Average-case complexity analysis of perfect sorting by reversals

Mathilde Bouvel $^{1} \quad$ Cedric Chauve ${ }^{2}$ Marni Mishna ${ }^{2}$ Dominique Rossin ${ }^{1}$

Groupe de Travail Combinatoire du Liafa, 18 mars 2010

[^0]
Outline of the talk

1 The context: Sorting by reversals
2 The problem we consider: Perfect sorting by reversals
3 Average-case complexity analysis
4 Restriction to the class of commuting permutations

5 Conclusion

Biological motivations

General framework: Reconstruction of evolution scenarios
\hookrightarrow Only one operation on genome : reversal

Q Genome Research

■ Model for genome = signed permutation

- Reversal = reverse a window of the permutation while changing the signs

$$
1 \overline{7} 6 \overline{10} 9 \overline{8} 2 \overline{11} \overline{3} 54
$$

\Downarrow Reversal \Downarrow

$$
1 \overline{7} 6 \overline{10} 9 \overline{8} 2 \overline{4} \overline{5} 311
$$

■ Scenario = sequence of reversals

Sorting by reversals: the problem and solution

The problem:
■ input: Two signed permutations σ_{1} and σ_{2}
■ оитрит: A parsimonious scenario from σ_{1} to σ_{2} or $\overline{\sigma_{2}}$
Parsimonious = shortest, i.e. minimal number of reversals.
Without loss of generality, $\sigma_{2}=I d=12 \ldots n$

The solution:
■ Hannenhalli-Pevzner theory
■ Polynomial algorithms: from $O\left(n^{4}\right)$ to $O(n \sqrt{n \log n})$

Remark: the problem is NP-hard when permutations are unsigned.

Definition and motivation

Perfect sorting by reversals: do not break common intervals.

Common interval between σ_{1} and σ_{2} : windows of σ_{1} and σ_{2} containing the same elements (with no sign)
Example: $\sigma_{1}=5 \overline{1} \overline{3} 76 \overline{2} 4$ and $\sigma_{2}=6 \overline{4} 71 \overline{3} 2 \overline{5}$
When $\sigma_{2}=I d$, interval of $\sigma_{1}=$ window forming a range (in \mathbb{N}) Example: $\sigma_{1}=4 \overline{7} \overline{5} 63 \overline{1} 2$

Biological argument: groups of identical (or homologous) genes appearing together in two species are likely

■ together in the common ancestor
■ never separated during evolution

Algorithm and complexity

The problem:
■ input: Two signed permutations σ_{1} and σ_{2}
■ output: A parsimonious perfect scenario (=shortest among perfect) from σ_{1} to σ_{2} or $\overline{\sigma_{2}}$

Without loss of generality, $\sigma_{2}=I d=12 \ldots n$

Beware: Parsimonious perfect \nRightarrow parsimonious

Complexity: NP-hard problem

Algorithm [Bérard, Bergeron, Chauve, Paul]: take advantage of decomposition trees to produce a FPT algorithm $\left(2^{p} \cdot n^{O(1)}\right)$

Decomposition trees of (signed) permutations

Also known as strong interval trees
■ Strong interval = does not overlap any other interval
■ Inclusion order on strong intervals: a tree-like ordering

Computation: in linear time

Decomposition trees of（signed）permutations

Quotient permutation＝ order of the children（that are intervals）

Two types of nodes：
■ Linear nodes（ㅁ）：
$■$ increasing，i．e．quotient permutation $=12 \ldots k$
\Rightarrow label $⿴ 囗 十$
■ decreasing，i．e．quotient permutation $=k(k-1) \ldots 21$
\Rightarrow label 日
■ Prime nodes (\bigcirc) ：the quotient permutation is simple

Simple permutations： the only intervals are $1,2, \ldots, n$ and σ

Example：

The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information \Rightarrow forget the leaves and intervals

Simplified decomposition tree

Remark: redundant information \Rightarrow forget the leaves and intervals

Tree uniquely defined by $\left\{\begin{array}{l}\text { labels of internal nodes } \\ + \text { signs of the leaves }\end{array}\right.$

Combinatorial point of view on decomposition trees

Theorem: Every $\sigma(\neq 1)$ is uniquely decomposed as
■ $12 \ldots k\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \oplus-indecomposable ■ $k \ldots 21\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \ominus-indecomposable $\square \pi\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where π is simple of size $k \geq 4$

Ex.: Decomposition tree of $\sigma=56794312810171315121114181916$

The decomposition tree and the strong interval tree of any permutation are identical.

Idea of the algorithm

Put labels + or - on the nodes of the decomposition tree of σ
■ Leaf: sign of the element in σ
$■$ Linear node: + for \boxplus (increasing) and - for \boxminus (decreasing)
■ Prime node whose parent is linear: sign of its parent
■ Other prime node: ???
\hookrightarrow Test labels + and - and choose the shortest scenario

Algorithm:
■ Perform Hannenhalli-Pevzner (or improved version) on prime nodes

■ Signed node belongs to scenario iff its sign is different from its linear parent

The problem we consider: Perfect sorting by reversals

Example of labeled decomposition tree

Complexity results

Complexity:
■ $O\left(2^{p} n \sqrt{n \log n}\right)$, with $p=\sharp$ prime nodes
■ polynomial on commuting permutations $(p=0)$

Our work:
■ polynomial with probability 1 asymptotically
■ polynomial on average
■ in a parsimonious scenario for commuting permutations
■ average number of reversals $\sim 1.2 n$
\square average length of a reversal $\sim 1.02 \sqrt{n}$

Probability distribution: always uniform

Average shape of decomposition trees

Enumeration of simple permutations: asymptotically $\frac{n!}{e^{2}}$
\Rightarrow Asymptotically, a proportion $\frac{1}{e^{2}}$ of decom--position trees are reduced to one prime node.

Thm: Asymptotically, the proportion of decomposition trees made of a prime root with children that are leaves or twins is 1

twin $=$ linear node with only two children, that are leaves
Consequence: Asymptotically, with probability 1, the algorithm runs in polynomial time.

Average complexity

Average complexity on permutations of size n :

$$
\sum_{p=0}^{n} \sharp\{\sigma \text { with } p \text { prime nodes }\} C 2^{p} n \sqrt{n \log n}
$$

$n!$
Thm: When $p \geq 2$,
number of permutations of size n with p prime nodes $\leq \frac{48(n-1) \text { ! }}{2^{p}}$
Proof: induction on p
Consequence: Average complexity on permutations of size n is $\leq 50 C n \sqrt{n \log n}$. In particular, polynomial on average.

Commuting（separable）permutations

Def．：No prime node in decomposition tree
In general，in the computed perfect sorting scenario， reversals＝

■ linear nodes with label different from its parent
－inside prime nodes

Example：

54231687 i．e．

Prop．：No $⿴ 囗 十$－$⿴ 囗 十$ nor $\boxminus-$ 日 edge in decomposition trees

Consequence：For commuting permutations，
reversals $=\left\{\begin{array}{l}\text { all internal nodes except the root } \\ \text { leaves with label different from its parent }\end{array}\right.$

Bijection between commuting perm. and Schröder trees

Decomposition trees of unsigned commuting permutation

Schröder trees

+ label \boxplus on the root
size of σ
reversal (except leaf) length of a reversal
$\longleftrightarrow \quad$ number of leaves
\longleftrightarrow internal node (except root)
$\longleftrightarrow \quad$ number of leaves in the subtree

Average number of reversals

Average number of reversals for commuting permutations
$=\{$ average number of internal nodes (except root) + average number of leaves with label different from its parent
$=$ average number of internal nodes $-1+n / 2$

Focus on average number of internal nodes in (unsigned) Schröder trees: using bivariate generating functions.

$$
S(x, y)=\sum s_{n, k} x^{n} y^{k}
$$

where $s_{n, k}=$ number of Schröder trees with n leaves and k internal nodes.

Generating function for average number of internal nodes

Definition: $S(x, y)=\sum s_{n, k} x^{n} y^{k}$,
where $s_{n, k}=$ number of Schröder trees with n leaves and k internal nodes.
$\mathcal{S}=\bullet+$

Functional equation: $S(x, y)=x+y \frac{S(x, y)^{2}}{1-S(x, y)}$
Solution: $S(x, y)=\frac{(x+1)-\sqrt{(x+1)^{2}-4 x(y+1)}}{2(y+1)}$
Average number of internal nodes $=\frac{\sum_{k} k s_{n, k}}{\sum_{k} s_{n, k}}=\frac{\left.\left[x^{n}\right] \frac{\partial S(x, y)}{\partial y} \right\rvert\, y=1}{\left[x^{n}\right] S(x, 1)}$

From generating function to asymptotics

Tools: Analytic Combinatorics by Ph. Flajolet and R. Sedgewick
Development around singularity (here, $3-2 \sqrt{2}$):
■ $S(x, 1) \sim \frac{2-\sqrt{2}}{2}-\frac{\sqrt{3 \sqrt{2}-4}}{2}\left(1-\frac{x}{3-2 \sqrt{2}}\right)^{1 / 2}$
$\left.\square \frac{\partial S(x, y)}{\partial y}\right|_{y=1} \sim \frac{3-2 \sqrt{2}}{4 \sqrt{3 \sqrt{2}-4}}\left(1-\frac{x}{3-2 \sqrt{2}}\right)^{-1 / 2}$
Equivalent of coefficients:
$\square\left[x^{n}\right] S(x, 1) \sim \frac{\sqrt{3 \sqrt{2}-4}}{4}(3+2 \sqrt{2})^{n} \frac{1}{\sqrt{\pi n^{3}}}$
$\left.\square\left[x^{n}\right] \frac{\partial S(x, y)}{\partial y}\right|_{y=1} \sim \frac{3-2 \sqrt{2}}{4 \sqrt{3 \sqrt{2}-4}}(3+2 \sqrt{2})^{n} \frac{1}{\sqrt{\pi n}}$
Conclusion: $\frac{\left.\left[x^{n}\right] \frac{\partial S(x, y)}{\partial y} \right\rvert\, y=1}{\left[x^{n}\right] S(x, 1)} \sim \frac{3-2 \sqrt{2}}{3 \sqrt{2}-4} n \sim \frac{n}{\sqrt{2}}$

Results (1) : Average number of reversals

Average number of internal nodes in Schröder trees:

$$
\frac{n}{\sqrt{2}} \text { asymptotically }
$$

This result is valid both for unsigned Schröder trees and for Schröder trees with a sign (\boxplus or \boxminus) on the root.

Average number of reversals for commuting permutations:

$$
\frac{n}{\sqrt{2}}-1+\frac{n}{2} \text { i.e. } \frac{1+\sqrt{2}}{2} n \text { asymptotically }
$$

Remark: Many reversals of length 1: confirm biological experiments.

Average length of a reversal

Average length of a reversal $=\frac{\text { average sum of the lengths of all reversals }}{\text { average number of reversals }}$
A reversal $=\left\{\begin{array}{l}\text { an internal node (except root) } \\ \text { a leaf with label different from its parent }\end{array}\right.$

Hence, average sum of the lengths of all reversals for commuting permutations
$=$ average sum of the sizes of all subtrees in a Schröder tree $-n$ (for the root) $-n / 2$ (for the leaves)

Focus on this average sum.

Average sum of the lengths of all reversals

Use another bivariate generating function:

$$
S(x, y)=\sum s_{n, k} x^{n} y^{k},
$$

where $s_{n, k}=$ number of Schröder trees with n leaves and size of subtrees summing to k,

Functional equation: $S(x, y)=x y+\frac{S(x y, y)^{2}}{1-S(x y, y)}$
Solution: $\frac{\sum_{k} k s_{n, k}}{\sum_{k} s_{n, k}}=\frac{\left.\left[x^{n}\right] \frac{\partial S(x, y)}{\partial y}\right|_{y=1}}{\left[x^{n}\right] S(x, 1)} \sim 2^{3 / 4} \sqrt{3-2 \sqrt{2}} \sqrt{\pi n^{3}}$.

Results (2) : Average length of a reversal

Average sum of the sizes of all subtrees in a Schröder tree:

$$
2^{3 / 4} \sqrt{3-2 \sqrt{2}} \sqrt{\pi n^{3}} \text { asymptotically }
$$

Average sum of the lengths of the reversals: substracting $\frac{3}{2} n$ does not change the asymptotics.

Average length of a reversal for commuting permutations:

$$
\frac{2^{7 / 4} \sqrt{3-2 \sqrt{2}}}{1+\sqrt{2}} \sqrt{\pi n} \simeq 1.02 \sqrt{n}
$$

Summary of results

Perfect sorting by reversals for signed permutations:
■ NP-hard problem

- algorithm running in polynomial time
\hookrightarrow on average
\hookrightarrow asymptotically with probability 1
Special case of commuting permutations:
■ expected length of a parsimonious perfect scenario $\sim 1.2 n$
■ expected length of a reversal in such a scenario $\sim 1.02 \sqrt{n}$
using analytic combinatorics techniques

Perspectives

■ Use further analytic combinatorics techniques to get the distribution of the two parameters on commuting permutations
\hookrightarrow With C. Nicaud

- Extend this analysis of parameters to permutations with few prime nodes
■ Perform a similar study of the Double-Cut-and-Join model
\hookrightarrow With C. Chauve

[^0]: ${ }^{1}$ LIAFA, Université Paris Diderot and CNRS, Paris, France.
 ${ }^{2}$ Department of Mathematics, Simon Fraser University, Burnaby, Canada.

