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The context: Sorting by reversals

Biological motivations

General framework: Reconstruction of evolution scenarios
↪→ Only one operation on
genome : reversal

Model for genome = signed
permutation

Reversal = reverse a window of the
permutation while changing the signs

1 7 6 10 9 8 2 11 3 5 4

⇓ Reversal ⇓

1 7 6 10 9 8 2 4 5 3 11

Scenario = sequence of reversals

Mathilde Bouvel

Average-case complexity analysis of perfect sorting by reversals



Sorting by reversals Perfect sorting by reversals Average-case complexity analysis Commuting permutations Conclusion

The context: Sorting by reversals

Sorting by reversals: the problem and solution

The problem:

: Two signed permutations σ1 and σ2

: A parsimonious scenario from σ1 to σ2 or σ2

Parsimonious = shortest, i.e. minimal number of reversals.
Without loss of generality, σ2 = Id = 1 2 . . . n

The solution:

Hannenhalli-Pevzner theory

Polynomial algorithms: from O(n4) to O(n
√

n log n)

Remark: the problem is NP-hard when permutations are unsigned.
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The problem we consider: Perfect sorting by reversals

Definition and motivation

Perfect sorting by reversals: do not break common intervals.

Common interval between σ1 and σ2: windows of σ1 and σ2

containing the same elements (with no sign)
Example: σ1 = 5 1 3 7 6 2 4 and σ2 = 6 4 7 1 3 2 5

When σ2 = Id, interval of σ1 = window forming a range (in �)
Example: σ1 = 4 7 5 6 3 1 2

Biological argument: groups of identical (or homologous) genes
appearing together in two species are likely

together in the common ancestor

never separated during evolution
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The problem we consider: Perfect sorting by reversals

Algorithm and complexity

The problem:

: Two signed permutations σ1 and σ2

: A parsimonious perfect scenario (=shortest among
perfect) from σ1 to σ2 or σ2

Without loss of generality, σ2 = Id = 1 2 . . . n

Beware: Parsimonious perfect⇒� parsimonious

Complexity: NP-hard problem

Algorithm [Bérard, Bergeron, Chauve, Paul]: take advantage of
decomposition trees to produce a FPT algorithm

(
2p · nO(1)

)
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The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Also known as strong interval trees

Strong interval = does not overlap any other interval

Inclusion order on strong intervals: a tree-like ordering

[1..19]
�

[1..9]
2 4 1 3

[5..7]
�

5 6 7

9 [1..4]
�

4 3[1..2]
�

1 2

8

10 [11..19]
3 1 4 2

17 [11..15]
2 4 1 3

13 15

[11..12]
�

1211
14

[18..19]
�

18 19

16

Computation: in linear time
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The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Quotient permutation =
order of the children (that are intervals)

Example: ...
[1..9]
2 4 1 3

[5..7]...
9 [1..4]...

8Two types of nodes:
Linear nodes (�):

increasing, i.e. quotient permutation = 1 2 . . . k
⇒ label �

decreasing, i.e. quotient permutation = k (k − 1) . . . 2 1
⇒ label �

Prime nodes (©): the quotient permutation is simple

Simple permutations:
the only intervals are 1, 2,. . ., n and σ

Example: 425163, i.e.
425163

4 2 5 1 6 3
Mathilde Bouvel
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The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information⇒ forget the leaves and intervals

[1..19]
�

[1..9]
2 4 1 3

[5..7]
�

5 6 7

9 [1..4]
�

4 3 [1..2]
�

1 2

8

10 [11..19]
3 1 4 2

17 [11..15]
2 4 1 3

13 15

[11..12]
�

12 11
14

[18..19]
�

18 19

16
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The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information⇒ forget the leaves and intervals

�

2 4 1 3

�

•
+
•
−
•
−

•
+

�

•
+
•
−

�

•
+
•
+

•
−

•
−

3 1 4 2

•
−

2 4 1 3

•
+
•
−

�

•
+
•
+

•
−

�

•
+
•
−

•
−

Tree uniquely defined by

labels of internal nodes

+signs of the leaves
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The problem we consider: Perfect sorting by reversals

Combinatorial point of view on decomposition trees

Theorem: Every σ (, 1) is uniquely decomposed as
12 . . . k [α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable
k . . . 21[α(1), . . . , α(k)], where the α(i) are 	-indecomposable
π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Ex.: Decomposition tree of σ = 5 6 7 9 4 3 1 2 8 10 17 13 15 12 11 14 18 19 16

�

2 4 1 3
�
•
+
•
−
•
−

•
+

�

•
+
•
−
�
•
+
•
+

•
−

•
−

3 1 4 2
•
−

2 4 1 3
•
+
•
−
�
•
+
•
+

•
−

�

•
+
•
−

•
−

The decomposition tree and the strong interval tree of any
permutation are identical.
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The problem we consider: Perfect sorting by reversals

Idea of the algorithm

Put labels + or − on the nodes of the decomposition tree of σ

Leaf: sign of the element in σ

Linear node: + for � (increasing) and − for � (decreasing)

Prime node whose parent is linear: sign of its parent
Other prime node: ???

↪→ Test labels + and − and choose the shortest scenario

Algorithm:

Perform Hannenhalli-Pevzner (or improved version) on prime
nodes

Signed node belongs to scenario iff its sign is different from
its linear parent
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The problem we consider: Perfect sorting by reversals

Example of labeled decomposition tree

+
�

+
2 4 1 3

+
�

•
+
•
−
•
−

•
+

−
�

•
+
•
−

+
�

•
+
•
+

•
−

•
−

+
3 1 4 2

•
−

???
2 4 1 3

•
+
•
−

−
�

•
+
•
+

•
−

+
�

•
+
•
−

•
−
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The problem we consider: Perfect sorting by reversals

Complexity results

Complexity:

O(2pn
√

n log n), with p = ] prime nodes

polynomial on commuting permutations (p = 0)

Our work:

polynomial with probability 1 asymptotically

polynomial on average
in a parsimonious scenario for commuting permutations

average number of reversals ∼ 1.2n
average length of a reversal ∼ 1.02

√
n

Probability distribution: always uniform
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Average-case complexity analysis

Average shape of decomposition trees

Enumeration of simple permutations: asymptotically n!
e2

⇒ Asymptotically, a proportion 1
e2 of decom- prime node

. . .-position trees are reduced to one prime node.

Thm: Asymptotically, the proportion of prime node

� � � . . .decomposition trees made of a prime root
with children that are leaves or twins is 1

twin = linear node with only two children, that are leaves

Consequence: Asymptotically, with probability 1, the algorithm
runs in polynomial time.
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Average-case complexity analysis

Average complexity

Average complexity on permutations of size n:

n∑
p=0

]{σ with p prime nodes} C 2pn
√

n log n

n!

Thm: When p ≥ 2,
number of permutations of size n with p prime nodes ≤ 48(n−1)!

2p

Proof: induction on p

Consequence: Average complexity on permutations of size n is
≤ 50Cn

√
n log n. In particular, polynomial on average.
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Restriction to the class of commuting permutations

Commuting (separable) permutations

Def.: No prime node in decomposition tree

In general, in the computed perfect sorting scenario,
reversals =

linear nodes with label different from its parent

inside prime nodes

Example:
54231687 i.e.

�

�

5 4 �

2 3

1

6 �

8 7

Prop.: No � − � nor � − � edge in decomposition trees

Consequence: For commuting permutations,

reversals =

all internal nodes except the root

leaves with label different from its parent

Mathilde Bouvel
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Restriction to the class of commuting permutations

Bijection between commuting perm. and Schröder trees

Decomposition trees of Schröder trees
unsigned commuting permutation

�

�

5 �

�

2 1

3 4

6 �

12 �

1011

�

7 8 9

◦

◦

◦

◦

◦

◦ ◦

+ label � on the root
size of σ ←→ number of leaves

reversal (except leaf) ←→ internal node (except root)
length of a reversal ←→ number of leaves in the subtree

Mathilde Bouvel
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Restriction to the class of commuting permutations

Average number of reversals

Average number of reversals for commuting permutations

=

average number of internal nodes (except root)

+ average number of leaves with label different from its parent
= average number of internal nodes −1 + n/2

Focus on average number of internal nodes in (unsigned)
Schröder trees: using bivariate generating functions.

S(x, y) =
∑

sn,k xnyk ,

where sn,k = number of Schröder trees with n leaves and k
internal nodes.
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Restriction to the class of commuting permutations

Generating function for average number of internal nodes

Definition: S(x, y) =
∑

sn,k xnyk ,

where sn,k = number of Schröder trees with n leaves and k
internal nodes.

S = • +

◦

S S . . . S

Functional equation: S(x, y) = x + y S(x,y)2

1−S(x,y)

Solution: S(x, y) =
(x+1)−

√
(x+1)2−4x(y+1)

2(y+1)

Average number of internal nodes =
∑

k ksn,k∑
k sn,k

=
[xn]

∂S(x,y)
∂y |y=1

[xn]S(x,1)
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Restriction to the class of commuting permutations

From generating function to asymptotics

Tools: Analytic Combinatorics by Ph. Flajolet and R. Sedgewick

Development around singularity (here, 3 − 2
√

2):

S(x, 1) ∼ 2−
√

2
2 −

√
3
√

2−4
2 (1 − x

3−2
√

2
)1/2

∂S(x,y)
∂y |y=1 ∼

3−2
√

2

4
√

3
√

2−4
(1 − x

3−2
√

2
)−1/2

Equivalent of coefficients:

[xn]S(x, 1) ∼

√
3
√

2−4
4 (3 + 2

√
2)n 1√

πn3

[xn]
∂S(x,y)
∂y |y=1 ∼

3−2
√

2

4
√

3
√

2−4
(3 + 2

√
2)n 1√

πn

Conclusion:
[xn]

∂S(x,y)
∂y |y=1

[xn]S(x,1)
∼

3−2
√

2
3
√

2−4
n ∼ n√

2
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Restriction to the class of commuting permutations

Results (1) : Average number of reversals

Average number of internal nodes in Schröder trees:

n
√

2
asymptotically

This result is valid both for unsigned Schröder trees and for
Schröder trees with a sign (� or �) on the root.

Average number of reversals for commuting permutations:

n
√

2
− 1 +

n
2

i.e.
1 +
√

2
2

n asymptotically

Remark: Many reversals of length 1: confirm biological
experiments.

Mathilde Bouvel

Average-case complexity analysis of perfect sorting by reversals



Sorting by reversals Perfect sorting by reversals Average-case complexity analysis Commuting permutations Conclusion

Restriction to the class of commuting permutations

Average length of a reversal

Average length of a reversal = average sum of the lengths of all reversals
average number of reversals

A reversal =

an internal node (except root)

a leaf with label different from its parent

Hence, average sum of the lengths of all reversals for commuting
permutations
= average sum of the sizes of all subtrees in a Schröder tree
−n (for the root) −n/2 (for the leaves)

Focus on this average sum.
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Restriction to the class of commuting permutations

Average sum of the lengths of all reversals

Use another bivariate generating function:

S(x, y) =
∑

sn,k xnyk ,

where sn,k = number of Schröder trees with n leaves and size of
subtrees summing to k ,

Functional equation: S(x, y) = xy +
S(xy,y)2

1−S(xy,y)

Solution:
∑

k ksn,k∑
k sn,k

=
[xn]

∂S(x,y)
∂y |y=1

[xn]S(x,1)
∼ 23/4

√
3 − 2

√
2
√
πn3.
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Restriction to the class of commuting permutations

Results (2) : Average length of a reversal

Average sum of the sizes of all subtrees in a Schröder tree:

23/4
√

3 − 2
√

2
√
πn3 asymptotically

Average sum of the lengths of the reversals: substracting 3
2n does

not change the asymptotics.

Average length of a reversal for commuting permutations:

27/4
√

3 − 2
√

2

1 +
√

2

√
πn ' 1.02

√
n
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Conclusion

Summary of results

Perfect sorting by reversals for signed permutations:

NP-hard problem
algorithm running in polynomial time
↪→ on average
↪→ asymptotically with probability 1

Special case of commuting permutations:

expected length of a parsimonious perfect scenario ∼ 1.2n

expected length of a reversal in such a scenario ∼ 1.02
√

n

using analytic combinatorics techniques

Mathilde Bouvel

Average-case complexity analysis of perfect sorting by reversals



Sorting by reversals Perfect sorting by reversals Average-case complexity analysis Commuting permutations Conclusion

Conclusion

Perspectives

Use further analytic combinatorics techniques to get the
distribution of the two parameters on commuting permutations

↪→ With C. Nicaud

Extend this analysis of parameters to permutations with few
prime nodes

Perform a similar study of the Double-Cut-and-Join model

↪→ With C. Chauve
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