A general theory of Wilf-equivalence for permutation classes $\operatorname{Av}(231, \pi)$, and other Catalan structures

Mathilde Bouvel (Universität Zürich)
joint work with Michael Albert (University of Otago)

Permutation Patterns 2014

Wilf-equivalence

- $\operatorname{Av}(B)$ is the class of permutations avoiding all patterns in B.
- (a_{n}) where $a_{n}=\left|\operatorname{Av}_{n}(B)\right|$ is its enumeration sequence.
- Its generating function is $\sum a_{n} t^{n}$.
- Two permutation classes $\operatorname{Av}\left(B_{1}\right)$ and $\operatorname{Av}\left(B_{2}\right)$ are Wilf-equivalent if they have the same enumeration sequence (or generating function).

Wilf-equivalence

- $\operatorname{Av}(B)$ is the class of permutations avoiding all patterns in B.
- $\left(a_{n}\right)$ where $a_{n}=\left|A v_{n}(B)\right|$ is its enumeration sequence.
- Its generating function is $\sum a_{n} t^{n}$.
- Two permutation classes $\operatorname{Av}\left(B_{1}\right)$ and $\operatorname{Av}\left(B_{2}\right)$ are Wilf-equivalent if they have the same enumeration sequence (or generating function).

More or less famous Wilf-equivalences:

- $\operatorname{Av}(123)$ and $\operatorname{Av}(231)$, enumerated by the Catalan numbers Cat ${ }_{n}$
- There are three Wilf-equivalence classes for permutation classes $\operatorname{Av}(\pi)$ with π of size 4 , the enumeration of $\operatorname{Av}(1324)$ being open.
- Check all Wilf-equivalences between $\operatorname{Av}(\pi, \tau)$ when π and τ have size 3 or 4 on Wikipedia.
- Some results for arbitrary long patterns:

$$
\operatorname{Av}(231 \oplus \pi) \text { and } \operatorname{Av}(312 \oplus \pi) \quad[\text { West \& Stankova 02] }
$$

Wilf-equivalences of permutation classes $\operatorname{Av}(231, \pi)$

Harmless assumption: In $\operatorname{Av}(231, \pi)$ throughout the talk, π avoids 231.

Wilf-equivalences of permutation classes $\operatorname{Av}(231, \pi)$

Harmless assumption: In $\operatorname{Av}(231, \pi)$ throughout the talk, π avoids 231.

Known results: Three families of patterns π such that the generating function of $\operatorname{Av}(231, \pi)$ is C_{n}, where $n=|\pi|$, defined by $C_{0}=1$, $C_{n+1}=\frac{1}{1-t C_{n}} \quad[$ Mansour \& Vainshtein 01+02; Albert \& Bouvel 13]

Remark: The generating functions C_{n} are truncations at level n of the continued fraction defining the generating function of Catalan numbers:

$$
C=\frac{1}{1-\frac{t}{1-\frac{t}{1-\frac{t}{1-\cdots}}}} .
$$

Wilf-equivalences of permutation classes $\operatorname{Av}(231, \pi)$

Harmless assumption: In $\operatorname{Av}(231, \pi)$ throughout the talk, π avoids 231.

Known results: Three families of patterns π such that the generating function of $\operatorname{Av}(231, \pi)$ is C_{n}, where $n=|\pi|$, defined by $C_{0}=1$, $C_{n+1}=\frac{1}{1-t C_{n}} \quad[$ Mansour \& Vainshtein 01+02; Albert \& Bouvel 13]
New results on this topic:

- Description of all patterns π of size n such that the generating function of $\operatorname{Av}(231, \pi)$ is C_{n}.
- There are Motz $_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k}$ Cat t_{k} such patterns.
- Bijections between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ for any such patterns.
- For τ of size n, the generating function of $\operatorname{Av}(231, \tau)$ either is C_{n} or C_{n} dominates it term by term (and eventually strictly).

Wilf-equivalences of permutation classes $\operatorname{Av}(231, \pi)$

Harmless assumption: In $\operatorname{Av}(231, \pi)$ throughout the talk, π avoids 231.

Known results: Three families of patterns π such that the generating function of $\operatorname{Av}(231, \pi)$ is C_{n}, where $n=|\pi|$, defined by $C_{0}=1$, $C_{n+1}=\frac{1}{1-t C_{n}} \quad$ [Mansour \& Vainshtein 01+02; Albert \& Bouvel 13] New results on this topic:

- Description of all patterns π of size n such that the generating function of $\operatorname{Av}(231, \pi)$ is C_{n}.
- There are $\operatorname{Motz}_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} C a t_{k}$ such patterns.
- Bijections between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ for any such patterns.
- For τ of size n, the generating function of $\operatorname{Av}(231, \tau)$ either is C_{n} or C_{n} dominates it term by term (and eventually strictly).

Main objective: Find all Wilf-equivalences between classes $\operatorname{Av}(231, \pi)$.

Substructures in Catalan objects

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Fact: The usual bijections relating our quartet of Catalan structures preserve the substructure relation.

Classes of arch systems instead of $\operatorname{Av}(231, \pi)$

- The following bijection between 231-avoiding permutations and arch systems preserves the substructure relation:

α
- Therefore, for all π avoiding 231, $\operatorname{Av}(231, \pi) \stackrel{\varphi}{\longleftrightarrow} \operatorname{Av}(\varphi(\pi))$.
- We will study classes $\operatorname{Av}(A)$ of arch systems avoiding some subsystem A, but all results can be translated to classes $\operatorname{Av}(231, \pi)$ via φ.

Questions addressed in this talk

- Which arch systems A are Wilf-equivalent?
i.e. which classes $\operatorname{Av}(A)$ have the same enumeration?
- Bijections between $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ for Wilf-equivalent arch systems A and B ?
- How many Wilf-equivalence classes of arch systems are there?

Questions addressed in this talk

- Which arch systems A are Wilf-equivalent?
i.e. which classes $\operatorname{Av}(A)$ have the same enumeration?
- Bijections between $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ for Wilf-equivalent arch systems A and B ?
- How many Wilf-equivalence classes of arch systems are there?

Observation and terminology:
An arch system is a concatenation of atoms, i.e. (non-empty) arch systems having a single outermost arch.

An equivalence relation strongly related to Wilf-equivalence

An equivalence relation on arch systems

The binary relation, \sim, is the finest equivalence relation that satisfies:
(1) $\quad A \sim B \Longrightarrow A \mid \sim B$
(2) $a \sim b \Longrightarrow P a Q \sim P b Q$
(3) $P a b Q \sim P b a Q$
(4) $a|b c| \sim a b c$
where A, B, P and Q denote arbitrary arch systems and a, b and c denote atoms or empty arch systems.

An equivalence relation on arch systems

The binary relation, \sim, is the finest equivalence relation that satisfies:
(1) $\quad A \sim B \Longrightarrow A \mid \sim B$
(2) $a \sim b \Longrightarrow P a Q \sim P b Q$
(3) $P a b Q \sim P b a Q$
(4) $a|b c| \sim a b c$
where A, B, P and Q denote arbitrary arch systems
and a, b and c denote atoms or empty arch systems.

Terminology: The equivalence classes of \sim are called cohorts.

~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Conjecture: \sim coincides with Wilf-equivalence.
Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $C a t_{15}=9,694,845$ arch systems).

~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Conjecture: \sim coincides with Wilf-equivalence.
Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $C a t_{15}=9,694,845$ arch systems).

Additional results:

- Asymptotic enumeration of the number of cohorts.
- One cohort of arch systems of size n (conjecturally the biggest one) contains Motz_{n} arch systems, and for A in this cohort $\operatorname{Av}(A)$ is enumerated by C_{n}.
- Comparison of the enumeration sequences of $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$.

Idea of the proof

Overview of the proof

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A=B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent... Inductive case: One case for each rule defining \sim.

| Rule | bijective proof | analytic proof |
| :--- | :--- | :---: | :---: |
| $(1) \quad A \sim B \Longrightarrow \widehat{A} \sim(B)$ | yes | - |
| $(2) \quad a \sim b \Longrightarrow P a Q \sim P b Q$ | yes | - |
| $(3) \quad P a b Q \sim P b a Q$ | yes | - |
| $(4) \quad a(b c) \sim$ ablc c | no | yes |
| | | |

Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A=B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent... Inductive case: One case for each rule defining \sim.

Rule	bijective proof	analytic proof
$(1) \quad A \sim B \Longrightarrow \widehat{A} \sim(B)$	yes	-
$(2) \quad a \sim b \Longrightarrow P a Q \sim P b Q$	yes	-
$(3) \quad P a b Q \sim P b a Q$	yes	-
$(4) \quad a\|b c\rangle \sim \widehat{a b l} c$	no	yes
$(4$ weak $) \quad a(b) \sim(b a)$	yes	-

Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A=B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent... Inductive case: One case for each rule defining \sim.

Rule	bijective proof	analytic proof
$(1) \quad A \sim B \Longrightarrow \triangle A \sim(B)$	yes	-
$(2) \quad a \sim b \Longrightarrow P a Q \sim P b Q$	yes	-
$(3) \quad P a b Q \sim P b a Q$	yes	-
$(4) \quad a(b c) \sim \widehat{a b l} c$	no	yes
$(4$ weak $) \quad a(b) \sim(b a)$	yes	-

Having only bijective proofs would allow to "unfold" the induction into a bijective proof that $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent, for all $A \sim B$.

Bijective proof in case (2)

(2) $a \sim b \Longrightarrow P a Q \sim P b Q$

Take $a \sim b$ and suppose that $\operatorname{Av}(a)$ and $\operatorname{Av}(b)$ are Wilf-equivalent. Take a size-preserving bijection $\sigma: X \mapsto X^{\sigma}$ from $\operatorname{Av}(a)$ to $\operatorname{Av}(b)$. Build a size-preserving bijection τ from $\operatorname{Av}(P a Q)$ to $\operatorname{Av}(P b Q)$ as follows:

Bijective proof in case (2)

(2) $a \sim b \Longrightarrow P a Q \sim P b Q$

Take $a \sim b$ and suppose that $\operatorname{Av}(a)$ and $\operatorname{Av}(b)$ are Wilf-equivalent.
Take a size-preserving bijection $\sigma: X \mapsto X^{\sigma}$ from $\operatorname{Av}(a)$ to $\operatorname{Av}(b)$.
Build a size-preserving bijection τ from $\operatorname{Av}(P a Q)$ to $\operatorname{Av}(P b Q)$ as follows:

- If X avoids $P Q$, then take $X^{\tau}=X$.
- Otherwise, apply σ to all intervals determined by the arches having one extremity between the leftmost P and the rightmost Q :

- X^{τ} avoids $P b Q$ if and only if X avoids $P a Q$.

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=\widehat{C}$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{\overparen{a b b c}}$.

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=\widehat{C}$.

$$
F_{X}=\text { the generating function of } \operatorname{Av}(X)
$$

We want that $F_{a(b c)}=F_{\text {ablc }}$.

- Compute a system for $F_{a(b C)}$:

$$
\begin{gathered}
F_{a(b c)}=1+t F_{A} F_{a(b c \mid}+t\left(F_{a|b c|}-F_{A}\right) F_{|b c|} \\
\operatorname{Av}(a \mid b c)=\varepsilon+\underset{X}{ }+\sqrt{X} Y+\underset{Z \text { avoids } A}{ }+\underset{Z \text { contains } A}{ }
\end{gathered}
$$

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=(A), b=\widehat{B}$ and $c=(C)$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{a b b c}$.

- Compute a system for $F_{a(b C)}$:

$$
\begin{aligned}
F_{a b c c} & =1+t F_{A} F_{a b c \mid}+t\left(F_{a \mid b c}-F_{A}\right) F_{\overparen{b c}} \\
F_{b c} & =1+t F_{b c} F_{b c} \\
F_{b c} & =1+t F_{B} F_{b c}+t\left(F_{b c}-F_{B}\right) F_{c} \\
F_{c} & =1+t F_{C} F_{c}
\end{aligned}
$$

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=(C)$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{\text {ablc }}$.

- Compute a system for $F_{a(b C)}$:
- The solution $F_{a b c}$ is a terrible mess depending in F_{A}, F_{B} and F_{C}

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=(C)$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{a b b c}$.

- Compute a system for $F_{a(b c)}$:
- The solution $F_{a(b C)}$ is a terrible mess depending in F_{A}, F_{B} and F_{C} \ldots but symmetric in F_{A}, F_{B} and F_{C} !
- Consequently, $F_{a(b c)}=F_{c(a b)}=F_{a b c c}$.

Analytic proof in case (4)

$$
\text { (4) } a|b c| \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=\widehat{C}$.

$$
F_{X}=\text { the generating function of } \operatorname{Av}(X)
$$

We want that $F_{a(b c)}=F_{a b b c}$.

- Compute a system for $F_{a(b c)}$:
- The solution $F_{a b c}$ is a terrible mess depending in F_{A}, F_{B} and F_{C} \ldots but symmetric in F_{A}, F_{B} and F_{C} !
- Consequently, $F_{a(b c)}=F_{c l a b \mid}=F_{a b c c}$.
- Using $F_{(X)}=1 /\left(1-t F_{X}\right)$, we can write:

$$
F_{a|b c|}=\frac{1-t\left(F_{a} F_{b}+F_{b} F_{c}+F_{c} F_{a}-F_{a} F_{b} F_{c}\right)}{1-t\left(F_{a}+F_{b}+F_{c}-F_{a} F_{b} F_{c}\right)}
$$

Enumeration of cohorts

$1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$

Plane forests, non-plane forests, and cohorts

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- Cat $_{n} \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$ distinct permutation classes $\operatorname{Av}(231, \pi)$

Plane forests, non-plane forests, and cohorts

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $C a t_{n} \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$ distinct permutation classes $\operatorname{Av}(231, \pi)$

Non-plane forests

- If $\psi(\pi)$ and $\psi\left(\pi^{\prime}\right)$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ are Wilf-equivalent.

Plane forests, non-plane forests, and cohorts

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- Cat $t_{n} \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$ distinct permutation classes $\operatorname{Av}(231, \pi)$

Non-plane forests

- If $\psi(\pi)$ and $\psi\left(\pi^{\prime}\right)$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ are Wilf-equivalent.
- It follows because the arch systems of π and π^{\prime} are \sim-equivalent, as non-plane isomorphism corresponds to rules (3) $P a b Q \sim P b a Q$, (1) $A \sim B \Longrightarrow A \subset \sim B$ and (2) $a \sim b \Longrightarrow P a Q \sim P b Q$.

Plane forests, non-plane forests, and cohorts

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $C a t_{n} \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$ distinct permutation classes $\operatorname{Av}(231, \pi)$

Non-plane forests

- If $\psi(\pi)$ and $\psi\left(\pi^{\prime}\right)$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$ is an upper bound on the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$

Plane forests, non-plane forests, and cohorts

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $C a t_{n} \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$ distinct permutation classes $\operatorname{Av}(231, \pi)$

Non-plane forests

- If $\psi(\pi)$ and $\psi\left(\pi^{\prime}\right)$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$ is an upper bound on the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$
Cohorts
- = equivalence classes of non-plane forest for (4) $a(b c|\sim \sqrt{a b}| c$

Plane forests, non-plane forests, and cohorts

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- $C a t_{n} \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$ distinct permutation classes $\operatorname{Av}(231, \pi)$

Non-plane forests

- If $\psi(\pi)$ and $\psi\left(\pi^{\prime}\right)$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$ is an upper bound on the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$
Cohorts
- = equivalence classes of non-plane forest for (4) $a(b c \mid \sim a b c$
- The generating function of cohorts is $A(t) / t$ where

$$
A=t+t A+\frac{1}{t} M \operatorname{Set}_{\geq 2}\left(t^{2} M \operatorname{Set}_{\geq 3}(A)\right)+t M \operatorname{Set}_{\geq 3}(A)
$$

Plane forests, non-plane forests, and cohorts

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- Cat $t_{n} \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$ distinct permutation classes $\operatorname{Av}(231, \pi)$

Non-plane forests

- If $\psi(\pi)$ and $\psi\left(\pi^{\prime}\right)$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$ is an upper bound on the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$
Cohorts
- = equivalence classes of non-plane forest for (4) $a(b c \mid \sim a b c$
- The number of cohorts of size $n \sim 0.455 \cdot 2.4975^{n} \cdot n^{-3 / 2}$ is an upper bound on the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$

Plane forests, non-plane forests, and cohorts

Plane forests

- Bijection ψ between 231-avoiding permutations and plane forests.
- Cat $t_{n} \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$ distinct permutation classes $\operatorname{Av}(231, \pi)$

Non-plane forests

- If $\psi(\pi)$ and $\psi\left(\pi^{\prime}\right)$ are isomorphic as non-plane forests, then $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ are Wilf-equivalent.
- The number of non-plane forests of size $n \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$ is an upper bound on the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$
Cohorts
- = equivalence classes of non-plane forest for (4) $a(b c \mid \sim a b c$
- The number of cohorts of size $n \sim 0.455 \cdot 2.4975^{n} \cdot n^{-3 / 2}$ is an upper bound on the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$

Moral of the story: Many Wilf-equivalences between classes $\operatorname{Av}(231, \pi)$!

Summary of results and open questions

- ~ refines Wilf-equivalence between permutation classes $\operatorname{Av}(231, \pi)$.
- Conjecture: ~ and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either $A \sim B$ or $\left|\operatorname{Av}_{2 n-2}(A)\right| \neq\left|\operatorname{Av}_{2 n-2}(B)\right|$.

Summary of results and open questions

- ~ refines Wilf-equivalence between permutation classes $\operatorname{Av}(231, \pi)$.
- Conjecture: ~ and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either $A \sim B$ or $\left|\operatorname{Av}_{2 n-2}(A)\right| \neq\left|\operatorname{Av}_{2 n-2}(B)\right|$.
- Asymptotic enumeration of cohorts, i.e. equivalence classes for \sim.
- It is conjecturally the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$.

Summary of results and open questions

- ~ refines Wilf-equivalence between permutation classes $\operatorname{Av}(231, \pi)$.
- Conjecture: ~ and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either $A \sim B$ or $\left|\operatorname{Av}_{2 n-2}(A)\right| \neq\left|\operatorname{Av}_{2 n-2}(B)\right|$.
- Asymptotic enumeration of cohorts, i.e. equivalence classes for \sim.
- It is conjecturally the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$.
- Find a completely bijective proof that \sim refines Wilf-equivalence.
- Improve comparison of enumerations of $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$.

Summary of results and open questions

- ~ refines Wilf-equivalence between permutation classes $\operatorname{Av}(231, \pi)$.
- Conjecture: ~ and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either $A \sim B$ or $\left|\operatorname{Av}_{2 n-2}(A)\right| \neq\left|\operatorname{Av}_{2 n-2}(B)\right|$.
- Asymptotic enumeration of cohorts, i.e. equivalence classes for \sim.
- It is conjecturally the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$.
- Find a completely bijective proof that \sim refines Wilf-equivalence.
- Improve comparison of enumerations of $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$.
- Conjecture: The cohort of classes $\operatorname{Av}(231, \pi)$ that have generating function C_{n} (largest possible) is the cohort with the largest cardinality.

Summary of results and open questions

- ~ refines Wilf-equivalence between permutation classes $\operatorname{Av}(231, \pi)$.
- Conjecture: ~ and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either $A \sim B$ or $\left|\operatorname{Av}_{2 n-2}(A)\right| \neq\left|\operatorname{Av}_{2 n-2}(B)\right|$.
- Asymptotic enumeration of cohorts, i.e. equivalence classes for \sim.
- It is conjecturally the number of Wilf-classes of classes $\operatorname{Av}(231, \pi)$.
- Find a completely bijective proof that \sim refines Wilf-equivalence.
- Improve comparison of enumerations of $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$.
- Conjecture: The cohort of classes $\operatorname{Av}(231, \pi)$ that have generating function C_{n} (largest possible) is the cohort with the largest cardinality.
- Extension to other contexts (separable permutations, ...).

