:

m NP-hard problem
m algorithm running in polynomial time

< on average
— asymptotically with probability 1

Special case of commuting permutations:
m expected length of a parsimonious perfect scenario
m expected length of a reversal in such a scenario

Perspective:
extend this analysis to the Double-Cut-and-Join model.
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