A general theory of Wilf-equivalence for Catalan structures

Mathilde Bouvel (Universität Zürich) joint work with Michael Albert (University of Otago)

$$
\text { arXiv: } 1407.8261
$$

73rd Séminaire Lotharingien de Combinatoire, Strobl, Sept. 2014

Enumeration sequences and Wilf-equivalence

Let \mathcal{C} be any combinatorial class, i.e.

- \mathcal{C} is equipped with a notion of size
- such that for any n there are finitely many objects of size n in \mathcal{C}.
- The number of objects of size n in \mathcal{C} is denoted c_{n}.

To \mathcal{C}, we associate:

- its enumeration sequence $\left(c_{n}\right)$,
- its generating function $\sum c_{n} t^{n}$.

Enumeration sequences and Wilf-equivalence

Let \mathcal{C} be any combinatorial class, i.e.

- \mathcal{C} is equipped with a notion of size
- such that for any n there are finitely many objects of size n in \mathcal{C}.
- The number of objects of size n in \mathcal{C} is denoted c_{n}.

To \mathcal{C}, we associate:

- its enumeration sequence $\left(c_{n}\right)$,
- its generating function $\sum c_{n} t^{n}$.

Sometimes (or very often!), two classes have the same enumeration sequences (or equivalently generating function).

Such enumeration coincidences are called Wilf-equivalences (terminology from the Permutation Patterns literature).

Our work: Wilf-equivalences among classes of restricted Catalan objects.

Motivation: from pattern-avoiding permutations

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if
$\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Motivation: from pattern-avoiding permutations

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example: 2134 is a pattern of 312854796.

Motivation: from pattern-avoiding permutations

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example: 2134 is a pattern of 312854796.

Motivation: from pattern-avoiding permutations

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if
$\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example: 2134 is a pattern of

312854796.

Motivation: from pattern-avoiding permutations

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if
$\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example: 2134 is a pattern of

312854796.

Notation: $\operatorname{Av}\left(\pi_{1}, \pi_{2}, \ldots\right)$ is the class of all permutations that do not contain π_{1}, nor π_{2}, \ldots as a pattern.

Motivation: from pattern-avoiding permutations

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if
$\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example: 2134 is a pattern of

312854796.

Notation: $\operatorname{Av}\left(\pi_{1}, \pi_{2}, \ldots\right)$ is the class of all permutations that do not contain π_{1}, nor π_{2}, \ldots as a pattern.
π and $\tau($ or $\operatorname{Av}(\pi)$ and $\operatorname{Av}(\tau))$ are Wilf-equivalent if $\operatorname{Av}(\pi)$ and $\operatorname{Av}(\tau)$ have the same enumeration.

Motivation: from pattern-avoiding permutations

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if
$\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example: 2134 is a pattern of

312854796.

Notation: $\operatorname{Av}\left(\pi_{1}, \pi_{2}, \ldots\right)$ is the class of all permutations that do not contain π_{1}, nor π_{2}, \ldots as a pattern.
π and $\tau($ or $\operatorname{Av}(\pi)$ and $\operatorname{Av}(\tau))$ are Wilf-equivalent if $\operatorname{Av}(\pi)$ and $\operatorname{Av}(\tau)$ have the same enumeration.

For R and S sets of permutations, R and $S(\operatorname{or} \operatorname{Av}(R)$ and $\operatorname{Av}(S))$ are Wilf-equivalent if $\operatorname{Av}(R)$ and $\operatorname{Av}(S)$ have the same enumeration.

Some Wilf-equivalences for pattern-avoiding permutations

Small excluded patterns:

- $\operatorname{Av}(123)$ and $\operatorname{Av}(231)$ are Wilf-equivalent, and enumerated by the Catalan numbers Cat $_{n}$
- There are three Wilf-equivalence classes for permutation classes $\operatorname{Av}(\pi)$ with π of size 4, the enumeration of $\operatorname{Av}(1324)$ being open.
- Check all Wilf-equivalences between $\operatorname{Av}(\pi, \tau)$ when π and τ have size 3 or 4 on Wikipedia.

Some results for arbitrary long patterns:

- $\operatorname{Av}(231 \oplus \pi)$ and $\operatorname{Av}(312 \oplus \pi)$
[West \& Stankova 02]
First unbalanced Wilf-equivalences:
- $\operatorname{Av}(1324,3416725)$ and $\operatorname{Av}(1234)$;
$\operatorname{Av}(2143,3142,246135)$ and $\operatorname{Av}(2413,3142)$ [Burstein \& Pantone 14+]

Old Wilf-equivalences of permutation classes $\operatorname{Av}(231, \pi)$

Harmless assumption: $\operatorname{In} \operatorname{Av}(231, \pi)$, throughout the talk, π avoids 231. (or we are just studying $\operatorname{Av}(231) \ldots$)

Old Wilf-equivalences of permutation classes $\operatorname{Av}(231, \pi)$

Harmless assumption: In $\operatorname{Av}(231, \pi)$, throughout the talk, π avoids 231. (or we are just studying $\operatorname{Av}(231) \ldots$)
Define $C_{0}=1$ and $C_{n}=\frac{1}{1-t C_{n-1}}$ for $n \geq 1$.
Known Wilf-equivalences: Three families of patterns π such that the generating function of $\operatorname{Av}(231, \pi)$ is C_{n}, where $n=|\pi|$,
[Mansour \& Vainshtein 01+02; Albert \& Bouvel 13]
Remark: The generating functions C_{n} are truncations at level n of the continued fraction defining the generating function of Catalan numbers:

$$
C=\frac{1}{1-\frac{t}{1-\frac{t}{1-\frac{t}{1-\cdots}}}} .
$$

New Wilf-equivalences of permutation classes $\operatorname{Av}(231, \pi)$

Our results: Unification, Generalization, Bijections

- Description of all patterns π of size n such that the generating function of $\operatorname{Av}(231, \pi)$ is C_{n}.
- There are exactly $\operatorname{Motz}_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} C a t_{k}$ such patterns.
- Bijections between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ for any such patterns.
- For τ of size n, the generating function of $\operatorname{Av}(231, \tau)$ either is C_{n} or C_{n} dominates it term by term (and eventually strictly).

New Wilf-equivalences of permutation classes $\operatorname{Av}(231, \pi)$

Our results: Unification, Generalization, Bijections

- Description of all patterns π of size n such that the generating function of $\operatorname{Av}(231, \pi)$ is C_{n}.
- There are exactly $\operatorname{Motz}_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} C a t_{k}$ such patterns.
- Bijections between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}\left(231, \pi^{\prime}\right)$ for any such patterns.
- For τ of size n, the generating function of $\operatorname{Av}(231, \tau)$ either is C_{n} or C_{n} dominates it term by term (and eventually strictly).

Most important remark: Classes $\operatorname{Av}(231, \pi)$ are families of Catalan objects $(\operatorname{Av}(231))$ with an additional avoidance restriction.
Main objective: Find all Wilf-equivalences between classes $\operatorname{Av}(231, \pi)$. Equivalently (but somehow more generally), find all Wilf-equivalences between pattern-avoiding Catalan objects.

Substructures in Catalan objects

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

Fact: The usual bijections relating our quartet of Catalan structures preserve the substructure relation.

Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

Fact: The usual bijections relating our quartet of Catalan structures preserve the substructure relation.
We will study classes $\operatorname{Av}(A)$ of arch systems avoiding some subsystem A, but all results can be translated to other structures via these bijections.

Questions addressed in this talk

- Which arch systems A are Wilf-equivalent?
i.e. which classes $\operatorname{Av}(A)$ have the same enumeration?
- Bijections between $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ for Wilf-equivalent arch systems A and B ?
- How many Wilf-equivalence classes of arch systems are there?

Questions addressed in this talk

- Which arch systems A are Wilf-equivalent?
i.e. which classes $\operatorname{Av}(A)$ have the same enumeration?
- Bijections between $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ for Wilf-equivalent arch systems A and B ?
- How many Wilf-equivalence classes of arch systems are there?

Observation and terminology:
An arch system is a concatenation of atoms, i.e. (non-empty) arch systems having a single outermost arch.

An equivalence relation strongly related to Wilf-equivalence

An equivalence relation refining Wilf-equivalence

The binary relation, \sim, is the finest equivalence relation that satisfies:
(0) $A \sim A$
(1) $\quad A \sim B \Longrightarrow A \mid \sim B$
(2) $a \sim b \Longrightarrow P a Q \sim P b Q$
(3) $P a b Q \sim P b a Q$
(4) $a|b c| \sim a b c$
where A, B, P and Q denote arbitrary arch systems and a, b and c denote atoms or empty arch systems.

An equivalence relation refining Wilf-equivalence

The binary relation, \sim, is the finest equivalence relation that satisfies:

$$
\begin{array}{ll}
(0) & A \sim A \\
(1) & A \sim B \Longrightarrow A A \sim B \\
(2) & a \sim b \Longrightarrow P a Q \sim P b Q \\
\text { (3) } & P a b Q \sim P b a Q \\
\text { (4) } & a \text { b } c \sim a b c
\end{array}
$$

where A, B, P and Q denote arbitrary arch systems and a, b and c denote atoms or empty arch systems.

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Could \sim be exactly Wilf-equivalence?

In other words, \sim refines Wilf-equivalence.
Conjecture: \sim coincides with Wilf-equivalence.
Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $C a t_{15}=9,694,845$ arch systems).

Could \sim be exactly Wilf-equivalence?

In other words, \sim refines Wilf-equivalence.
Conjecture: \sim coincides with Wilf-equivalence.
Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $C a t_{15}=9,694,845$ arch systems).

Additional results:

- Asymptotic enumeration of the number of \sim-equivalence classes.
- \sim-equivalence class of arch systems of size n contains Motz_{n} arch systems, and for A in this $\sim-$ class $\operatorname{Av}(A)$ is enumerated by C_{n}.
- Comparison of the enumeration sequences of $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$.

Idea of the proof

Overview of the proof

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A=B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent... Inductive case: One case for each rule defining \sim.

| Rule | bijective proof | analytic proof |
| :--- | :--- | :---: | :---: |
| $(1) \quad A \sim B \Longrightarrow \widehat{A} \sim(B)$ | yes | - |
| $(2) \quad a \sim b \Longrightarrow P a Q \sim P b Q$ | yes | - |
| $(3) \quad P a b Q \sim P b a Q$ | yes | - |
| $(4) \quad a(b c) \sim$ ablc c | no | yes |
| | | |

Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A=B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent... Inductive case: One case for each rule defining \sim.

Rule	bijective proof	analytic proof
$(1) \quad A \sim B \Longrightarrow \widehat{A} \sim(B)$	yes	-
$(2) \quad a \sim b \Longrightarrow P a Q \sim P b Q$	yes	-
$(3) \quad P a b Q \sim P b a Q$	yes	-
$(4) \quad a(b c) \sim \widehat{a b l} c$	no	yes
$(4$ weak $) a(b) \sim \mid b a l$	yes	-

Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A=B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent... Inductive case: One case for each rule defining \sim.

Rule	bijective proof	analytic proof
$(1) \quad A \sim B \Longrightarrow \widehat{A} \sim(B)$	yes	-
$(2) \quad a \sim b \Longrightarrow P a Q \sim P b Q$	yes	-
$(3) \quad P a b Q \sim P b a Q$	yes	-
$(4) \quad a \mid b c) \sim \widehat{a b l} c$	no	yes
$(4$ weak $) \quad a(b) \sim(b a l$	yes	-

Having only bijective proofs would allow to "unfold" the induction into a bijective proof that $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent, for all $A \sim B$.

Bijective proof in case (2)

(2) $a \sim b \Longrightarrow P a Q \sim P b Q$

Take $a \sim b$ and suppose that $\operatorname{Av}(a)$ and $\operatorname{Av}(b)$ are Wilf-equivalent. Take a size-preserving bijection $\sigma: X \mapsto X^{\sigma}$ from $\operatorname{Av}(a)$ to $\operatorname{Av}(b)$. Build a size-preserving bijection τ from $\operatorname{Av}(P a Q)$ to $\operatorname{Av}(P b Q)$ as follows:

Bijective proof in case (2)

(2) $a \sim b \Longrightarrow P a Q \sim P b Q$

Take $a \sim b$ and suppose that $\operatorname{Av}(a)$ and $\operatorname{Av}(b)$ are Wilf-equivalent.
Take a size-preserving bijection $\sigma: X \mapsto X^{\sigma}$ from $\operatorname{Av}(a)$ to $\operatorname{Av}(b)$.
Build a size-preserving bijection τ from $\operatorname{Av}(P a Q)$ to $\operatorname{Av}(P b Q)$ as follows:

- If X avoids $P Q$, then take $X^{\tau}=X$.
- Otherwise, apply σ to all intervals determined by the arches having one extremity between the leftmost P and the rightmost Q :

- X^{τ} avoids $P b Q$ if and only if X avoids $P a Q$.

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=\widehat{C}$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{\overparen{a b b c}}$.

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=\widehat{C}$.

$$
F_{X}=\text { the generating function of } \operatorname{Av}(X)
$$

We want that $F_{a(b c)}=F_{\text {ablc }}$.

- Compute a system for $F_{a(b C)}$:

$$
\begin{gathered}
F_{a(b c)}=1+t F_{A} F_{a(b c \mid}+t\left(F_{a|b c|}-F_{A}\right) F_{|b c|} \\
\operatorname{Av}(a \mid b c)=\varepsilon+\underset{X}{ }+\sqrt{X} Y+\underset{Z \text { avoids } A}{ }+\underset{Z \text { contains } A}{ }
\end{gathered}
$$

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=(C)$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{a b b c}$.

- Compute a system for $F_{a(b C)}$:

$$
\begin{aligned}
F_{a b b c} & =1+t F_{A} F_{a b c c}+t\left(F_{a b c}-F_{A}\right) F_{b c} \\
F_{b b c} & =1+t F_{b c} F_{b b c} \\
F_{b c} & =1+t F_{B} F_{b c}+t\left(F_{b c}-F_{B}\right) F_{c} \\
F_{c} & =1+t F_{C} F_{c}
\end{aligned}
$$

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=(C)$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{\text {ablc }}$.

- Compute a system for $F_{a(b C)}$:
- The solution $F_{a b c}$ is a terrible mess depending in F_{A}, F_{B} and F_{C}

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=(C)$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{a b b c}$.

- Compute a system for $F_{a(b c)}$:
- The solution $F_{a b c}$ is a terrible mess depending in F_{A}, F_{B} and F_{C} \ldots but symmetric in F_{A}, F_{B} and F_{C} !
- Consequently, $F_{a(b c)}=F_{c(a b)}=F_{a b c c}$.

Analytic proof in case (4)

$$
\text { (4) } a|b c| \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=\widehat{C}$.

$$
F_{X}=\text { the generating function of } \operatorname{Av}(X)
$$

We want that $F_{a(b c)}=F_{a b b c}$.

- Compute a system for $F_{a(b c)}$:
- The solution $F_{a b c}$ is a terrible mess depending in F_{A}, F_{B} and F_{C} \ldots but symmetric in F_{A}, F_{B} and F_{C} !
- Consequently, $F_{a(b c)}=F_{c l a b \mid}=F_{a b c c}$.
- Using $F_{(X)}=1 /\left(1-t F_{X}\right)$, we can write:

$$
F_{a|b c|}=\frac{1-t\left(F_{a} F_{b}+F_{b} F_{c}+F_{c} F_{a}-F_{a} F_{b} F_{c}\right)}{1-t\left(F_{a}+F_{b}+F_{c}-F_{a} F_{b} F_{c}\right)}
$$

How many \sim-equivalence classes ?

How many Wilf-equivalence classes ?

Enumeration of \sim-equivalence classes

Up to size 15 , there are as many Wilf-equivalence as \sim-equivalence classes: $1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$

Enumeration of \sim-equivalence classes

Up to size 15 , there are as many Wilf-equivalence as \sim-equivalence classes: $1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$

For any size n, upper bounds on the number of Wilf-equivalence classes of classes $\operatorname{Av}(A)$, where A is an arch system with n arches are:

- Cat ${ }_{n}=$ number of plane forests of size $n: \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$

Enumeration of \sim-equivalence classes

Up to size 15 , there are as many Wilf-equivalence as \sim-equivalence classes: $1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$

For any size n, upper bounds on the number of Wilf-equivalence classes of classes $\operatorname{Av}(A)$, where A is an arch system with n arches are:

- $C a t_{n}=$ number of plane forests of size $n: \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$
- Number of non-plane forests of size $n: \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$
\hookrightarrow because rules (1), (2) and (3) encode non-plane isomorphism.
- (1) $A \sim B \Longrightarrow A \sim B$
- (2) $a \sim b \Longrightarrow P a Q \sim P b Q$
- (3) $P a b Q \sim P b a Q$

Enumeration of \sim-equivalence classes

Up to size 15 , there are as many Wilf-equivalence as \sim-equivalence classes: $1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$

For any size n, upper bounds on the number of Wilf-equivalence classes of classes $\operatorname{Av}(A)$, where A is an arch system with n arches are:

- $C a t_{n}=$ number of plane forests of size $n: \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$
- Number of non-plane forests of size $n: \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$
- Number of \sim-equivalence classes for excluded arch systems of size n : $\sim 0.455 \cdot 2.4975^{n} \cdot n^{-3 / 2}$
\hookrightarrow take rule (4) into account, and use [Harary, Robinson \& Schwenk 75] to study the asymptotics of the coefficients of $A(t)$ defined by

$$
A=t+t A+\frac{1}{t} M \operatorname{Set}_{\geq 2}\left(t^{2} M \operatorname{Set}_{\geq 3}(A)\right)+t M \operatorname{Set}_{\geq 3}(A)
$$

Enumeration of \sim-equivalence classes

Up to size 15 , there are as many Wilf-equivalence as \sim-equivalence classes: $1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$

For any size n, upper bounds on the number of Wilf-equivalence classes of classes $\operatorname{Av}(A)$, where A is an arch system with n arches are:

- $C a t_{n}=$ number of plane forests of size $n: \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$
- Number of non-plane forests of size $n: \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$
- Number of \sim-equivalence classes for excluded arch systems of size n : $\sim 0.455 \cdot 2.4975^{n} \cdot n^{-3 / 2}$

Moral of the story:
Many Wilf-equivalences between classes $\operatorname{Av}(A)$ avoiding an arch system A (or equivalently permutation classes $\operatorname{Av}(231, \pi)$)!

Summary of results and open questions

- Main theorem: ~ refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.

Summary of results and open questions

- Main theorem: ~ refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.
- From the proof: Comparison between the enumeration of $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$. More comparisons to be found from more bijective proofs.

Summary of results and open questions

- Main theorem: ~ refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.
- From the proof: Comparison between the enumeration of $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$. More comparisons to be found from more bijective proofs.
- Conjecture: ~ and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either $A \sim B$ or $\left|\operatorname{Av}_{2 n-2}(A)\right| \neq\left|\operatorname{Av}_{2 n-2}(B)\right|$.

Summary of results and open questions

- Main theorem: ~ refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.
- From the proof: Comparison between the enumeration of $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$. More comparisons to be found from more bijective proofs.
- Conjecture: ~ and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either $A \sim B$ or $\left|\operatorname{Av}_{2 n-2}(A)\right| \neq\left|\operatorname{Av}_{2 n-2}(B)\right|$.
- Further result: Asymptotic enumeration of \sim-equivalence classes. It is an upper bound (conjecturally tight) on the number of Wilf-classes.

Summary of results and open questions

- Main theorem: ~ refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.
- From the proof: Comparison between the enumeration of $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$. More comparisons to be found from more bijective proofs.
- Conjecture: ~ and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either $A \sim B$ or $\left|\operatorname{Av}_{2 n-2}(A)\right| \neq\left|\operatorname{Av}_{2 n-2}(B)\right|$.
- Further result: Asymptotic enumeration of ~-equivalence classes. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
- Extension to other contexts (e.g. Schröder objects and separable permutations [Albert, Homberger, Pantone], ...).

