First-order logic for permutations

Mathilde Bouvel

talk based on joint work with M. Albert and V. Féray

Enumerative Combinatorics meeting at Oberwolfach, May 2018.

- A bijection from $\{1, 2, ..., n\}$ to itself,
- or more generally from X to X, for |X| = n.

Ex.:
$$\sigma = (1, 3, 5, 2)(4, 7)(6)$$

- A bijection from $\{1, 2, ..., n\}$ to itself,
- or more generally from X to X, for |X| = n.
- A word containing exactly once each letter from $\{1, 2, ..., n\}$,
- or more visually a diagram.

Ex.:
$$\sigma = (1, 3, 5, 2)(4, 7)(6) = 3 1 5 7 2 6 4 =$$

- A bijection from $\{1, 2, ..., n\}$ to itself,
- or more generally from X to X, for |X| = n.
- A word containing exactly once each letter from $\{1, 2, ..., n\}$,
- or more visually a diagram.

Ex.:
$$\sigma = (1, 3, 5, 2)(4, 7)(6) = 3 \ 1 \ 5 \ 7 \ 2 \ 6 \ 4 =$$

- The questions addressed are different, depending on the point of view.
- Very few results consider both points of view simultaneously.
- The two points of view are believed to be rather orthogonal.

- A bijection from $\{1, 2, ..., n\}$ to itself,
- or more generally from X to X, for |X| = n.
- A word containing exactly once each letter from $\{1, 2, ..., n\}$,
- or more visually a diagram.

Ex.:
$$\sigma = (1, 3, 5, 2)(4, 7)(6) = 3 \ 1 \ 5 \ 7 \ 2 \ 6 \ 4 =$$

- The questions addressed are different, depending on the point of view.
- Very few results consider both points of view simultaneously.
- The two points of view are believed to be rather orthogonal.

Goal: Give a "proof" that the two points of view are hardly reconciled.

How? Logic to the rescue!

Formalize each point of view as a logic for permutations. More precisely, we consider two first-order (logical) theories.

How? Logic to the rescue!

Formalize each point of view as a logic for permutations. More precisely, we consider two first-order (logical) theories.

For each theory,

- permutations are models of our theory,
- (logical) formulas express properties of the permutations.

How? Logic to the rescue!

Formalize each point of view as a logic for permutations. More precisely, we consider two first-order (logical) theories.

For each theory,

- permutations are models of our theory,
- (logical) formulas express properties of the permutations.

To prove that the two points of view are essentially different, we study the expressivity of the theories:

- describe properties expressible in each theory,
- show that the properties expressible in both theories are trivial.

Two logics for permutations

TOOB: the Theory Of One Bijection (already appeared in the literature)

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:

- its formulas = what the theory can say about its models syntax
- its models = the objects the theory talks about interpretation

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:

- its formulas = what the theory can say about its models syntax
- its models = the objects the theory talks about interpretation

(Finite) models of TOOB:

Pairs (X, R_X) where X is a finite set and R_X a binary relation on X.

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:

- its formulas = what the theory can say about its models syntax
- its models = the objects the theory talks about interpretation

(Finite) models of TOOB:

Pairs (X, R_X) where X is a finite set and R_X a binary relation on X.

Axioms of TOOB: ensure that R_X is a bijection from X to X.

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:

- its formulas = what the theory can say about its models syntax
- its models = the objects the theory talks about interpretation

(Finite) models of TOOB:

Pairs (X, R_X) where X is a finite set and R_X a binary relation on X.

Axioms of TOOB: ensure that R_X is a bijection from X to X.

- Surjectivity: $\forall x \exists y \ yRx$
- Injectivity: $\neg \exists x, y, z (x \neq y \land xRz \land yRz)$

TOOB: the Theory Of One Bijection (already appeared in the literature)

Two components of a logical theory:

- its formulas = what the theory can say about its models syntax
- its models = the objects the theory talks about interpretation

(Finite) models of TOOB:

Pairs (X, R_X) where X is a finite set and R_X a binary relation on X.

Axioms of TOOB: ensure that R_X is a bijection from X to X.

Permutations are models, and every model is a permutation.

(Possibly, up to a conjugating by a bijection between X and $\{1, 2, \ldots, n\}$.)

The relation R_{σ} associated to σ of size n is given by:

$$i R_{\sigma} \sigma(i)$$
 for all $i \leq n$

TOOB: formulas

- Atomic formulas of TOOB are x = y and xRy, for any variables x and y.
 - A variable is intended as representing an element of the permutation.

TOOB: formulas

- Atomic formulas of TOOB are x = y and xRy, for any variables x and y.
 - A variable is intended as representing an element of the permutation.
- Formulas $(\phi, \text{ or } \phi(\mathbf{x}))$ are obtained inductively from the atomic ones using the connectives and quantifiers.
 - $\rightsquigarrow \land, \lor, \neg, \rightarrow, \leftrightarrow.$
 - We restrict ourselves to first-order logic, so we consider only quantification on variables: $\exists x \phi$, $\forall x \phi$.

- Atomic formulas of TOOB are x = y and xRy, for any variables x and y.
 - A variable is intended as representing an element of the permutation.
- Formulas $(\phi, \text{ or } \phi(\mathbf{x}))$ are obtained inductively from the atomic ones using the connectives and quantifiers.
 - $\wedge \wedge$, \vee , \neg , \rightarrow , \leftrightarrow .
 - We restrict ourselves to first-order logic, so we consider only quantification on variables: $\exists x \phi, \forall x \phi$.
- Sentences (ψ) are formulas where all variables are quantified (no free variable).

Ex.: $\phi(x) := xRx$ and $\psi := \exists x xRx$.

- Atomic formulas of TOOB are x = y and xRy, for any variables x and y.
 - A variable is intended as representing an element of the permutation.
- Formulas $(\phi, \text{ or } \phi(\mathbf{x}))$ are obtained inductively from the atomic ones using the connectives and quantifiers.
 - $\wedge \wedge$, \vee , \neg , \rightarrow , \leftrightarrow .
 - We restrict ourselves to first-order logic, so we consider only quantification on variables: $\exists x \phi$, $\forall x \phi$.
- Sentences (ψ) are formulas where all variables are quantified (no free variable).
- **Ex.**: $\phi(x) := xRx$ and $\psi := \exists x xRx$.
- A model of a sentence ψ is a model which in addition satisfies ψ .
- **Ex.**: The models of $\exists x \times Rx$ are the permutations having a fixed point.

A property of permutations is expressible in a theory (here, TOOB) if it can be described by a sentence, *i.e.*, there is a sentence whose models are exactly the permutations for which this property holds.

Ex.: $\psi := \exists x \ xRx$ expresses the property of having a fixed point.

A property of permutations is expressible in a theory (here, TOOB) if it can be described by a sentence, *i.e.*, there is a sentence whose models are exactly the permutations for which this property holds.

Ex.: $\psi := \exists x \ xRx$ expresses the property of having a fixed point.

Definition-by-example of \models : we write $\sigma \models \psi$ when σ has a fixed point.

A property of permutations is expressible in a theory (here, TOOB) if it can be described by a sentence, *i.e.*, there is a sentence whose models are exactly the permutations for which this property holds.

Ex.: $\psi := \exists x \ xRx$ expresses the property of having a fixed point.

Definition-by-example of \models : we write $\sigma \models \psi$ when σ has a fixed point.

In TOOB, only properties about the cycle decomposition of a permutation are expressible.

But not all such! For instance, being a full cycle is not expressible.

A property of permutations is expressible in a theory (here, TOOB) if it can be described by a sentence, *i.e.*, there is a sentence whose models are exactly the permutations for which this property holds.

Ex.: $\psi := \exists x \ xRx$ expresses the property of having a fixed point.

Definition-by-example of \models : we write $\sigma \models \psi$ when σ has a fixed point.

In TOOB, only properties about the cycle decomposition of a permutation are expressible.

But not all such! For instance, being a full cycle is not expressible.

Thm.: If $\sigma \models \psi$, then for any τ in the conjugacy class of σ , $\tau \models \psi$.

In other words, TOOB does not distinguish between conjugate permutations.

TOTO: the Theory Of Two Orders (new as a logic for permutations)

TOTO: the Theory Of Two Orders (new as a logic for permutations)

• Symbols available: same logical symbols (including =), no relation symbol R, but instead, two binary relation symbols $<_P$ and $<_V$

TOTO: the Theory Of Two Orders (new as a logic for permutations)

- Symbols available: same logical symbols (including =), no relation symbol R, but instead, two binary relation symbols $<_P$ and $<_V$
- Axioms: ensure that $<_P$ and $<_V$ represent total orders.

TOTO: the Theory Of Two Orders (new as a logic for permutations)

- Symbols available: same logical symbols (including =), no relation symbol R, but instead, two binary relation symbols $<_P$ and $<_V$
- Axioms: ensure that $<_P$ and $<_V$ represent total orders.
- Models: permutations as pairs of total orders on a finite set:
 - <_P represents the position order between the elements;
 - \bullet < $_V$ represents their value order.
 - Ex.: $\sigma = 0$ is represented for instance by $(\{a,b,c,d,e\},\lhd,\blacktriangleleft)$

where $a \triangleleft b \triangleleft c \triangleleft d \triangleleft e$ and $c \blacktriangleleft a \blacktriangleleft e \blacktriangleleft d \blacktriangleleft b$.

TOTO: the Theory Of Two Orders (new as a logic for permutations)

- Symbols available: same logical symbols (including =), no relation symbol R, but instead, two binary relation symbols $<_P$ and $<_V$
- Axioms: ensure that $<_P$ and $<_V$ represent total orders.
- Models: permutations as pairs of total orders on a finite set:
 - <_P represents the position order between the elements;
 - \bullet < $_V$ represents their value order.
 - Ex.: $\sigma = \bigcup_{\substack{\bullet \text{ is represented for instance by } (\{a,b,c,d,e\},\lhd,\blacktriangleleft)}$

where $a \triangleleft b \triangleleft c \triangleleft d \triangleleft e$ and $c \blacktriangleleft a \blacktriangleleft e \blacktriangleleft d \blacktriangleleft b$.

Summary of differences:

- TOOB speaks about the cycle structure but the total order on {1,2,...,n} is lost.
- TOTO speaks about the relative order of the elements, but the cycle structure is lost.

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ , there exists a sentence whose only model is σ (up to isomorphism on the ground set).

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ , there exists a sentence whose only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

Containment/avoidance of a classical pattern;

Ex.: Avoidance of 231 is expressed by the sentence

$$\phi_{Av(231)} := \neg \exists x \exists y \exists z \ (x <_P y <_P z) \land (z <_V x <_V y)$$

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ , there exists a sentence whose only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

- Containment/avoidance of a classical pattern;
- Extension to consecutive/vincular/mesh patterns (and further);

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ , there exists a sentence whose only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

- Containment/avoidance of a classical pattern;
- Extension to consecutive/vincular/mesh patterns (and further);
- ⊕- (resp. ⊖-)decomposability;
- Generalization to being an inflation of π for any π ;
- Being simple;

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ , there exists a sentence whose only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

- Containment/avoidance of a classical pattern;
- Extension to consecutive/vincular/mesh patterns (and further);
- ⊕- (resp. ⊖-)decomposability;
- Generalization to being an inflation of π for any π ;
- Being simple;
- Being West-k-stack sortable, for any k
 (+ construction of the corresponding sentences)

Inexpressibility results in TOTO

Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that $\sigma \models \psi$ if and only if σ has a fixed point.

Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that $\sigma \models \psi$ if and only if σ has a fixed point.

Intermezzo: Expressing properties of elements of permutations.

- A formula $\phi(x)$ with one (or several) free variable(s) expresses properties of one (or several) element(s) of a permutation.
- Ex: xRx expresses the property that a given element is a fixed point: For π a permutation and a an element of π , we write $(\pi, a) \models \phi(x)$ when a is a fixed point of π .

Thm.: There is no sentence ψ in TOTO such that $\sigma \models \psi$ if and only if σ has a fixed point.

Intermezzo: Expressing properties of elements of permutations.

- A formula $\phi(x)$ with one (or several) free variable(s) expresses properties of one (or several) element(s) of a permutation.
- Ex: xRx expresses the property that a given element is a fixed point: For π a permutation and a an element of π , we write $(\pi, a) \models \phi(x)$ when a is a fixed point of π .

Cor.: There is no formula with one free variable in TOTO expressing the property that a given element is a fixed point.

Thm.: There is no sentence ψ in TOTO such that $\sigma \models \psi$ if and only if σ has a fixed point.

Thm.: There is no sentence ψ in TOTO such that $\sigma \models \psi$ if and only if σ has a fixed point.

Proof strategy:

- Assume such a sentence ψ exists. Call k its quantifier depth (=max. number of nested quantifiers in ψ).
- Exhibit two permutations σ and σ' such that
 - σ has a fixed point but σ' does not; and
 - $\sigma \models \psi$ if and only if $\sigma' \models \psi$. (Actually, σ and σ' satisfy the same sentences of quantifier depth at most k)

Thm.: There is no sentence ψ in TOTO such that $\sigma \models \psi$ if and only if σ has a fixed point.

Proof strategy:

- Assume such a sentence ψ exists. Call k its quantifier depth (=max. number of nested quantifiers in ψ).
- Exhibit two permutations σ and σ' such that
 - σ has a fixed point but σ' does not; and
 - $\sigma \models \psi$ if and only if $\sigma' \models \psi$. (Actually, σ and σ' satisfy the same sentences of quantifier depth at most k)

To show that two permutations satisfy the same sentences, use the Ehrenfeucht-Fraïssé Theorem:

Two permutations σ and σ' satisfy the same sentences of quantifier depth at most k if and only if Duplicator wins the EF-game with k rounds on σ and σ' .

EF-games (a.k.a. Duplicator-Spoiler games)

The setting:

- Two players: Duplicator (D) and Spoiler (S).
- They play on a pair of permutations σ and σ' .
- Goal of D: show that σ and σ' cannot be distinguish in k rounds.
- Goal of S: show that σ and σ' are different.

EF-games (a.k.a. Duplicator-Spoiler games)

The setting:

- Two players: Duplicator (D) and Spoiler (S).
- They play on a pair of permutations σ and σ' .
- Goal of D: show that σ and σ' cannot be distinguish in k rounds.
- Goal of S: show that σ and σ' are different.

At each round i:

- S picks an element s_i in σ or s'_i in σ' ;
- D replicates with an element s'_i or s_i in the other permutation.

EF-games (a.k.a. Duplicator-Spoiler games)

The setting:

- Two players: Duplicator (D) and Spoiler (S).
- They play on a pair of permutations σ and σ' .
- Goal of D: show that σ and σ' cannot be distinguish in k rounds.
- Goal of S: show that σ and σ' are different.

At each round i:

- S picks an element s_i in σ or s'_i in σ' ;
- D replicates with an element s'_i or s_i in the other permutation.

Winner of the EF-game with k rounds:

- D if $\mathbf{s} = (s_1, \dots, s_k)$ and $\mathbf{s}' = (s_1', \dots, s_k')$ are isomorphic, *i.e.*, if the position- and value-orders on \mathbf{s} and \mathbf{s}' are identical;
- S otherwise.

Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Goal: For each k, exhibit σ and σ' such that

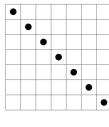
- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

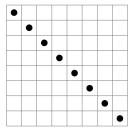
Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k .

Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:



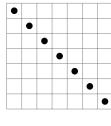


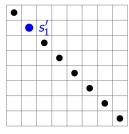
8 7 6 5 4 3 2 1

Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:



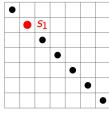


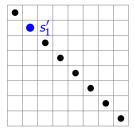
8 7 6 5 4 3 2

Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:



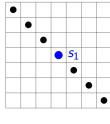


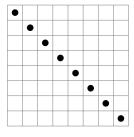
8 7 6 5 4 3 2 1

Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:



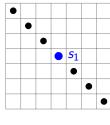


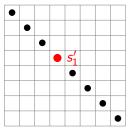
8 7 6 5 4 3 2 1

Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:



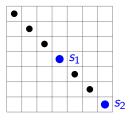


8 7 6 5 4 3 2 1

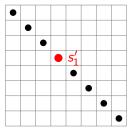
Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:



7 6 5 4 3 2 1

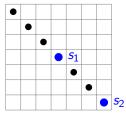


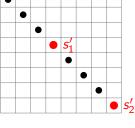
8 7 6 5 4 3 2 1

Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:





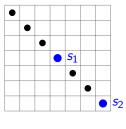
7 6 5 4 3 2 1

8 7 6 5 4 3 2

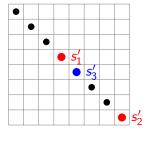
Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:



7 6 5 4 3 2 1

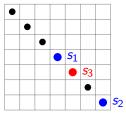


8 7 6 5 4 3 2

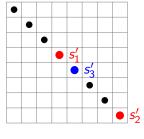
Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:



L



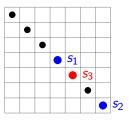
7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Goal: For each k, exhibit σ and σ' such that

- σ has a fixed point but σ' does not;
- D wins the EF-game with k rounds on σ and σ' .

Answer: σ and σ' are decreasing permutations of sizes $2^k - 1$ and 2^k . For k = 3:



7 6 5 4 3 2 1

8 7 6 5 4 3 2

S and *D* alternate turns. After 3 rounds, *D* wins!

Intersection of TOTO and TOOB

Examples of properties expressible in one of TOOB and TOTO only:

- Having a fixed point: expressible in TOOB but not in TOTO;
- Avoiding a 231-pattern: expressible in TOTO but not in TOOB. (TOOB does not distinguish between 231 = (1, 2, 3) and 312 = (1, 3, 2))

Examples of properties expressible in one of TOOB and TOTO only:

- Having a fixed point: expressible in TOOB but not in TOTO;
- Avoiding a 231-pattern: expressible in TOTO but not in TOOB. (TOOB does not distinguish between 231 = (1, 2, 3) and 312 = (1, 3, 2))

Examples of properties expressible in both TOOB and TOTO:

- Being an identity permutation:
 - in TOOB: $\forall x \times Rx$
 - in TOTO: $\forall x \forall y \ (x <_P y \leftrightarrow x <_V y)$

Examples of properties expressible in one of TOOB and TOTO only:

- Having a fixed point: expressible in TOOB but not in TOTO;
- Avoiding a 231-pattern: expressible in TOTO but not in TOOB. (TOOB does not distinguish between 231 = (1, 2, 3) and 312 = (1, 3, 2))

Examples of properties expressible in both TOOB and TOTO:

- Being an identity permutation:
 - in TOOB: ∀x xRx
 - in TOTO: $\forall x \forall y \ (x <_P y \leftrightarrow x <_V y)$
- Being a transposition, *i.e.*, being of cycle type $(2, 1^k)$ for some k:
 - in TOOB: $\exists x \,\exists y \, (x \neq y \land xRy \land yRx) \land (\forall z \, ((z \neq x \land z \neq y) \rightarrow zRz))$
 - in TOTO: Express that the diagram of the permutation looks like

Examples of properties expressible in one of TOOB and TOTO only:

- Having a fixed point: expressible in TOOB but not in TOTO;
- Avoiding a 231-pattern: expressible in TOTO but not in TOOB. (TOOB does not distinguish between 231 = (1, 2, 3) and 312 = (1, 3, 2))

Examples of properties expressible in both TOOB and TOTO:

- Being an identity permutation:
 - in TOOB: ∀x xRx
 - in TOTO: $\forall x \forall y \ (x <_P y \leftrightarrow x <_V y)$
- Being a transposition, *i.e.*, being of cycle type $(2, 1^k)$ for some k:
 - in TOOB: $\exists x \exists y (x \neq y \land xRy \land yRx) \land (\forall z ((z \neq x \land z \neq y) \rightarrow zRz))$
 - in TOTO: Express that the diagram of the permutation looks like

ullet Extension to larger cycle types $\lambda \cup (1^k)$

Which properties are expressible in both TOOB and TOTO?

Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties \mathcal{P} are eventually true or eventually false, where eventually means "for all permutations of sufficiently large support",

Dfn.: The support of a permutation is the set of the non-fixed points.

Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties \mathcal{P} are eventually true or eventually false, where eventually means "for all permutations of sufficiently large support",

i.e., \mathcal{P} is satisfied for all permutations of sufficiently large support or there is a bound on the size of the support of any permutation satisfying \mathcal{P} .

Dfn.: The support of a permutation is the set of the non-fixed points.

Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties \mathcal{P} are eventually true or eventually false, where eventually means "for all permutations of sufficiently large support",

i.e., \mathcal{P} is satisfied for all permutations of sufficiently large support or there is a bound on the size of the support of any permutation satisfying \mathcal{P} .

Dfn.: The support of a permutation is the set of the non-fixed points.

The proof uses EF-games.

Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties \mathcal{P} are eventually true or eventually false, where eventually means "for all permutations of sufficiently large support",

i.e., \mathcal{P} is satisfied for all permutations of sufficiently large support or there is a bound on the size of the support of any permutation satisfying \mathcal{P} .

Dfn.: The support of a permutation is the set of the non-fixed points.

The proof uses EF-games.

 \Rightarrow The intersection of TOOB and TOTO is trivial, so, as claimed, permutations-as-elts-of-the-symmetric-group \neq permutations-as-words.

Which properties are expressible in both TOOB and TOTO?

Thm.: Such properties \mathcal{P} are eventually true or eventually false, where eventually means "for all permutations of sufficiently large support",

i.e., \mathcal{P} is satisfied for all permutations of sufficiently large support or there is a bound on the size of the support of any permutation satisfying \mathcal{P} .

Dfn.: The support of a permutation is the set of the non-fixed points.

The proof uses EF-games.

 \Rightarrow The intersection of TOOB and TOTO is trivial, so, as claimed, permutations-as-elts-of-the-symmetric-group \neq permutations-as-words.

In addition, we have a complete characterization of the properties expressible in both theories.

Exact description of the intersection of TOOB and TOTO

For any partition λ , define

- \mathcal{C}_{λ} the set of permutations of cycle-type λ ;
- $\mathcal{D}_{\lambda} = \biguplus_{k \geq 0} \mathcal{C}_{\lambda \cup (1^k)}$.

Exact description of the intersection of TOOB and TOTO

For any partition λ , define

- \mathcal{C}_{λ} the set of permutations of cycle-type λ ;
- $\mathcal{D}_{\lambda} = \biguplus_{k>0} \mathcal{C}_{\lambda \cup (1^k)}$.

Thm.: A set E of permutations is defined by a property expressible in both TOOB and TOTO if and only if it belongs to the Boolean algebra generated by all \mathcal{C}_{λ} and \mathcal{D}_{λ} (where λ runs over all partitions).

For any partition λ , define

- \mathcal{C}_{λ} the set of permutations of cycle-type λ ;
- $\mathcal{D}_{\lambda} = \biguplus_{k>0} \mathcal{C}_{\lambda \cup (1^k)}$.

Thm.: A set E of permutations is defined by a property expressible in both TOOB and TOTO if and only if it belongs to the Boolean algebra generated by all \mathcal{C}_{λ} and \mathcal{D}_{λ} (where λ runs over all partitions).

Rk: This is more precise than the previous theorem. Indeed:

- ullet in \mathcal{C}_{λ} and \mathcal{D}_{λ} there is a bound on the size of the support.
- the property either E contains all permutations of sufficiently large support, or there is a bound on the size of the support of permutations in E is stable by union, intersection and complement.

Exact description of the intersection of TOOB and TOTO

For any partition λ , define

- \mathcal{C}_{λ} the set of permutations of cycle-type λ ;
- $\mathcal{D}_{\lambda} = \biguplus_{k>0} \mathcal{C}_{\lambda \cup (1^k)}$.

Thm.: A set E of permutations is defined by a property expressible in both TOOB and TOTO if and only if it belongs to the Boolean algebra generated by all \mathcal{C}_{λ} and \mathcal{D}_{λ} (where λ runs over all partitions).

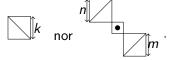
Rk: This is more precise than the previous theorem.

Tricks/tools in the proof:

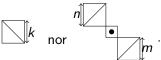
- expressing \mathcal{D}_{λ} in TOTO;
- use previous theorem to write E as a finite union of C_{λ} 's and D_{λ} 's;
- and more EF games!

 Characterization of the permutation classes C such that "having a fixed point" is expressible in the restriction of TOTO to C.

 Characterization of the permutation classes C such that "having a fixed point" is expressible in the restriction of TOTO to C. The condition is: there exist k, n, m such that \mathcal{C} does not contain

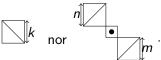


 Characterization of the permutation classes C such that "having a fixed point" is expressible in the restriction of TOTO to C. The condition is: there exist k, n, m such that \mathcal{C} does not contain



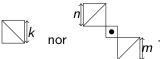
• Formula-variant: Describe classes where TOTO can express (by $\phi(x)$) the property that a given element is a fixed point. The same as above!

 Characterization of the permutation classes C such that "having a fixed point" is expressible in the restriction of TOTO to C. The condition is: there exist k, n, m such that $\mathcal C$ does not contain



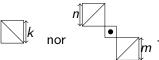
- Formula-variant: Describe classes where TOTO can express (by $\phi(x)$) the property that a given element is a fixed point. The same as above!
- Extension to description of classes where TOTO can express that two (resp. more) given elements form a transposition (resp. cycle).

 Characterization of the permutation classes C such that "having a fixed point" is expressible in the restriction of TOTO to C. The condition is: there exist k, n, m such that \mathcal{C} does not contain



- Formula-variant: Describe classes where TOTO can express (by $\phi(x)$) the property that a given element is a fixed point. The same as above!
- Extension to description of classes where TOTO can express that two (resp. more) given elements form a transposition (resp. cycle).
- But we don't know in which classes the existence of a transposition (resp. cycle of a given size) is expressible in TOTO.

 Characterization of the permutation classes C such that "having a fixed point" is expressible in the restriction of TOTO to C. The condition is: there exist k, n, m such that \mathcal{C} does not contain



- Formula-variant: Describe classes where TOTO can express (by $\phi(x)$) the property that a given element is a fixed point. The same as above!
- Extension to description of classes where TOTO can express that two (resp. more) given elements form a transposition (resp. cycle).
- But we don't know in which classes the existence of a transposition (resp. cycle of a given size) is expressible in TOTO.
- Further project with M. Noy: Prove convergence laws in permutation classes (for properties expressible in TOTO).