Enumeration of permutations sorted with two passes through a stack and D_{8} symmetries

Cors
Mathilde Bouvel and Olivier Guibert (LaBRI)
19

Definitions: Permutation Patterns, Symmetries, Stack Sorting, Permutation Statistics

Symmetries

Symmetries of the square transform permutations via their diagrams

	Reverse	Complement	Inverse	
•	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
	\bullet	\bullet	\bullet	\bullet
	\bullet	$\mathbf{r}(\sigma)$	$\mathbf{c}(\sigma)$	$\mathbf{i}(\sigma)$

These operators generate an 8-element group: $D_{8}=\{\mathbf{i d}, \mathbf{r}, \mathbf{c}, \mathbf{i}, \mathbf{r} \circ \mathbf{c}, \mathbf{i} \circ \mathbf{r}, \mathbf{i} \circ \mathbf{c}, \mathbf{i} \circ \mathbf{c} \circ \mathbf{r}\}$

Stack sorting
Algorithmic description: Try to sort with a stack satisfying the Hanoi condition

Equivalent recursive description:
$\int \mathbf{S}(\varepsilon)=\varepsilon$
$\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n$ where $n=\max (L n R)$

Some previous results: about Stack Sorting, Permutation Patterns and Enumeration

Notation

For any sorting operator Sort, Id(Sort) denotes
the set of permutations sorted by Sort

One-stack sortable permutations

$\operatorname{ld}(\mathbf{S})=\operatorname{Av}(231)$
Enumeration by Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$ [Knuth 1973]
(West-)two-stack sortable permutations

$$
\operatorname{Id}(\mathbf{S} \circ \mathbf{S})=\operatorname{Av}(2341,3 \overline{5} 241)
$$

Enumeration by $\frac{2(3 n)!}{(n+1)!(2 n+1)!}$ [West 1993, Zeilberger 1992, ..]

First results: Characterization and Enumeration of Permutations Sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ for any $\alpha \in D_{8}$

Characterization with excluded patterns
$\operatorname{Id}(\mathbf{S} \circ \mathbf{S})=\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{c} \circ \mathbf{r} \circ \mathbf{S})=\operatorname{Av}(2341,3 \overline{5} 241)$
$\operatorname{ld}(\mathbf{S} \circ \mathbf{c} \circ \mathbf{S})=\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{r} \circ \mathbf{S})=\operatorname{Av}(231)$
$\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})=\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{c} \circ \mathbf{S})=\operatorname{Av}(1342,31-4-2)$
$\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})=\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{C} \circ \mathbf{S})=\operatorname{Av}(3412,3-4-21)$

Enumeration of $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$
The sets $\operatorname{ld}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$ are enumerated by the same sequence

$$
\left(\frac{2(3 n)!}{(n+1)!(2 n+1)!}\right)_{n}
$$

Enumeration of $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$
The sets $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \mathbf{S})$, Bax and TBax are enumerated by the Baxter numbers. $\operatorname{Bax}=\operatorname{Av}(2-41-3,3-14-2)$ and $\operatorname{TBax}=\operatorname{Av}(2-41-3,3-41-2)$ Enumerated by $B a x_{n}=\frac{2}{n(n+1)^{2}} \sum_{k=1}^{n}\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}$

Method of proof: Generating trees and rewriting systems

Generating tree for $\operatorname{Av}(\pi, \tau, \ldots)$

Infinite tree where

- Vertices at level n are permutations of \mathfrak{S}_{n} avoiding π, τ, \ldots
- Children are obtained by insertion of a new element in an active site
Sites are on one of the four sides of the diagram
Active site: when insertion does not create a pattern π or $\tau \ldots$
Fact
Two classes having isomorphic generating trees are in bijection.

Example: $\operatorname{Av}(321)$ with insertion on the right
Rewriting system $\left\{\begin{array}{l}(2) \\ (k)\end{array}\right.$ $\{(k) \rightsquigarrow(k+1)(2)(3)$.
Proof:

- Labels record the number of sites above all the inversions - Insertion in the topmost site creates one new active site - Insertion in any other site creates an inversion with $\max (\sigma)$

Active sites \diamond are the ones above all the inversions

Generating tree and rewriting system for $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$
Common rewriting system for $\operatorname{ld}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{Id}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$
$\mathcal{R}_{\Phi} \begin{cases}(2,1,(1)) \\ \left(x, k,\left(p_{1}, \ldots, p_{k}\right)\right) \rightsquigarrow & \left(2+p_{j}, j,\left(p_{1}, \ldots, p_{j-1}, i\right)\right) \text { for } 1 \leq j \leq k \text { and } p_{j-1}<i \leq p_{j} \\ & \left(x+1, k+1,\left(p_{1}, \ldots, p_{k}, i\right)\right) \text { for } p_{k}<i \leq x\end{cases}$
$x=$ the number of active sites of $\sigma, \quad k=$ the number of RtoL-max in σ
$p_{\ell}=$ the number of active sites above the ℓ-th RtoL-max in σ

Rewriting system for $\operatorname{Av}(\pi, \tau, \ldots)$

- Associate labels to permutations (e.g. number of active sites)
- Find a rule that describes the labels of the children of σ from the label of σ

Rewriting system encoding the tree $=$

- Label of permutation 1
- Succession rule(s) for the labels of the children

Generating tree and rewriting system for $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$

Common rewriting system for $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ and TBax

$$
\mathcal{R}_{\psi}\left\{\begin{aligned}
&(2,0) \\
&(q, r) \rightsquigarrow(i+1, q+r-i) \text { for } 1 \leq i \leq q \\
&(q, r-j) \text { for } 1 \leq j \leq r
\end{aligned}\right.
$$

Elements are inserted below and to the right of the diagram respectively. $q+r=$ the number of active sites of σ

Further results: Refined Enumeration According to Permutation Statistics

Statistics preserved by the bijection between $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$ and $\operatorname{ld}(\mathbf{S} \circ \mathbf{S})$ Bijection Φ between $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$ and $\operatorname{ld}(\mathbf{S} \circ \mathbf{S})$ preserves the statistics udword, rmax, Imax, zeil, indmax, slmax and slmax or. Consequently, asc, des, maj, maj or, maj oc, maj orc, valley, peak, ddes, dasc, , rir, rdr, lir, ldr are also preserved.
Hence, these statistics are all jointly equidistributed.
Proof: Plug each of these statistics in the common rewriting system

Statistics preserved by the bijection between $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ and Bax des, Imax and comp are jointly equidistributed on $\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ and on Bax. $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S}) \stackrel{\psi}{\longleftrightarrow}$ TBax $\stackrel{[\text { Giraudo 2011] }}{\longleftrightarrow}$ Pairs of twin binary trees $\stackrel{\text { [Giraudo 2011] }}{\longleftrightarrow}$ Bax

| Imax | $\longleftrightarrow \operatorname{Imax}$ | \longleftrightarrow | length of rightmost branch |
| ---: | :--- | :--- | :--- |$\quad \longleftrightarrow$ Imax

