Some algorithmic and combinatorial problems on permutation classes

\star 夫 \star

The point of view of decomposition trees

Mathilde Bouvel

Outline

1 Objects studied: Permutations, Patterns and Classes

2 Main tool: decomposition trees

3 Applications in algorithmics

4 Structure of permutations classes in combinatorics

5 A transverse example : perfect sorting by reversals

6 Conclusion and perspectives

Outline

1 Objects studied: Permutations, Patterns and Classes

2 Main tool: decomposition trees

3 Applications in algorithmics

4 Structure of permutations classes in combinatorics

5 A transverse example : perfect sorting by reversals

6 Conclusion and perspectives

Objects studied : Permutations, Patterns and Classes

Representation of permutations

Permutation : Bijection from [1..n] to itself. Set S_{n}.

- Linear representation:

■ Graphical representation :

$$
\sigma=18364257
$$

- Two lines representation : $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 8 & 3 & 6 & 4 & 2 & 5 & 7\end{array}\right)$
- Representation as a product of cycles :

$$
\sigma=(1)(287546)(3)
$$

Objects studied : Permutations, Patterns and Classes

Patterns in permutations

Pattern (order) relation \preccurlyeq :

$\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation : $\pi \preccurlyeq \sigma$.

Equivalently :

The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

> Example : $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Objects studied : Permutations, Patterns and Classes

Patterns in permutations

Pattern (order) relation \preccurlyeq :

$\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation : $\pi \preccurlyeq \sigma$.

Equivalently :

The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

> Example : $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Objects studied : Permutations, Patterns and Classes

Patterns in permutations

Pattern (order) relation \preccurlyeq :
 $\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation : $\pi \preccurlyeq \sigma$.
Equivalently :
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$
 since $3157 \equiv 2134$.

Permutation classes

Permutation class : set of permutations downward-closed for \preccurlyeq.
$S(B)$: the class of permutations that avoid every pattern of B. If B is an antichain then B is the basis of $S(B)$.

Conversly: Every class \mathcal{C} can be characterized by its basis :

$$
\mathcal{C}=S(B) \text { for } B=\{\sigma \notin \mathcal{C}: \forall \pi \preccurlyeq \sigma \text { such that } \pi \neq \sigma, \pi \in \mathcal{C}\}
$$

A class has a unique basis.
A basis can be either finite or infinite.
Origine : [Knuth 73] with stack-sortable permutations $=S(231)$
Enumeration[Stanley \& Wilf 92][Marcus \& Tardos 04] : $\left|\mathcal{C} \cap S_{n}\right| \leq c^{n}$

Problematics

■ Combinatorics : study of classes defined by their basis.
\hookrightarrow Enumeration.
\hookrightarrow Exhaustive generation.

- Algorithmics : problematics from text algorithmics.
\hookrightarrow Pattern matching, longest common pattern.
\hookrightarrow Linked with testing the membership of σ to a class.
- Combinatorics (and algorithms) : studying classes as a whole.
\hookrightarrow A class is not always described by its basis.
\hookrightarrow Detect automatically the structure of a class.

Outline

1 Objects studied: Permutations, Patterns and Classes

2 Main tool: decomposition trees

3 Applications in algorithmics

4 Structure of permutations classes in combinatorics

5 A transverse example : perfect sorting by reversals

6 Conclusion and perspectives

Mathilde Bouvel
Some algorithmic and combinatorial problems on permutation classes

Substitution decomposition : main ideas

Analogous to the decomposition of integers as products of primes.
■ [Möhring \& Radermacher 84] : general framework.
■ Specialization: Modular decomposition of graphs.
Relies on :

- a principle for building objects (permutations, graphs) from smaller objects : the substitution.
■ some "basic objects" for this construction : simple permutations, prime graphs.
Required properties :
■ every object can be decomposed using only "basic objects".
- this decomposition is unique.

Main tool : decomposition trees

Substitution for permutations

Substitution or inflation: $\sigma=\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$.
Example: Here, $\pi=132$, and $\left\{\begin{array}{l}\alpha^{(1)}=21=\bullet \bullet \\ \alpha^{(2)}=132=\bullet \bullet \\ \alpha^{(3)}=1=\bullet\end{array}\right.$

Hence $\sigma=132[21,132,1]=214653$.

Simple permutations

Interval (or block) = set of elements of σ whose positions and values form intervals of integers
Example : 5746 is an interval of 2574613

Simple permutation $=$ permutation that has no interval, except the trivial intervals : $1,2, \ldots, n$ and σ Example : 3174625 is simple.
The smallest simple : 12, 21,2413,3142

Substitution decomposition of permutations

Theorem : Every $\sigma(\neq 1)$ is uniquely decomposed as
■ $12 \ldots k\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \oplus-indecomposable

- $k \ldots 21\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \ominus-indecomposable
- $\pi\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where π is simple of size $k \geq 4$

Remarks :

- \oplus-indecomposable : that cannot be written as $12\left[\alpha^{(1)}, \alpha^{(2)}\right]$
- Rephrasing a result of [Albert \& Atkinson 05]
- The $\alpha^{(i)}$ are the maximal strong intervals of σ

Decomposing recursively inside the $\alpha^{(i)} \Rightarrow$ decomposition tree

Decomposition tree : witness of this decomposition

Example : Decomposition tree of $\sigma=$ 101312111411819202117161548329567

Notations and properties:
$\bullet \oplus=12 \ldots k$ and $\ominus=k \ldots 21$
= linear nodes.

- π simple of size $\geq 4=$ prime node.
- No edge $\oplus-\oplus$ nor $\ominus-\ominus$.
- Ordered trees.
$\sigma=3142[\oplus[1, \ominus[1,1,1], 1], 1, \ominus[\oplus[1,1,1,1], 1,1,1], 24153[1,1, \ominus[1,1], 1, \oplus[1,1,1]]]$

Bijection between permutations and their decomposition trees.

Computation and examples of application

Computation : in linear time. [Uno \& Yagiura 00] [Bui Xuan, Habib \& Paul 05] [Bergeron, Chauve, Montgolfier \& Raffinot 08]

In algorithms :

- Pattern matching [Bose, Buss \& Lubiw 98] [Ibarra 97]
- Algorithms for bio-informatics [Bérard, Bergeron, Chauve \& Paul 07] [Bérard, Chateau, Chauve, Paul \& Tannier 08]

In combinatorics:

- Simple permutations [Albert, Atkinson \& Klazar 03]

■ Classes closed by substitution product [Atkinson \& Stitt 02] [Brignall 07] [Atkinson, Ruškuc \& Smith 09]
■ Exhibit the structure of classes [Albert \& Atkinson 05] [Brignall, Huczynska \& Vatter 08a,08b] [Brignall, Ruškuc \& Vatter 08]

Outline

1 Objects studied: Permutations, Patterns and Classes

2 Main tool: decomposition trees

3 Applications in algorithmics

4 Structure of permutations classes in combinatorics

5 A transverse example : perfect sorting by reversals

6 Conclusion and perspectives

Pattern matching

Problem, which is NP-hard :
■ Input : pattern σ (size k), permutation τ (size n).

- Output : an occurrence of σ in τ if it exists.

Restriction: σ is separable. Polynomial subproblem.

Separable permutations :
■ Definition by excluded patterns: $S(2413,3142)$
■ Other definition : having a separating tree
■ Characterization : decomposition tree with no prime node

Pattern matching of a separable pattern

Dynamic Programming [Bose, Buss \& Lubiw 98] [Ibarra 97]
\square following the guide $=$ separating tree of σ

- from the leaves to the root

■ for windows of positions and values

Complexity: [Bose, Buss \& Lubiw 98]

- $\mathcal{O}\left(k n^{6}\right)$ in time
- $\mathcal{O}\left(k n^{4}\right)$ in space
[Ibarra 97]
- $\mathcal{O}\left(k n^{4}\right)$ in time
- $\mathcal{O}\left(k n^{3}\right)$ in space
\Rightarrow Polynomial

Generalization with decomposition trees

Method :

- Dynamic programming.
- Consider further the prime nodes of decomposition trees.

Solutions obtained : [B. \& Rossin 06] [B., Rossin \& Vialette 07]

- Pattern matching of any pattern in $\mathcal{O}\left(k n^{2 d+2}\right)$
- Finding a longest common pattern between two permutations, one of which is separable, in $\mathcal{O}\left(\min \left(n_{1}, n_{2}\right) n_{1} n_{2}^{6}\right)$
- Finding a longest common pattern between two permutations in $\mathcal{O}\left(\min \left(n_{1}, n_{2}\right) n_{1} n_{2}^{2 d_{1}+2}\right)$
with $d=$ maximal arity of a prime node

Outline

1 Objects studied: Permutations, Patterns and Classes

2 Main tool: decomposition trees

3 Applications in algorithmics

4 Structure of permutations classes in combinatorics

5 A transverse example : perfect sorting by reversals

6 Conclusion and perspectives

Structure in permutation classes

Theorem [Albert \& Atkinson 05] : If \mathcal{C} contains a finite number of simple permutations, then

- \mathcal{C} has a finite basis
$■ \mathcal{C}$ has an algebraic generating function $\left(=\sum_{n}\left|\mathcal{C} \cap S_{n}\right| x^{n}\right)$
Proof : relies on the substitution decomposition.
Construction : compute the generating function from the simples in \mathcal{C}

Algorithmically :

- Semi-decision procedure
\hookrightarrow Find simples of size $4,5,6, \ldots$ until k and $k+1$ for which there are 0 simples [Schmerl \& Trotter 93]
■ "Very exponential" ($\sim n!$) computation of the simples in \mathcal{C}

Finite number of simple permutations : decision

Theorem [Brignall, Ruškuc \& Vatter 08] : It is decidable whether \mathcal{C} given by its finite basis contains a finite number of simples.

Prop. $\mathcal{C}=S(B)$ contains infinitely many simples iff \mathcal{C} contains:

1. either infinitely many parallel permutations
2. or infinitely many simple wedge permutations
3. or infinitely many proper pin-permutations

	Decision procedure	Complexity
1. and 2.:	pattern matching of patterns of size 3 or 4 in the $\beta \in B$.	Polynomial
$3 .:$	Decidability with automata techniques	Decidable 2ExpTime

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies :
\square the exteriority condition
\square and
either the separation condition

- or the independence condition

Example :

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies :
\square the exteriority condition
\square and
either the separation condition

- or the independence condition

Example :

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies:
\square the exteriority condition
\square and
either the separation condition

- or the independence condition

Example:

1

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies:
p_{i}
Example :

- the exteriority condition
- and
- either the separation condition

- or the independence condition

$=$ bounding box of $\left\{p_{1}, \ldots, p_{i-1}\right\}$
$1 U$

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

Mathilde Bouvel

Some algorithmic and combinatorial problems on permutation classes

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies:
p^{p}
Example :

- the exteriority condition

- and
- either the separation condition

- or the independence condition

$1 U R$

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies:
p^{p}
Example :

- the exteriority condition

- and
- either the separation condition

- or the independence condition

$1 U R D$

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies:
Example :

- the
- and
- either the separation condition
- or the independence condition

$1 \cup R D 3$

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies:
\square the exteriority condition
\square and
p_{i}
Example:

- either the separation condition

- or the independence condition

1 URD3U

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies:

- either the separation condition
- or the independence condition
Example :
- the exteriority condition

p_{i}
- and

$$
{ }^{p_{1} \cdots \beta_{i} i^{-2}}
$$

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

$1 \cup R D 3 U R$

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

The class of pin-permutations

Pin-permutation $=$ that admits a pin representation, i.e. a sequence $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} satisfies:
p_{i} Example :

- the exteriority condition
- and
- either the separation condition

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

$1 \cup R D 3 U R$

Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$ with $\left.\frac{2}{3} \right\rvert\, \frac{1}{4}$

Structure of permutations classes in combinatorics

Some results on pin-permutations (1/2)

■ Characterization of their decomposition trees [Bassino, B. \& Rossin 09]
$\mathcal{P}=$ • +

Mathilde Bouvel
Some algorithmic and combinatorial problems on permutation classes

Some results on pin-permutations (2/2)

- Computation of the generating function : rational [BBR09]

$$
P(z)=z \frac{8 z^{6}-20 z^{5}-4 z^{4}+12 z^{3}-9 z^{2}+6 z-1}{8 z^{8}-20 z^{7}+8 z^{6}+12 z^{5}-14 z^{4}+26 z^{3}-19 z^{2}+8 z-1}
$$

- Infinite basis (still to be determined) [BBR09]

- Polynomial algorithm checking whether the number of simples in $S(B)$ is finite [Bassino, B., Pierrot \& Rossin], instead of the decision procedure of [BRV08]

Polynomial algorithm for the finite number of simples

Points similar to [BRV08] :

- Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$
- Construction of automata

Study of pin-permutations \Rightarrow better understanding of the relationship between pin words and patterns in permutations

Points specific to [BBPR] :

- Polynomial construction of a (deterministic, complete) automaton for the language $\mathcal{L}=$ pin words of proper pin-permutations containing some $\beta \in B$
- Is this language co-finite? Polynomial.
\hookrightarrow Yes iff the class contains finitely many simples.

Automatic computation of the generating function

What is done :
■ Deciding the finite number of simples
\hookrightarrow Polynomial

- Computing the simples in the class
\hookrightarrow Exponential
- Computing the (algebraic) generating function from the simples
\hookrightarrow Possible on any example
What remains to do :
- Automatically compute the generating function from the simples
- Polynomial computation of the set of simples in a class
- If \mathcal{C} is not given by its finite basis?

Outline

1 Objects studied: Permutations, Patterns and Classes

2 Main tool: decomposition trees

3 Applications in algorithmics

4 Structure of permutations classes in combinatorics

5 A transverse example: perfect sorting by reversals

6 Conclusion and perspectives

Mathilde Bouvel
Some algorithmic and combinatorial problems on permutation classes

Motivations and the model

■ Genomes $=$ sequences of genes

- Only one type of mutation is possible
- Goal : evolution scenario
- Group of common genes

\approx Signed permutations
\approx Reversal $=$ reversing a window while changing the signs
\approx Sequence of reversals
\approx Interval of permutations

$$
\begin{gathered}
1 \overline{7} 6 \overline{10} 9 \overline{8} 2 \overline{11} \overline{3} 54 \\
\forall \text { Reversal } \Downarrow \\
1 \overline{7} 6 \overline{10} 9 \overline{8} 2 \overline{4} \overline{5} 311
\end{gathered}
$$

Additional constraint for perfect sorting : do not break any interval

Perfect sorting by reversals

■ Input: Two signed permutations σ_{1} and σ_{2}

- Output: A parcimonious perfect scenario from σ_{1} to σ_{2} or $\overline{\sigma_{2}}$

We can always assume that $\sigma_{2}=I d=12 \ldots n$
Sorting by reversals : polynomial [Hannenhalli \& Pevzner 99]
Perfect sorting by reversals :
■ NP-hard problem [Figeac \& Varré 04]
■ FPT algorithm [Bérard, Bergeron, Chauve \& Paul 07] : uses the decomposition tree, in time $\mathcal{O}\left(2^{p} \cdot n^{\mathcal{O}(1)}\right)$

- Complexity parametrized by $p=$ number of prime nodes (with a prime parent)

A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

$$
\sigma_{1}=5 \overline{6} \overline{7} 94 \overline{3} 12 \overline{8} \overline{10} \overline{17} 13 \overline{15} 1211 \overline{14} 18 \overline{19} \overline{16}
$$

Mathilde Bouvel
Some algorithmic and combinatorial problems on permutation classes

A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

$$
\sigma_{1}=5 \overline{6} \overline{7} 94 \overline{3} 12 \overline{8} \overline{10} \overline{17} 13 \overline{15} 1211 \overline{14} 18 \overline{19} \overline{16}
$$

Mathilde Bouvel
Some algorithmic and combinatorial problems on permutation classes

A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

$$
\sigma_{1}=5 \overline{6} \overline{7} 94 \overline{3} 12 \overline{8} \overline{10} \overline{17} 13 \overline{15} 1211 \overline{14} 18 \overline{19} \overline{16}
$$

Mathilde Bouvel
Some algorithmic and combinatorial problems on permutation classes

A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

$$
\sigma_{1}=5 \overline{6} \overline{7} 94 \overline{3} 12 \overline{8} \overline{10} \overline{17} 13 \overline{15} 1211 \overline{14} 18 \overline{19} \overline{16}
$$

A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

$$
\sigma_{1}=5 \overline{6} \overline{7} 94 \overline{3} 12 \overline{8} \overline{10} \overline{17} 13 \overline{15} 1211 \overline{14} 18 \overline{19} \overline{16}
$$

Mathilde Bouvel
Some algorithmic and combinatorial problems on permutation classes

A transverse example : perfect sorting by reversals

Idea of the algorithm on an example

$$
\sigma_{1}=5 \overline{6} \overline{7} 94 \overline{3} 12 \overline{8} \overline{10} \overline{17} 13 \overline{15} 1211 \overline{14} 18 \overline{19} \overline{16}
$$

Mathilde Bouvel
Some algorithmic and combinatorial problems on permutation classes

Complexity results

Previous results [BBCP07]:

- $\mathcal{O}\left(2^{p} n \sqrt{n \log n}\right)$, where $p=$ number of prime nodes
- polynomial on separable permutations $(p=0)$

Complexity analysis [B., Chauve, Mishna \& Rossin 09] :

- polynomial with probability 1 asymptotically
- polynomial on average
- in a parsimonious scenario for separable permutations
- average number of reversals $\sim 1.2 n$
- average size of a reversal $\sim 1.02 \sqrt{n}$

Probability distribution : always uniforme

"Average" shape of decomposition trees

Enumeration of simple permutations : asymptotically $\frac{n!}{e^{2}}$ \Rightarrow Asymptotically, a proportion $\frac{1}{e^{2}}$ of decom--position trees are reduced to one prime node.

Thm : Asymptotically, the proportion of decomposition trees made of a prime root with children that are leaves or twins is 1

twin $=$ linear node with only two children, that are leaves
Consequence: Asymptotically, with probability 1, the algorithm runs in polynomial time.

Average complexity

Average complexity on permutations of size n :

Thm: When $p \geq 2$,
number of permutations of size n with p prime nodes $\leq \frac{48(n-1) \text { ! }}{2^{p}}$
Consequence : Average complexity on permutations of size n is $\leq 50 C n \sqrt{n \log n}$.
In particular, polynomial on average.

Parameters for separable permutations

Schröder trees \approx decomposition trees of separable permutations :

- Average number of internal nodes : $\sim \frac{n}{\sqrt{2}}$
- Average value of the sum of the sizes of all subtrees: $\sim 2^{3 / 4} \sqrt{3-2 \sqrt{2}} \sqrt{\pi n^{3}}$
Signed separable permutations :
- Average number of reversals : $\sim \frac{1+\sqrt{2}}{2} n$
- Average value of the sum of the sizes of all reversals: $\sim 2^{3 / 4} \sqrt{3-2 \sqrt{2}} \sqrt{\pi n^{3}}$
- Average size of a reversal : $\sim \frac{2^{7 / 4} \sqrt{3-2 \sqrt{2}}}{1+\sqrt{2}} \sqrt{\pi n} \sim 1.02 \sqrt{n}$

Outline

1 Objects studied: Permutations, Patterns and Classes

2 Main tool: decomposition trees

3 Applications in algorithmics

4 Structure of permutations classes in combinatorics

5 A transverse example : perfect sorting by reversals

6 Conclusion and perspectives

Conclusions

With decomposition trees :
■ Parametrized algorithms for finding patterns

- pattern matching
- longest common pattern [BR06, BRV07]

■ Combinatorial study of pin-permutations

- example of a permutation class [BBR09]
- application for detecting structure [BBPR]
- Complexity analysis of algorithms
- perfect sorting by reversals [BCMR09]

But also :

■ Limits in the problem of finding longest common patterns, with patterns restricted to a class [B., Rossin \& Vialette 07]
■ Combinatorial study of the model of tandem duplication random loss [B. et Rossin 09] [B. \& Pergola 08]

Perspectives

■ Pattern matching : NP-hard. Does there exist an algorithm polynomial in n with a preprocessing of the pattern?

- Computation of generating functions of $S(B)$ when containing a finite number of simples : some steps still missing
- Application to random generation

■ Precise analysis of other algorithms involving decomposition trees (Double-Cut and Join)

- Extend concepts and results from graph theory to permutations, and vice-versa

Perspectives

■ Pattern matching : NP-hard. Does there exist an algorithm polynomial in n with a preprocessing of the pattern?

- Computation of generating functions of $S(B)$ when containing a finite number of simples: some steps still missing
- Application to random generation
- Precise analysis of other algorithms involving decomposition trees (Double-Cut and Join)
- Extend concepts and results from graph theory to permutations, and vice-versa

Thank you!

Perspectives

■ Pattern matching : NP-hard. Does there exist an algorithm polynomial in n with a preprocessing of the pattern?

- Computation of generating functions of $S(B)$ when containing a finite number of simples: some steps still missing
- Application to random generation
- Precise analysis of other algorithms involving decomposition trees (Double-Cut and Join)
- Extend concepts and results from graph theory to permutations, and vice-versa

Thank you!

