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Objects studied : Permutations, Patterns and Classes

Representation of permutations

Permutation : Bijection from [1..n] to itself. Set Sn.

Linear representation :
σ = 1 8 3 6 4 2 5 7

Two lines
representation :

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
Representation as
a product of cycles :
σ = (1) (2 8 7 5 4 6) (3)

Graphical representation :

i

σ(i)
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Objects studied : Permutations, Patterns and Classes

Patterns in permutations

Pattern (order) relation 4 :
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation : π 4 σ.

Equivalently :
The normalization of σi1 . . . σik on
[1..k] yields π.

Example : 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Mathilde Bouvel
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Objects studied : Permutations, Patterns and Classes

Permutation classes

Permutation class : set of permutations downward-closed for 4.

S(B) : the class of permutations that avoid every pattern of B.
If B is an antichain then B is the basis of S(B).

Conversly : Every class C can be characterized by its basis :

C = S(B) for B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}

A class has a unique basis.
A basis can be either finite or infinite.

Origine : [Knuth 73] with stack-sortable permutations = S(231)

Enumeration[Stanley & Wilf 92][Marcus & Tardos 04] : |C ∩ Sn| ≤ cn

Mathilde Bouvel
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Objects studied : Permutations, Patterns and Classes

Problematics

Combinatorics : study of classes defined by their basis.

↪→ Enumeration.

↪→ Exhaustive generation.

Algorithmics : problematics from text algorithmics.

↪→ Pattern matching, longest common pattern.

↪→ Linked with testing the membership of σ to a class.

Combinatorics (and algorithms) : studying classes as a
whole.

↪→ A class is not always described by its basis.

↪→ Detect automatically the structure of a class.
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Main tool : decomposition trees

Substitution decomposition : main ideas

Analogous to the decomposition of integers as products of primes.

[Möhring & Radermacher 84] : general framework.

Specialization : Modular decomposition of graphs.

Relies on :

a principle for building objects (permutations, graphs) from
smaller objects : the substitution.

some “basic objects” for this construction : simple
permutations, prime graphs.

Required properties :

every object can be decomposed using only “basic objects”.

this decomposition is unique.

Mathilde Bouvel
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Main tool : decomposition trees

Substitution for permutations

Substitution or inflation : σ = π[α(1), α(2), . . . , α(k)].

Example : Here, π = 1 3 2, and


α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.
Mathilde Bouvel
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Main tool : decomposition trees

Simple permutations

Interval (or block) = set of elements of
σ whose positions and values form
intervals of integers
Example : 5 7 4 6 is an interval of
2 5 7 4 6 1 3

Simple permutation = permutation that
has no interval, except the trivial
intervals : 1, 2, . . . , n and σ
Example : 3 1 7 4 6 2 5 is simple.

The smallest simple : 1 2, 2 1, 2 4 1 3, 3 1 4 2

Mathilde Bouvel
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Main tool : decomposition trees

Substitution decomposition of permutations

Theorem : Every σ ( 6= 1) is uniquely decomposed as

12 . . . k[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable

k . . . 21[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Remarks :

⊕-indecomposable : that cannot be written as 12[α(1), α(2)]

Rephrasing a result of [Albert & Atkinson 05]

The α(i) are the maximal strong intervals of σ

Decomposing recursively inside the α(i) ⇒ decomposition tree

Mathilde Bouvel
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Main tool : decomposition trees

Decomposition tree : witness of this decomposition

Example : Decomposition tree
of σ =
10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notations and properties :
• ⊕ = 12 . . . k and 	 = k . . . 21
= linear nodes.
• π simple of size ≥ 4 = prime
node.
• No edge ⊕−⊕ nor 	−	.
• Ordered trees.

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

Bijection between permutations and their decomposition trees.

Mathilde Bouvel
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Main tool : decomposition trees

Computation and examples of application

Computation : in linear time. [Uno & Yagiura 00] [Bui Xuan, Habib &

Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]

In algorithms :

Pattern matching [Bose, Buss & Lubiw 98] [Ibarra 97]

Algorithms for bio-informatics [Bérard, Bergeron, Chauve & Paul

07] [Bérard, Chateau, Chauve, Paul & Tannier 08]

In combinatorics :

Simple permutations [Albert, Atkinson & Klazar 03]

Classes closed by substitution product [Atkinson & Stitt 02]

[Brignall 07] [Atkinson, Ruškuc & Smith 09]

Exhibit the structure of classes [Albert & Atkinson 05] [Brignall,

Huczynska & Vatter 08a,08b] [Brignall, Ruškuc & Vatter 08]
Mathilde Bouvel

Some algorithmic and combinatorial problems on permutation classes



Objects Decomposition trees Algorithmics Combinatorics Transverse example Perspectives

Outline

1 Objects studied : Permutations, Patterns and Classes

2 Main tool : decomposition trees

3 Applications in algorithmics

4 Structure of permutations classes in combinatorics

5 A transverse example : perfect sorting by reversals

6 Conclusion and perspectives

Mathilde Bouvel

Some algorithmic and combinatorial problems on permutation classes



Objects Decomposition trees Algorithmics Combinatorics Transverse example Perspectives

Applications in algorithmics

Pattern matching

Problem, which is NP-hard :

Input : pattern σ (size k), permutation τ (size n).

Output : an occurrence of σ in τ if it exists.

Restriction : σ is separable. Polynomial subproblem.

Separable permutations :

Definition by excluded patterns : S(2413, 3142)

Other definition : having a separating tree

Characterization : decomposition tree with no prime node

Mathilde Bouvel
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Applications in algorithmics

Pattern matching of a separable pattern

Dynamic Programming [Bose, Buss & Lubiw 98] [Ibarra 97]

following the guide = separating tree of σ

from the leaves to the root

for windows of positions and values

Complexity : [Bose, Buss & Lubiw 98]

O(kn6) in time

O(kn4) in space

[Ibarra 97]

O(kn4) in time

O(kn3) in space

⇒ Polynomial

Mathilde Bouvel
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Applications in algorithmics

Generalization with decomposition trees

Method :

Dynamic programming.

Consider further the prime nodes of decomposition trees.

Solutions obtained : [B. & Rossin 06] [B., Rossin & Vialette 07]

Pattern matching of any pattern in O(kn2d+2)

Finding a longest common pattern between two permutations,
one of which is separable, in O(min(n1, n2)n1n

6
2)

Finding a longest common pattern between two permutations
in O(min(n1, n2)n1n

2d1+2
2 )

with d = maximal arity of a prime node
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Structure of permutations classes in combinatorics

Structure in permutation classes

Theorem [Albert & Atkinson 05] : If C contains a finite number of
simple permutations, then

C has a finite basis
C has an algebraic generating function (=

P
n |C ∩ Sn|xn)

Proof : relies on the substitution decomposition.
Construction : compute the generating function from the simples
in C

Algorithmically :

Semi-decision procedure
↪→ Find simples of size 4, 5, 6, . . . until k and k + 1 for which

there are 0 simples [Schmerl & Trotter 93]
“Very exponential” (∼ n!) computation of the simples in C

Mathilde Bouvel
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Structure of permutations classes in combinatorics

Finite number of simple permutations : decision

Theorem [Brignall, Ruškuc & Vatter 08] : It is decidable whether C
given by its finite basis contains a finite number of simples.

Prop. C = S(B) contains infinitely many simples iff C contains :

1. either infinitely many parallel permutations

2. or infinitely many simple wedge permutations

3. or infinitely many proper pin-permutations

Decision procedure Complexity

1. and 2. : pattern matching of patterns Polynomial
of size 3 or 4 in the β ∈ B.

3. : Decidability with Decidable
automata techniques 2ExpTime

Mathilde Bouvel
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Structure of permutations classes in combinatorics

The class of pin-permutations

Pin-permutation = that admits a pin representation, i.e. a
sequence (p1, . . . , pn) where each pi satisfies :

the exteriority condition

pi

and

• either the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example :

Encoding by pin words on {1, 2, 3, 4, L,R,U,D} with 3
2 1

4
Mathilde Bouvel
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The class of pin-permutations

Pin-permutation = that admits a pin representation, i.e. a
sequence (p1, . . . , pn) where each pi satisfies :

the exteriority condition

pi

and

• either the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example :
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p2

p5
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Encoding by pin words on {1, 2, 3, 4, L,R,U,D} with 3
2 1
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Structure of permutations classes in combinatorics

The class of pin-permutations

Pin-permutation = that admits a pin representation, i.e. a
sequence (p1, . . . , pn) where each pi satisfies :

the exteriority condition

pi

and

• either the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition
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= bounding box of {p1, . . . , pi−1}
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Structure of permutations classes in combinatorics

The class of pin-permutations

Pin-permutation = that admits a pin representation, i.e. a
sequence (p1, . . . , pn) where each pi satisfies :

the exteriority condition

pi

and

• either the separation condition
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Structure of permutations classes in combinatorics

The class of pin-permutations

Pin-permutation = that admits a pin representation, i.e. a
sequence (p1, . . . , pn) where each pi satisfies :

the exteriority condition

pi

and

• either the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition
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Example :

p6
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Structure of permutations classes in combinatorics

Some results on pin-permutations (1/2)

Characterization of their decomposition trees [Bassino, B. &
Rossin 09]
P = + +

E+ E+ . . . E+

+ +

E+ . . .

N+(P)

. . . E+

+ −

E− E− . . . E−

+ −

E− . . .

N−(P)

. . . E−

+ α

. . .

+ α

. . .

P\{ }

. . .

+ β+

. . .

P\{ }

. . .12

+ β−

. . .

P\{ }

. . .21
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Structure of permutations classes in combinatorics

Some results on pin-permutations (2/2)

Computation of the generating function : rational [BBR09]

P(z) = z 8z6−20z5−4z4+12z3−9z2+6z−1
8z8−20z7+8z6+12z5−14z4+26z3−19z2+8z−1

Infinite basis (still to be determined) [BBR09]

Polynomial algorithm checking whether the number of simples
in S(B) is finite [Bassino, B., Pierrot & Rossin], instead of
the decision procedure of [BRV08]

Mathilde Bouvel
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Structure of permutations classes in combinatorics

Polynomial algorithm for the finite number of simples

Points similar to [BRV08] :

Encoding by pin words on {1, 2, 3, 4, L,R,U,D}
Construction of automata

Study of pin-permutations ⇒ better understanding of the
relationship between pin words and patterns in permutations

Points specific to [BBPR] :

Polynomial construction of a (deterministic, complete)
automaton for the language L = pin words of proper
pin-permutations containing some β ∈ B

Is this language co-finite ? Polynomial.

↪→ Yes iff the class contains finitely many simples.

Mathilde Bouvel
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Structure of permutations classes in combinatorics

Automatic computation of the generating function

What is done :

Deciding the finite number of simples

↪→ Polynomial

Computing the simples in the class

↪→ Exponential

Computing the (algebraic) generating function from the
simples

↪→ Possible on any example

What remains to do :

Automatically compute the generating function from the
simples

Polynomial computation of the set of simples in a class

If C is not given by its finite basis ?

Mathilde Bouvel
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A transverse example : perfect sorting by reversals

Motivations and the model

Genomes = sequences of genes

Only one type of mutation
is possible

Goal : evolution scenario

Group of common genes

≈ Signed permutations

≈ Reversal = reversing a window while
changing the signs

≈ Sequence of reversals

≈ Interval of permutations

1 7 6 10 9 8 2 11 3 5 4

⇓ Reversal ⇓

1 7 6 10 9 8 2 4 5 3 11

Additional constraint for perfect sorting :
do not break any interval

Mathilde Bouvel
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A transverse example : perfect sorting by reversals

Perfect sorting by reversals

Input : Two signed permutations σ1 and σ2

Output : A parcimonious perfect scenario from σ1 to σ2 or σ2

We can always assume that σ2 = Id = 1 2 . . . n

Sorting by reversals : polynomial [Hannenhalli & Pevzner 99]

Perfect sorting by reversals :

NP-hard problem [Figeac & Varré 04]

FPT algorithm [Bérard, Bergeron, Chauve & Paul 07] : uses
the decomposition tree, in time O

(
2p · nO(1)

)
Complexity parametrized by
p = number of prime nodes (with a prime parent)

Mathilde Bouvel
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A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

σ1 = 5 6 7 9 4 3 1 2 8 10 17 13 15 12 11 14 18 19 16

+
⊕

+
2 4 1 3

+
⊕

•
+
•
−
•
−

•
+

−
	

•
+
•
−

+
⊕

•
+
•
+

•
−

•
−

+
3 1 4 2

•
−

???
2 4 1 3

•
+
•
−
−
	

•
+
•
+

•
−

+
⊕

•
+
•
−

•
−
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A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

σ1 = 5 6 7 9 4 3 1 2 8 10 17 13 15 12 11 14 18 19 16

+
⊕

+
2 4 1 3

+
⊕

•
+
•
−
•
−

•
+

−
	

•
+
•
−

+
⊕

•
+
•
+

•
−

•
−

+
3 1 4 2

•
−

???
2 4 1 3

•
+
•
−
−
	

•
+
•
+

•
−

+
⊕

•
+
•
−

•
−

Leaves : sign of σ1(i)
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A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

σ1 = 5 6 7 9 4 3 1 2 8 10 17 13 15 12 11 14 18 19 16

+
⊕

+
2 4 1 3

+
⊕

•
+
•
−
•
−

•
+

−
	

•
+
•
−

+
⊕

•
+
•
+

•
−

•
−

+
3 1 4 2

•
−

???
2 4 1 3

•
+
•
−
−
	

•
+
•
+

•
−

+
⊕

•
+
•
−

•
−

Linear : copy the sign
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A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

σ1 = 5 6 7 9 4 3 1 2 8 10 17 13 15 12 11 14 18 19 16

+
⊕

+
2 4 1 3

+
⊕

•
+
•
−
•
−

•
+

−
	

•
+
•
−

+
⊕

•
+
•
+

•
−

•
−

+
3 1 4 2

•
−

???
2 4 1 3

•
+
•
−
−
	

•
+
•
+

•
−

+
⊕

•
+
•
−

•
−

Prime with linear parent :
sign of the parent
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A transverse example : perfect sorting by reversals

Idea of the algorithm on an example
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A transverse example : perfect sorting by reversals

Idea of the algorithm on an example
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A transverse example : perfect sorting by reversals

Complexity results

Previous results [BBCP07] :

O(2pn
√

n log n), where p = number of prime nodes

polynomial on separable permutations (p = 0)

Complexity analysis [B., Chauve, Mishna & Rossin 09] :

polynomial with probability 1 asymptotically

polynomial on average

in a parsimonious scenario for separable permutations

average number of reversals ∼ 1.2n
average size of a reversal ∼ 1.02

√
n

Probability distribution : always uniforme
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A transverse example : perfect sorting by reversals

“Average” shape of decomposition trees

Enumeration of simple permutations : asymptotically n!
e2

⇒ Asymptotically, a proportion 1
e2 of decom- prime node

. . .-position trees are reduced to one prime node.

Thm : Asymptotically, the proportion of prime node

⊕ 	 ⊕. . .decomposition trees made of a prime root
with children that are leaves or twins is 1

twin = linear node with only two children, that are leaves

Consequence : Asymptotically, with probability 1, the algorithm
runs in polynomial time.
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A transverse example : perfect sorting by reversals

Average complexity

Average complexity on permutations of size n :

n∑
p=0

]{σ with p prime nodes} C 2pn
√

n log n

n!

Thm : When p ≥ 2,
number of permutations of size n with p prime nodes ≤ 48(n−1)!

2p

Consequence : Average complexity on permutations of size n is
≤ 50Cn

√
n log n.

In particular, polynomial on average.
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A transverse example : perfect sorting by reversals

Parameters for separable permutations

Schröder trees ≈ decomposition trees of separable permutations :

Average number of internal nodes : ∼ n√
2

Average value of the sum of the sizes of all subtrees :

∼ 23/4
√

3− 2
√

2
√
πn3

Signed separable permutations :

Average number of reversals : ∼ 1+
√

2
2 n

Average value of the sum of the sizes of all reversals :

∼ 23/4
√

3− 2
√

2
√
πn3

Average size of a reversal : ∼ 27/4
√

3−2
√

2

1+
√

2

√
πn ∼ 1.02

√
n
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Outline

1 Objects studied : Permutations, Patterns and Classes

2 Main tool : decomposition trees

3 Applications in algorithmics

4 Structure of permutations classes in combinatorics

5 A transverse example : perfect sorting by reversals

6 Conclusion and perspectives
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Conclusion and perspectives

Conclusions

With decomposition trees :
Parametrized algorithms for finding patterns

pattern matching
longest common pattern [BR06, BRV07]

Combinatorial study of pin-permutations
example of a permutation class [BBR09]
application for detecting structure [BBPR]

Complexity analysis of algorithms
perfect sorting by reversals [BCMR09]

But also :

Limits in the problem of finding longest common patterns,
with patterns restricted to a class [B., Rossin & Vialette 07]
Combinatorial study of the model of tandem duplication -
random loss [B. et Rossin 09] [B. & Pergola 08]
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Conclusion and perspectives

Perspectives

Pattern matching : NP-hard. Does there exist an algorithm
polynomial in n with a preprocessing of the pattern ?

Computation of generating functions of S(B) when containing
a finite number of simples : some steps still missing

Application to random generation

Precise analysis of other algorithms involving decomposition
trees (Double-Cut and Join)

Extend concepts and results from graph theory to
permutations, and vice-versa

Mathilde Bouvel

Some algorithmic and combinatorial problems on permutation classes



Objects Decomposition trees Algorithmics Combinatorics Transverse example Perspectives

Conclusion and perspectives

Perspectives

Pattern matching : NP-hard. Does there exist an algorithm
polynomial in n with a preprocessing of the pattern ?

Computation of generating functions of S(B) when containing
a finite number of simples : some steps still missing

Application to random generation

Precise analysis of other algorithms involving decomposition
trees (Double-Cut and Join)

Extend concepts and results from graph theory to
permutations, and vice-versa

Thank you !
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polynomial in n with a preprocessing of the pattern ?
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Application to random generation

Precise analysis of other algorithms involving decomposition
trees (Double-Cut and Join)
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