A general theory of Wilf-equivalence for permutation classes $Av(231, \pi)$, and other Catalan structures

Mathilde Bouvel (Universität Zürich)

joint work with Michael Albert (University of Otago)

Permutation Patterns 2014

Wilf-equivalence

- Av(B) is the class of permutations avoiding all patterns in B.
- (a_n) where $a_n = |\operatorname{Av}_n(B)|$ is its enumeration sequence.
- Its generating function is $\sum a_n t^n$.
- Two permutation classes $Av(B_1)$ and $Av(B_2)$ are Wilf-equivalent if they have the same enumeration sequence (or generating function).

Wilf-equivalence

- Av(B) is the class of permutations avoiding all patterns in B.
- (a_n) where $a_n = |\operatorname{Av}_n(B)|$ is its enumeration sequence.
- Its generating function is $\sum a_n t^n$.
- Two permutation classes $Av(B_1)$ and $Av(B_2)$ are Wilf-equivalent if they have the same enumeration sequence (or generating function).

More or less famous Wilf-equivalences:

- Av(123) and Av(231), enumerated by the Catalan numbers Cat_n
- There are three Wilf-equivalence classes for permutation classes $Av(\pi)$ with π of size 4, the enumeration of Av(1324) being open.
- Check all Wilf-equivalences between $Av(\pi, \tau)$ when π and τ have size 3 or 4 on Wikipedia.
- Some results for arbitrary long patterns: $\operatorname{Av}(231 \oplus \pi)$ and $\operatorname{Av}(312 \oplus \pi)$ [West & Stankova 02]

Harmless assumption: In Av(231, π) throughout the talk, π avoids 231.

Harmless assumption: In Av(231, π) throughout the talk, π avoids 231.

Known results: Three families of patterns π such that the generating function of Av(231, π) is C_n , where $n = |\pi|$, defined by $C_0 = 1$, $C_{n+1} = \frac{1}{1-t C_n}$ [Mansour & Vainshtein 01+02; Albert & Bouvel 13]

Remark: The generating functions C_n are truncations at level n of the continued fraction defining the generating function of Catalan numbers:

Harmless assumption: In Av(231, π) throughout the talk, π avoids 231.

Known results: Three families of patterns π such that the generating function of $\operatorname{Av}(231, \pi)$ is C_n , where $n = |\pi|$, defined by $C_0 = 1$, $C_{n+1} = \frac{1}{1-t C_n}$ [Mansour & Vainshtein 01+02; Albert & Bouvel 13]

New results on this topic:

• Description of all patterns π of size *n* such that the generating function of Av(231, π) is C_n .

• There are
$$Motz_n = \sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} Cat_k$$
 such patterns.

- Bijections between $Av(231, \pi)$ and $Av(231, \pi')$ for any such patterns.
- For τ of size *n*, the generating function of $Av(231, \tau)$ either is C_n or C_n dominates it term by term (and eventually strictly).

Harmless assumption: In Av(231, π) throughout the talk, π avoids 231.

Known results: Three families of patterns π such that the generating function of Av(231, π) is C_n , where $n = |\pi|$, defined by $C_0 = 1$, $C_{n+1} = \frac{1}{1-t C_n}$ [Mansour & Vainshtein 01+02; Albert & Bouvel 13]

New results on this topic:

• Description of all patterns π of size *n* such that the generating function of Av(231, π) is C_n .

• There are
$$Motz_n = \sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} Cat_k$$
 such patterns.

- Bijections between $Av(231, \pi)$ and $Av(231, \pi')$ for any such patterns.
- For τ of size *n*, the generating function of $Av(231, \tau)$ either is C_n or C_n dominates it term by term (and eventually strictly).

Main objective: Find all Wilf-equivalences between classes $Av(231, \pi)$.

Substructures in Catalan objects

• 231-avoiding permutations

Dyck paths

Plane forests

Arch systems

• Complete binary trees

• 231-avoiding permutations

• Plane forests

• Complete binary trees

• Dyck paths

• Arch systems

• 231-avoiding permutations

Plane forests

• Complete binary trees

• Dyck paths

• Arch systems

• 231-avoiding permutations

~

Plane forests

• Complete binary trees

Arch systems

• 231-avoiding permutations

Plane forests

• Complete binary trees

• Dyck paths

• Arch systems

• 231-avoiding permutations

• Dyck paths

• Plane forests

• Complete binary trees

• 231-avoiding permutations

• Dyck paths

• Plane forests

• Complete binary trees

• 231-avoiding permutations

• Plane forests

Dyck paths

• Arch systems

• Complete binary trees

Fact: The usual bijections relating our quartet of Catalan structures preserve the substructure relation.

Classes of arch systems instead of $Av(231, \pi)$

• The following bijection between 231-avoiding permutations and arch systems preserves the substructure relation:

- Therefore, for all π avoiding 231, $\operatorname{Av}(231, \pi) \xleftarrow{\varphi} \operatorname{Av}(\varphi(\pi))$.
- We will study classes Av(A) of arch systems avoiding some subsystem A, but all results can be translated to classes $Av(231, \pi)$ via φ .

Questions addressed in this talk

- Which arch systems A are Wilf-equivalent?
 i.e. which classes Av(A) have the same enumeration?
- Bijections between Av(A) and Av(B) for Wilf-equivalent arch systems A and B?
- How many Wilf-equivalence classes of arch systems are there?

Questions addressed in this talk

- Which arch systems A are Wilf-equivalent?
 i.e. which classes Av(A) have the same enumeration?
- Bijections between Av(A) and Av(B) for Wilf-equivalent arch systems A and B?
- How many Wilf-equivalence classes of arch systems are there?

Observation and terminology:

An arch system is a concatenation of atoms, i.e. (non-empty) arch systems having a single outermost arch.

An equivalence relation strongly related to Wilf-equivalence The binary relation, \sim , is the finest equivalence relation that satisfies:

(1)
$$A \sim B \implies \widehat{(A)} \sim \widehat{(B)}$$

(2) $a \sim b \implies PaQ \sim PbQ$
(3) $PabQ \sim PbaQ$
(4) $a\widehat{(bc)} \sim \widehat{(ab)}c$

where A, B, P and Q denote arbitrary arch systems and a, b and c denote atoms or empty arch systems. The binary relation, \sim , is the finest equivalence relation that satisfies:

(1)
$$A \sim B \implies \widehat{(A)} \sim \widehat{(B)}$$

(2) $a \sim b \implies PaQ \sim PbQ$
(3) $PabQ \sim PbaQ$
(4) $a\widehat{(bc)} \sim \widehat{(ab)}c$

where A, B, P and Q denote arbitrary arch systems and a, b and c denote atoms or empty arch systems.

Terminology: The equivalence classes of \sim are called cohorts.

\sim is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

\sim is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Conjecture: \sim coincides with Wilf-equivalence.

Data, obtained with PermLab:

The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $Cat_{15} = 9,694,845$ arch systems).

\sim is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Conjecture: \sim coincides with Wilf-equivalence.

Data, obtained with PermLab:

The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $Cat_{15} = 9,694,845$ arch systems).

Additional results:

- Asymptotic enumeration of the number of cohorts.
- One cohort of arch systems of size n (conjecturally the biggest one) contains $Motz_n$ arch systems, and for A in this cohort Av(A) is enumerated by C_n .
- Comparison of the enumeration sequences of Av(A) and Av(B).

Idea of the proof

Overview of the proof

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Overview of the proof... by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Base case: If A = B then Av(A) and Av(B) are Wilf-equivalent...

Inductive case: One case for each rule defining \sim .

Rule	bijective proof	analytic proof
$(1) A \sim B \implies (\widehat{A}) \sim (\widehat{B})$	yes	-
(2) $a \sim b \implies PaQ \sim PbQ$	yes	-
(3) $PabQ \sim PbaQ$	yes	_
(4) $a[bc] \sim [ab]c$	no	yes

Overview of the proof... by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Base case: If A = B then Av(A) and Av(B) are Wilf-equivalent...

Inductive case: One case for each rule defining \sim .

Rule	bijective proof	analytic proof
$(1) A \sim B \implies (A) \sim (B)$	yes	_
(2) $a \sim b \implies PaQ \sim PbQ$	yes	_
(3) $PabQ \sim PbaQ$	yes	_
(4) $a[bc] \sim [ab]c$	no	yes
(4 weak) $a(b) \sim ba$	yes	_

Overview of the proof... by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Base case: If A = B then Av(A) and Av(B) are Wilf-equivalent...

Inductive case: One case for each rule defining $\sim\!\!.$

Rule	bijective proof	analytic proof
$(1) A \sim B \implies (\overline{A}) \sim (\overline{B})$	yes	_
(2) $a \sim b \implies PaQ \sim PbQ$	yes	-
(3) $PabQ \sim PbaQ$	yes	-
$(4) a[bc] \sim [ab]c$	no	yes
(4 weak) $a[b] \sim ba$	yes	-

Having only bijective proofs would allow to "unfold" the induction into a bijective proof that Av(A) and Av(B) are Wilf-equivalent, for all $A \sim B$.

(2)
$$a \sim b \implies PaQ \sim PbQ$$

Take $a \sim b$ and suppose that Av(a) and Av(b) are Wilf-equivalent. Take a size-preserving bijection $\sigma : X \mapsto X^{\sigma}$ from Av(a) to Av(b). Build a size-preserving bijection τ from Av(PaQ) to Av(PbQ) as follows:

(2)
$$a \sim b \implies PaQ \sim PbQ$$

Take $a \sim b$ and suppose that Av(a) and Av(b) are Wilf-equivalent.

Take a size-preserving bijection $\sigma : X \mapsto X^{\sigma}$ from Av(a) to Av(b).

Build a size-preserving bijection τ from Av(PaQ) to Av(PbQ) as follows:

- If X avoids PQ, then take $X^{\tau} = X$.
- Otherwise, apply σ to all intervals determined by the arches having one extremity between the leftmost P and the rightmost Q:

• X^{τ} avoids PbQ if and only if X avoids PaQ.

Analytic proof in case (4)

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: $a = [\overline{A}], b = [\overline{B}]$ and $c = [\overline{C}].$ $F_X =$ the generating function of Av(X). We want that $F_{a(bc)} = F_{(ab)c}$.

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: $a = (\overline{A}), b = (\overline{B})$ and $c = (\overline{C})$. F_X = the generating function of $\operatorname{Av}(X)$. We want that $F_{a(\overline{bc})} = F_{(\overline{ab})c}$. • Compute a system for $F_{a(\overline{bc})}$: $F_{a(\overline{bc})} = 1 + tF_AF_{a(\overline{bc})} + t(F_{a(\overline{bc})} - F_A)F_{(\overline{bc})}$

$$Av(a\overline{bc}) = \varepsilon + \overline{X}Y + \overline{Z}T$$

X avoids A Z contains A

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: a = [A], b = [B] and c = [C]. F_X = the generating function of Av(X). We want that $F_{a(bc)} = F_{(ab)c}$.

• Compute a system for $F_{a(bc)}$:

$$F_{a(bc)} = 1 + tF_A F_{a(bc)} + t(F_{a(bc)} - F_A)F_{(bc)}$$

$$F_{(bc)} = 1 + tF_{bc}F_{(bc)}$$

$$F_{bc} = 1 + tF_B F_{bc} + t(F_{bc} - F_B)F_c$$

$$F_c = 1 + tF_C F_c$$

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: $a = [\overline{A}], b = [\overline{B}]$ and $c = [\overline{C}].$ $F_X =$ the generating function of Av(X). We want that $F_{a(\overline{bc})} = F_{(\overline{ab})c}.$

- Compute a system for $F_{a(bc)}$:
- The solution $F_{a(bc)}$ is a terrible mess depending in F_A , F_B and F_C

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: $a = (\overline{A}), b = (\overline{B})$ and $c = (\overline{C}).$ F_X = the generating function of Av(X). We want that $F_{a(bc)} = F_{(ab)c}$.

- Compute a system for $F_{a(bc)}$:
- The solution $F_{a(bc)}$ is a terrible mess depending in F_A , F_B and F_C ... but symmetric in F_A , F_B and F_C !

• Consequently,
$$F_{a(bc)} = F_{c(ab)} = F_{(ab)c}$$
.

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: a = [A], b = [B] and c = [C]. $F_X =$ the generating function of Av(X). We want that $F_{a(bc)} = F_{(ab)c}$.

- Compute a system for $F_{a(bc)}$:
- The solution $F_{a(bc)}$ is a terrible mess depending in F_A , F_B and F_C ... but symmetric in F_A , F_B and F_C !
- Consequently, $F_{a(bc)} = F_{c(ab)} = F_{(ab)c}$.
- Using $F_{(\widehat{X})} = 1/(1-tF_X)$, we can write:

$$F_{a(\overline{bc})} = \frac{1 - t(F_aF_b + F_bF_c + F_cF_a - F_aF_bF_c)}{1 - t(F_a + F_b + F_c - F_aF_bF_c)}$$

Enumeration of cohorts

1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709...

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $\textit{Cat}_n \sim rac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$ distinct permutation classes $\operatorname{Av}(231,\pi)$

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $Cat_n \sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$ distinct permutation classes $Av(231, \pi)$

Non-plane forests

• If $\psi(\pi)$ and $\psi(\pi')$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(231, \pi')$ are Wilf-equivalent.

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $Cat_n \sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$ distinct permutation classes Av(231, π)

Non-plane forests

- If $\psi(\pi)$ and $\psi(\pi')$ are isomorphic as non-plane forests, then $Av(231, \pi)$ and $Av(231, \pi')$ are Wilf-equivalent.
- It follows because the arch systems of π and π' are ~-equivalent, as non-plane isomorphism corresponds to rules (3) PabQ ~ PbaQ,
 (1) A ~ B ⇒ (A) ~ (B) and (2) a ~ b ⇒ PaQ ~ PbQ.

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $Cat_n \sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$ distinct permutation classes Av(231, π)

Non-plane forests

- If $\psi(\pi)$ and $\psi(\pi')$ are isomorphic as non-plane forests, then $Av(231, \pi)$ and $Av(231, \pi')$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}$ is an upper bound on the number of Wilf-classes of classes $Av(231, \pi)$

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $Cat_n \sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$ distinct permutation classes Av(231, π)

Non-plane forests

- If $\psi(\pi)$ and $\psi(\pi')$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(231, \pi')$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}$ is an upper bound on the number of Wilf-classes of classes $Av(231, \pi)$

Cohorts

• = equivalence classes of non-plane forest for (4) $a bc \sim abc$

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $Cat_n \sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$ distinct permutation classes Av(231, π)

Non-plane forests

- If $\psi(\pi)$ and $\psi(\pi')$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(231, \pi')$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}$ is an upper bound on the number of Wilf-classes of classes $Av(231, \pi)$

Cohorts

- = equivalence classes of non-plane forest for (4) $a(bc) \sim (ab)c$
- The generating function of cohorts is A(t)/t where

$$A = t + tA + \frac{1}{t}MSet_{\geq 2}(t^2MSet_{\geq 3}(A)) + tMSet_{\geq 3}(A)$$

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $Cat_n \sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$ distinct permutation classes Av(231, π)

Non-plane forests

- If $\psi(\pi)$ and $\psi(\pi')$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(231, \pi')$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}$ is an upper bound on the number of Wilf-classes of classes $Av(231, \pi)$

Cohorts

- = equivalence classes of non-plane forest for (4) $a(bc) \sim (ab)c$
- The number of cohorts of size $n \sim 0.455 \cdot 2.4975^n \cdot n^{-3/2}$ is an upper bound on the number of Wilf-classes of classes $Av(231, \pi)$

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $Cat_n \sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$ distinct permutation classes Av(231, π)

Non-plane forests

- If $\psi(\pi)$ and $\psi(\pi')$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(231, \pi')$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}$ is an upper bound on the number of Wilf-classes of classes $Av(231, \pi)$

Cohorts

- = equivalence classes of non-plane forest for (4) $a(bc) \sim (ab)c$
- The number of cohorts of size n ~ 0.455 · 2.4975ⁿ · n^{-3/2} is an upper bound on the number of Wilf-classes of classes Av(231, π)

Moral of the story: Many Wilf-equivalences between classes $Av(231, \pi)!$

- ~ refines Wilf-equivalence between permutation classes $Av(231, \pi)$.
- Conjecture: \sim and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either A ~ B or | Av_{2n-2}(A)| ≠ | Av_{2n-2}(B)|.

- ~ refines Wilf-equivalence between permutation classes $Av(231, \pi)$.
- Conjecture: \sim and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either A ~ B or | Av_{2n-2}(A)| ≠ | Av_{2n-2}(B)|.
- Asymptotic enumeration of cohorts, *i.e.* equivalence classes for \sim .
- It is conjecturally the number of Wilf-classes of classes $Av(231, \pi)$.

- ~ refines Wilf-equivalence between permutation classes $Av(231, \pi)$.
- Conjecture: \sim and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either A ~ B or | Av_{2n-2}(A)| ≠ | Av_{2n-2}(B)|.
- Asymptotic enumeration of cohorts, *i.e.* equivalence classes for \sim .
- It is conjecturally the number of Wilf-classes of classes $Av(231, \pi)$.
- Find a completely bijective proof that \sim refines Wilf-equivalence.
- Improve comparison of enumerations of $Av(231, \pi)$ and $Av(231, \pi')$.

- ~ refines Wilf-equivalence between permutation classes $Av(231, \pi)$.
- Conjecture: \sim and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either A ~ B or | Av_{2n-2}(A)| ≠ | Av_{2n-2}(B)|.
- Asymptotic enumeration of cohorts, *i.e.* equivalence classes for \sim .
- It is conjecturally the number of Wilf-classes of classes $Av(231, \pi)$.
- Find a completely bijective proof that \sim refines Wilf-equivalence.
- Improve comparison of enumerations of $Av(231, \pi)$ and $Av(231, \pi')$.
- Conjecture: The cohort of classes Av(231, π) that have generating function C_n (largest possible) is the cohort with the largest cardinality.

- ~ refines Wilf-equivalence between permutation classes $Av(231, \pi)$.
- Conjecture: \sim and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either A ~ B or | Av_{2n-2}(A)| ≠ | Av_{2n-2}(B)|.
- Asymptotic enumeration of cohorts, *i.e.* equivalence classes for \sim .
- It is conjecturally the number of Wilf-classes of classes $Av(231, \pi)$.
- Find a completely bijective proof that \sim refines Wilf-equivalence.
- Improve comparison of enumerations of $Av(231, \pi)$ and $Av(231, \pi')$.
- Conjecture: The cohort of classes Av(231, π) that have generating function C_n (largest possible) is the cohort with the largest cardinality.
- Extension to other contexts (separable permutations, ...).