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Enumerative combinatorics



Discrete objects and combinatorial classes

• Examples of discrete objects:

3 1 2 8 5 4 7 9 6

Fully-Packed Loops Graphs Walks Permutations
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• A combinatorial class is a family of discrete objects is equipped with a
notion of size such that for every integer n, the set of objects of size n is
finite.
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Discrete objects and combinatorial classes

• Examples of discrete objects:

3 1 2 8 5 4 7 9 6

Fully-Packed Loops Graphs Walks Permutations
n = 10 n = 36 n = 2500 n = 9

• A combinatorial class is a family of discrete objects is equipped with a
notion of size such that for every integer n, the set of objects of size n is
finite.
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Discrete objects and combinatorial classes

• Examples of discrete objects:

3 1 2 8 5 4 7 9 6

Fully-Packed Loops Graphs Walks Permutations
n = 10 n = 36 n = 2500 n = 9

• A combinatorial class is a family of discrete objects is equipped with a
notion of size such that for every integer n, the set of objects of size n is
finite.

• Characterize the objects in a combinatorial class and study their
combinatorial properties.

This may help understanding phenomena modeled by discrete objects.
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Exact formula for cn (closed form, or summation)

↪→ Catn = 1
n+1

(2n
n

)
, Baxn =

∑n
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Exact formula for cn (closed form, or summation)

Enumeration refined with some statistics, cn =
∑

k cn,k

↪→ cn,k = number of objects of size n with value of the parameter k
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Exact formula for cn (closed form, or summation)

Enumeration refined with some statistics, cn =
∑

k cn,k

Asymptotic equivalent for cn

↪→ Sin ∼ n!
e2

, but not exact formula for Sin
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Exact formula for cn (closed form, or summation)

Enumeration refined with some statistics, cn =
∑

k cn,k

Asymptotic equivalent for cn

Equi-enumeration of several classes (preserving the distribution of
some statistics)

↪→ Proved computationally or with size-preserving bijections.
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Exact formula for cn (closed form, or summation)

Enumeration refined with some statistics, cn =
∑

k cn,k

Asymptotic equivalent for cn

Equi-enumeration of several classes (preserving the distribution of
some statistics)

Explicit or implicit expression of the generating function
C (z) =

∑
n cnz

n

↪→ Cat(z) = 1−
√
1−4z
2z
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Exact formula for cn (closed form, or summation)

Enumeration refined with some statistics, cn =
∑

k cn,k

Asymptotic equivalent for cn

Equi-enumeration of several classes (preserving the distribution of
some statistics)

Explicit or implicit expression of the generating function
C (z) =

∑
n cnz

n

Nature of the generating function (rational, algebraic,. . . )

Mathilde Bouvel (I-Math, UZH) Permutation classes Dec. 17, 2013 4 / 34



What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Exact formula for cn (closed form, or summation)

Enumeration refined with some statistics, cn =
∑

k cn,k

Asymptotic equivalent for cn

Equi-enumeration of several classes (preserving the distribution of
some statistics)

Explicit or implicit expression of the generating function
C (z) =

∑
n cnz

n

Nature of the generating function (rational, algebraic,. . . )

Bivariate generating functions C (z ; u) =
∑

n cn,ku
kzn
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Exact formula for cn (closed form, or summation)

Enumeration refined with some statistics, cn =
∑

k cn,k

Asymptotic equivalent for cn

Equi-enumeration of several classes (preserving the distribution of
some statistics)

Explicit or implicit expression of the generating function
C (z) =

∑
n cnz

n

Nature of the generating function (rational, algebraic,. . . )

Bivariate generating functions C (z ; u) =
∑

n cn,ku
kzn

Asymptotic behavior of C (z) near the singularity
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Many ways of answering this question!
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Many ways of answering this question!

• Further questions:

Combinatorial characterization or properties of the objects

Such questions are often answered in the proof of an enumeration result.
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What do we want to know about combinatorial classes?

Let C be a combinatorial class.

• Simplest question: How many objects of size n are there in C?
Let Cn be the set of objects of size n in C, and cn = |Cn|.

Many ways of answering this question!

• Further questions:

Combinatorial characterization or properties of the objects

Such questions are often answered in the proof of an enumeration result.

• More general approach:

Define frameworks where all combinatorial classes have common
properties

↪→ For all simple varieties of trees, cn ∼ γρ−nn−3/2.
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Permutations

Permutation of size n = Bijection from [1..n] to itself.
Set Sn, and S = ∪nSn.
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Permutations

Permutation of size n = Bijection from [1..n] to itself.
Set Sn, and S = ∪nSn.

Two lines notation:

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
Linear notation:
σ = 1 8 3 6 4 2 5 7

Description as a
product of cycles:
σ = (1) (2 8 7 5 4 6) (3)

Graphical description,
or diagram:

i

σi
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Permutations

Permutation of size n = Bijection from [1..n] to itself.
Set Sn, and S = ∪nSn.

Two lines notation:

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
Linear notation:
σ = 1 8 3 6 4 2 5 7

Description as a
product of cycles:
σ = (1) (2 8 7 5 4 6) (3)

Graphical description,
or diagram:

i

σi

More precisely, I study permutation patterns and permutation classes.
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Permutation patterns
and permutation classes



The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6
1

3 2 7 5 4
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6

1

3
2

7 5 4
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6

1

3

2 7 5 4
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6

1 32 7 5 4
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32 7 5 4
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32

7

5 4
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32

7
5

4

Mathilde Bouvel (I-Math, UZH) Permutation classes Dec. 17, 2013 7 / 34



The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32

7

54
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1 2 3 6 4 5 7
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 41 2 3 6 4 5 7
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, n = max(LnR)
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231

meaning that there are no i < j < k such that σk < σi < σj ,

or equivalently no subsequences · · ·σi · · ·σj · · ·σk · · · of σ whose elements
are in the same relative order as 231.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231

meaning that there are no i < j < k such that σk < σi < σj ,

or equivalently no subsequences · · ·σi · · ·σj · · ·σk · · · of σ whose elements
are in the same relative order as 231.
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The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, n = max(LnR)

First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231

meaning that there are no i < j < k such that σk < σi < σj ,

or equivalently no subsequences · · ·σi · · ·σj · · ·σk · · · of σ whose elements
are in the same relative order as 231.

Enumeration by the Catalan numbers Catn = 1
n+1

(2n
n

)
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Permutation patterns

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is in the same relative order (≡) as π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.
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Permutation patterns

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is in the same relative order (≡) as π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.
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Permutation patterns

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is in the same relative order (≡) as π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Remark: 4 is a partial order on S =
⋃
n
Sn.

This is the key to defining permutation classes.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

1

12 21

123 132 213 231 312 321

1234 4321. . . . . .. . .1423 3142

σ

means π 4 σ

π

. . .
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

1

12 21

123 132 213 231 312 321

1234 4321. . . . . .. . .1423 3142

σ

means π 4 σ

π

. . .

Mathilde Bouvel (I-Math, UZH) Permutation classes Dec. 17, 2013 9 / 34



Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

σ

means π 4 σ

π

. . .

C
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

• Notations: Av(π) = the set of permutations that avoid the pattern π
Av(B) =

⋂
π∈B

Av(π)

• Fact: For every permutation class C, C = Av(B) for
B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}.
B is an antichain, called the basis of C.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

• Notations: Av(π) = the set of permutations that avoid the pattern π
Av(B) =

⋂
π∈B

Av(π)

• Fact: For every permutation class C, C = Av(B) for
B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}.
B is an antichain, called the basis of C.

• Remarks:

Conversely, every set Av(B) is a permutation class.

There exist infinite antichains, hence some permutation classes have
infinite basis.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

• Notations: Av(π) = the set of permutations that avoid the pattern π
Av(B) =

⋂
π∈B

Av(π)

• Fact: For every permutation class C, C = Av(B) for
B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}.
B is an antichain, called the basis of C.

• Remarks:

Conversely, every set Av(B) is a permutation class.

There exist infinite antichains, hence some permutation classes have
infinite basis.

• Most results about permutation classes are enumeration results.
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Some early specific enumeration results

• One excluded pattern:

of size 3:

Description of Av(123) [MacMahon 1915] and Av(231) [Knuth 68].
Enumeration by the Catalan numbers in both cases.
Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008].
For symmetry reasons, it is enough to study Av(123) and Av(231).
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Some early specific enumeration results

• One excluded pattern:

of size 3:

Description of Av(123) [MacMahon 1915] and Av(231) [Knuth 68].
Enumeration by the Catalan numbers in both cases.
Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008].
For symmetry reasons, it is enough to study Av(123) and Av(231).

of size 4:
Only three different enumerations. Representatives are:

Av(1342) [Bóna 97], algebraic generating function
Av(1234) [Gessel 90], holonomic (or D-finite) generating function
Av(1324) . . . remains an open problem
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Some early specific enumeration results

• One excluded pattern:

of size 3:

Description of Av(123) [MacMahon 1915] and Av(231) [Knuth 68].
Enumeration by the Catalan numbers in both cases.
Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008].
For symmetry reasons, it is enough to study Av(123) and Av(231).

of size 4:
Only three different enumerations. Representatives are:

Av(1342) [Bóna 97], algebraic generating function
Av(1234) [Gessel 90], holonomic (or D-finite) generating function
Av(1324) . . . remains an open problem

• Systematic enumeration of Av(B) when B contains small excluded
patterns (size 3 or 4)
[Simion&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West. . . in the nineties]

[Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, . . . nowadays]
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A general enumeration result for permutation classes

First common property of all (proper) permutation classes
(i.e. classes C 6= S):

Theorem:

For every permutation π, n
√
|Avn(π)| converges to a constant cπ.

Conjectured by [Stanley & Wilf 92]; proved by [Marcus & Tardos 04].
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A general enumeration result for permutation classes

First common property of all (proper) permutation classes
(i.e. classes C 6= S):

Theorem:

For every permutation π, n
√
|Avn(π)| converges to a constant cπ.

Conjectured by [Stanley & Wilf 92]; proved by [Marcus & Tardos 04].

Hence, |Avn(π)| ≈ cnπ .
To be compared with |Sn| = n! ≈ en log n.

Mathilde Bouvel (I-Math, UZH) Permutation classes Dec. 17, 2013 11 / 34



A general enumeration result for permutation classes

First common property of all (proper) permutation classes
(i.e. classes C 6= S):

Theorem:

For every permutation π, n
√
|Avn(π)| converges to a constant cπ.

Conjectured by [Stanley & Wilf 92]; proved by [Marcus & Tardos 04].

Hence, |Avn(π)| ≈ cnπ .
To be compared with |Sn| = n! ≈ en log n.

This allows to define the growth rate of a class C = lim sup
n→∞

n
√
|Cn|.

Consequence: All (proper) permutation classes have finite growth rates.

Except when C = Av(π), it is an open question to know
if lim

n→∞
n
√
|Cn| exists.
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The general and the specific perspective

• Study of specific permutation classes

Characterization and enumeration, often with ad hoc arguments

Very precise results (distribution of statistics, . . . )

• Common properties of many permutation classes

Less precise results, but widely applicable
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• Study of specific permutation classes

Characterization and enumeration, often with ad hoc arguments

Very precise results (distribution of statistics, . . . )

• Common properties of many permutation classes

Less precise results, but widely applicable

Combinatorial properties or nice enumeration follow from nice structure.

• Ad hoc description of structure gives specific results.
• General notions of structure yield both specific and general results.
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The general and the specific perspective

• Study of specific permutation classes

Characterization and enumeration, often with ad hoc arguments

Very precise results (distribution of statistics, . . . )

• Common properties of many permutation classes

Less precise results, but widely applicable

Combinatorial properties or nice enumeration follow from nice structure.

• Ad hoc description of structure gives specific results.
• General notions of structure yield both specific and general results.

• Three possible looks at the structure of permutations:

Graphical structure, on the diagrams

Structure from substitution decomposition, with trees

Structure inherited from graphs
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Structure from graphics



The first example: stack-sortable permutations

• Denoting C the class of stack-sortable permutations, we have [Knuth]:

C = Av(231);

C is enumerated by the Catalan numbers Catn = 1
n+1

(2n
n

)
.
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The first example: stack-sortable permutations

• Denoting C the class of stack-sortable permutations, we have [Knuth]:

C = Av(231);

C is enumerated by the Catalan numbers Catn = 1
n+1

(2n
n

)
.

• Proof: from the structure of C.
Representing permutations as diagrams, we have

C = ε+
C

C
Remember diagrams:

i

σi
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The first example: stack-sortable permutations

• Denoting C the class of stack-sortable permutations, we have [Knuth]:

C = Av(231);

C is enumerated by the Catalan numbers Catn = 1
n+1

(2n
n

)
.

• Proof: from the structure of C.
Representing permutations as diagrams, we have

C = ε+
C

C
Remember diagrams:

i

σi

This recursive description characterizes Av(231).

It implies that C (z) = 1 + zC (z)2,
whose solution is the generating function

∑
n Catnz

n
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Grid classes: the block structure of permutations

• Formalize the idea of describing permutation classes by “blocks”.

A grid class C is defined by a matrix, like

M =

(
Av(1) Av(12)

Av(21) Av(132)

)
.

A permutation belongs to C if its diagram can be decomposed in

rectangular blocks to fit into
Av(1) Av(12)

Av(21) Av(132)
.

Example:
σ = 156398247 ∈ C
defined by M, because
the diagram of σ can
be decomposed as
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Grid classes: the block structure of permutations

• Formalize the idea of describing permutation classes by “blocks”.

A grid class C is defined by a matrix, like

M =

(
Av(1) Av(12)

Av(21) Av(132)

)
.

A permutation belongs to C if its diagram can be decomposed in

rectangular blocks to fit into
Av(1) Av(12)

Av(21) Av(132)
.

• Some results, applicable to grid classes C with additional restrictions:

(C,4) is a partial well order (no infinite antichains)

C has a rational generating function

C has a finite basis

[Albert, Atkinson, Brignall, Ruškuc, Vatter, Waton]
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Even more geometry: Geometric grid classes

A geometric grid class C is defined by a
geometric figure F , like
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Even more geometry: Geometric grid classes

A geometric grid class C is defined by a
geometric figure F , like

Permutations in C are those whose diagram
that may be drawn on F (up to stretching and
shrinking the axes)
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Even more geometry: Geometric grid classes

A geometric grid class C is defined by a
geometric figure F , like

Permutations in C are those whose diagram
that may be drawn on F (up to stretching and
shrinking the axes)

• Remark: Many of the previously studied grid classes are equivalently
described as geometric grid classes.
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Even more geometry: Geometric grid classes

A geometric grid class C is defined by a
geometric figure F , like

Permutations in C are those whose diagram
that may be drawn on F (up to stretching and
shrinking the axes)

• Remark: Many of the previously studied grid classes are equivalently
described as geometric grid classes.

• Theorem [Albert, Atkinson, Bouvel, Ruškuc & Vatter 13]:
Every subclass of a geometric grid class

is a partially well ordered for 4;

has a finite basis;

is in size-preserving bijection with the words of a regular language;

hence has a rational generating function.
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Even more geometry: Geometric grid classes

A geometric grid class C is defined by a
geometric figure F , like

Permutations in C are those whose diagram
that may be drawn on F (up to stretching and
shrinking the axes)

• Remark: Many of the previously studied grid classes are equivalently
described as geometric grid classes.

• Theorem [Albert, Atkinson, Bouvel, Ruškuc & Vatter 13]:
Every subclass of a geometric grid class

is a partially well ordered for 4;

has a finite basis;

is in size-preserving bijection with the words of a regular language;

hence has a rational generating function.

• Also, use of geometric grid classes in many specific recent works.
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A graphical bijection preserving structure

• P : Av(231)→ Av(132) defined recursively as follows:

α

β
P−→

P(α)

P(β)

, with α, β ∈ Av(231)

is a bijection between Av(231) and Av(132).
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A graphical bijection preserving structure

• P : Av(231)→ Av(132) defined recursively as follows:

α

β
P−→

P(α)

P(β)

, with α, β ∈ Av(231)

is a bijection between Av(231) and Av(132).

• It preserves the join distribution of many classical permutation statistics:

number and positions of the right-to-left maxima

number and positions of the left-to-right maxima

up-down word

and hence all statistics determined by the up-down word (in particular
the descent set)

[Dokos, Dwyer, Johnson, Sagan & Selsor 12, Albert & Bouvel 13]
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A graphical bijection preserving structure

• P : Av(231)→ Av(132) defined recursively as follows:

α

β
P−→

P(α)

P(β)

, with α, β ∈ Av(231)

is a bijection between Av(231) and Av(132).

• It preserves the join distribution of many classical permutation statistics:

number and positions of the right-to-left maxima

number and positions of the left-to-right maxima

up-down word

and hence all statistics determined by the up-down word (in particular
the descent set)

[Dokos, Dwyer, Johnson, Sagan & Selsor 12, Albert & Bouvel 13]

This graphically-guided bijection may be used to prove two general results.
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Infinitely many equi-enumeration results from P

• Theorem [Albert & Bouvel 13]:

A pattern π ∈ Av(231) is such that P provides a bijection between
Av(231, π) and Av(132,P(π)) if and only if

π =
λk

ρn−k−1

, where λ1 = ρ1 = , λn = ρn−1 , ρn = λn−1 .

In particular, for such π, Av(231, π) and Av(132,P(π)) are
Wilf-equivalent, i.e. have the same enumeration.
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Infinitely many equi-enumeration results from P

• Theorem [Albert & Bouvel 13]:

A pattern π ∈ Av(231) is such that P provides a bijection between
Av(231, π) and Av(132,P(π)) if and only if

π =
λk

ρn−k−1

, where λ1 = ρ1 = , λn = ρn−1 , ρn = λn−1 .

In particular, for such π, Av(231, π) and Av(132,P(π)) are
Wilf-equivalent, i.e. have the same enumeration.

For such π, regardless of k, the generating function of Av(231, π) is
Fn, where F1(z) = 1 and Fn+1(z) = 1

1−zFn(z)
.
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Infinitely many equi-enumeration results from P

• Theorem [Albert & Bouvel 13]:

A pattern π ∈ Av(231) is such that P provides a bijection between
Av(231, π) and Av(132,P(π)) if and only if

π =
λk

ρn−k−1

, where λ1 = ρ1 = , λn = ρn−1 , ρn = λn−1 .

In particular, for such π, Av(231, π) and Av(132,P(π)) are
Wilf-equivalent, i.e. have the same enumeration.

For such π, regardless of k, the generating function of Av(231, π) is
Fn, where F1(z) = 1 and Fn+1(z) = 1

1−zFn(z)
.

• Consequence:
For each n, we obtain 2n Wilf-equivalent permutation classes.
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Infinitely many equi-enumeration results from P

• Theorem [Albert & Bouvel 13]:

A pattern π ∈ Av(231) is such that P provides a bijection between
Av(231, π) and Av(132,P(π)) if and only if

π =
λk

ρn−k−1

, where λ1 = ρ1 = , λn = ρn−1 , ρn = λn−1 .

In particular, for such π, Av(231, π) and Av(132,P(π)) are
Wilf-equivalent, i.e. have the same enumeration.

For such π, regardless of k, the generating function of Av(231, π) is
Fn, where F1(z) = 1 and Fn+1(z) = 1

1−zFn(z)
.

• Consequence:
For each n, we obtain 2n Wilf-equivalent permutation classes.

• Future work: Generalization to other graphically-guided bijections
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Sorting with stacks and reverse

S the stack-sorting operator

R the reverse operator, defined by R(σ1σ2 . . . σn) = σn . . . σ2σ1.

• Question: Fix A any composition of S and R, like
A = S ◦ R ◦ S ◦ S ◦ R ◦ S. Which permutations are sortable by A?

A Characterization Enumeration

S [Knuth 68] [Knuth 68]

S ◦ S [West 93] [Zeilberger 92]

S ◦ R ◦ S [Albert, Atkinson, Bouvel, [Bouvel & Guibert 12]

S ◦ α ◦ S Claesson & Dukes 11]

S ◦ S ◦ S [Úlfarsson 11] ??

More stacks ?? ??

The original question of Claesson, Dukes, Steingr̀ımsson is about
permutations sortable by stacks and symmetries α, among which R.
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Sorting with stacks and reverse

S the stack-sorting operator

R the reverse operator, defined by R(σ1σ2 . . . σn) = σn . . . σ2σ1.

• Question: Fix A any composition of S and R, like
A = S ◦ R ◦ S ◦ S ◦ R ◦ S. Which permutations are sortable by A?

• Theorem [Albert & Bouvel 13]:
For any operator A which is a composition of operators S and R, there are
as many permutations of size n sortable by S ◦A as permutations of size n
sortable by S ◦ R ◦ A.
Moreover, many permutation statistics are (jointly) equidistributed across
these two sets.
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Sorting with stacks and reverse

S the stack-sorting operator

R the reverse operator, defined by R(σ1σ2 . . . σn) = σn . . . σ2σ1.

• Question: Fix A any composition of S and R, like
A = S ◦ R ◦ S ◦ S ◦ R ◦ S. Which permutations are sortable by A?

• Theorem [Albert & Bouvel 13]:
For any operator A which is a composition of operators S and R, there are
as many permutations of size n sortable by S ◦A as permutations of size n
sortable by S ◦ R ◦ A.
Moreover, many permutation statistics are (jointly) equidistributed across
these two sets.

The bijection P is the key to defining the bijection ΨA between
S ◦ A-sortable permutations and S ◦ R ◦ A-sortable permutations.
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Structure from substitution decomposition



Substitution decomposition of combinatorial objects

Analogue of the decomposition of integers as products of primes

[Möhring & Radermacher 84]: general framework

Applies to relations, graphs, posets, boolean functions, set systems,
. . .

Permutations (almost) fit into this framework
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Substitution decomposition of combinatorial objects

Analogue of the decomposition of integers as products of primes

[Möhring & Radermacher 84]: general framework

Applies to relations, graphs, posets, boolean functions, set systems,
. . .

Permutations (almost) fit into this framework

Relies on:

a principle for building objects (permutations, graphs) from smaller
objects: the substitution

some “basic objects” for this construction: simple permutations,
prime graphs

Required properties:

every object can be decomposed using only “basic objects”

this decomposition is unique
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Substitution for permutations

Substitution or inflation : σ = π[α(1), α(2), . . . , α(k)].

Example: Here, π = 1 3 2, and


α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.
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Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

Not simple:

Simple:
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Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

The smallest simple permutations:
12, 21, 2413, 3142, 6 of size 5, . . .
Remark:
It is convenient to consider 12 and 21 not simple.

Enumeration of simple permutations:
• Asymptotically n!

e2
, but no exact enumeration.

• The generating function is not D-finite.

Not simple:

Simple:
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Substitution decomposition theorem for permutations

Theorem: [Albert, Atkinson & Klazar 03]

Every σ ( 6= 1) is uniquely decomposed as

12 . . . k[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable

k . . . 21[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Remarks:

⊕-indecomposable: that cannot be written as 12[α(1), α(2)]

	-indecomposable: that cannot be written as 21[α(1), α(2)]

Allows to relate the generating function for simples with that of all
permutations
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Substitution decomposition theorem for permutations

Theorem: [Albert, Atkinson & Klazar 03]

Every σ ( 6= 1) is uniquely decomposed as

12 . . . k[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable

k . . . 21[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Remarks:

⊕-indecomposable: that cannot be written as 12[α(1), α(2)]

	-indecomposable: that cannot be written as 21[α(1), α(2)]

Allows to relate the generating function for simples with that of all
permutations

Decomposing recursively inside the α(i) ⇒ decomposition tree

[Flajolet & Sedgewick 09]: Trees are easy to study and enumerate.
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Decomposition tree: witness of this decomposition

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notations and properties:

• ⊕ = 12 . . . k , 	 = k . . . 21
= linear nodes.

• π simple of size ≥ 4
= prime node.

• No edge ⊕−⊕ nor 	−	.

• Rooted ordered trees.

• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

Bijection between permutations and their decomposition trees.
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When the number of simple permutations in C is finite

• Theorem [Albert & Atkinson 05]:
If C contains a finite number of simple permutations, then C has a finite
basis and an algebraic generating function.

The proof is constructive and uses substitution decomposition to provide a
(possibly ambiguous) tree grammar describing C.
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• Theorem [Albert & Atkinson 05]:
If C contains a finite number of simple permutations, then C has a finite
basis and an algebraic generating function.

The proof is constructive and uses substitution decomposition to provide a
(possibly ambiguous) tree grammar describing C.

But. . . How to obtain an unambiguous grammar, i.e. a combinatorial
specification? And how to do it automatically?
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When the number of simple permutations in C is finite

• Theorem [Albert & Atkinson 05]:
If C contains a finite number of simple permutations, then C has a finite
basis and an algebraic generating function.

The proof is constructive and uses substitution decomposition to provide a
(possibly ambiguous) tree grammar describing C.

But. . . How to obtain an unambiguous grammar, i.e. a combinatorial
specification? And how to do it automatically?

• Theorem [Brignall, Ruškuc & Vatter 08]: It is decidable whether C given by
its finite basis contains a finite number of simples.

The hard part of the proof is to decide (using automata theory) whether C
contains finitely many proper pin-permutations.
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When the number of simple permutations in C is finite

• Theorem [Albert & Atkinson 05]:
If C contains a finite number of simple permutations, then C has a finite
basis and an algebraic generating function.

The proof is constructive and uses substitution decomposition to provide a
(possibly ambiguous) tree grammar describing C.

But. . . How to obtain an unambiguous grammar, i.e. a combinatorial
specification? And how to do it automatically?

• Theorem [Brignall, Ruškuc & Vatter 08]: It is decidable whether C given by
its finite basis contains a finite number of simples.

The hard part of the proof is to decide (using automata theory) whether C
contains finitely many proper pin-permutations.

But. . . How to decide by an efficient algorithm whether C contains
finitely many simples?
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Characterization and enumeration of pin-permutations

• Characterization of the decomposition trees of pin-permutations:

S = + ⊕
E+E+ E+

+ ⊕
E+

N+
E+

+ 	
E− E− E−

+ 	
E−

N−
E−

+ α + α

S \ { }

+ β+

S \ { }
12

+ β−

S \ { }
21

• Computation of the (rational) generating function of pin-permutations:

S(z) = z
8z6 − 20z5 − 4z4 + 12z3 − 9z2 + 6z − 1

8z8 − 20z7 + 8z6 + 12z5 − 14z4 + 26z3 − 19z2 + 8z − 1

[Bassino, Bouvel & Rossin 11]
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Characterization and enumeration of pin-permutations

• Characterization of the decomposition trees of pin-permutations:

S = + ⊕
E+E+ E+

+ ⊕
E+

N+
E+

+ 	
E− E− E−

+ 	
E−

N−
E−

+ α + α

S \ { }

+ β+

S \ { }
12

+ β−

S \ { }
21

• Computation of the (rational) generating function of pin-permutations:

S(z) = z
8z6 − 20z5 − 4z4 + 12z3 − 9z2 + 6z − 1

8z8 − 20z7 + 8z6 + 12z5 − 14z4 + 26z3 − 19z2 + 8z − 1

[Bassino, Bouvel & Rossin 11]

This is also a specific result obtained with substitution decomposition.
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Computation of specifications of permutation classes

• Algorithm testing whether C given by its finite basis contains a finite
number of simples. [Bassino, Bouvel, Pierrot & Rossin 13+]

Based on substitution decomposition, our study of pin-permutations
and automata theory.

Complexity O(n log n + n + s2k), to be compared to
O(n log n + n · 8s′ + 2k·s·2

s
) for [BRV 08].
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Computation of specifications of permutation classes

• Algorithm testing whether C given by its finite basis contains a finite
number of simples. [Bassino, Bouvel, Pierrot & Rossin 13+]

Based on substitution decomposition, our study of pin-permutations
and automata theory.

Complexity O(n log n + n + s2k), to be compared to
O(n log n + n · 8s′ + 2k·s·2

s
) for [BRV 08].

• Algorithm computing the set of simples C, in case it is finite.

Analyzing the poset of simple permutations. [Pierrot & Rossin 12]
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Computation of specifications of permutation classes

• Algorithm testing whether C given by its finite basis contains a finite
number of simples. [Bassino, Bouvel, Pierrot & Rossin 13+]

Based on substitution decomposition, our study of pin-permutations
and automata theory.

Complexity O(n log n + n + s2k), to be compared to
O(n log n + n · 8s′ + 2k·s·2

s
) for [BRV 08].

• Algorithm computing the set of simples C, in case it is finite.

Analyzing the poset of simple permutations. [Pierrot & Rossin 12]

• Algorithm computing, from the finite set of simples in C, a combinatorial
specification for C. [Bassino, Bouvel, Pierrot, Pivoteau & Rossin 12]

Propagate pattern avoidance/containment constraints into
substitution decomposition.

Unlike [AA 05], algorithm computing non-ambiguous grammars.
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Byproducts of specifications

⇒ Algorithmic chain
from a finite basis B to a combinatorial specification for C = Av(B)
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Byproducts of specifications

⇒ Algorithmic chain
from a finite basis B to a combinatorial specification for C = Av(B)

From a combinatorial specification for C, we immediately get:

A polynomial system for the generating function C (z)
[Flajolet & Sedgewick 09]

Efficient random samplers of permutations in C (recursive or
Boltzmann method) [Flajolet, Zimmerman & Van Cutsem 94]

[Duchon, Flajolet, Louchard & Schaeffer 04]
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Byproducts of specifications

⇒ Algorithmic chain
from a finite basis B to a combinatorial specification for C = Av(B)

From a combinatorial specification for C, we immediately get:

A polynomial system for the generating function C (z)
[Flajolet & Sedgewick 09]

Efficient random samplers of permutations in C (recursive or
Boltzmann method) [Flajolet, Zimmerman & Van Cutsem 94]

[Duchon, Flajolet, Louchard & Schaeffer 04]

⇒ Observation of many large random permutations in permutation classes
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Asymptotic properties of permutations in classes

Example:
30 000 permutations
of size 500 in
Av(2413, 1243, 2341,
531642, 41352)

Study average properties of random permutations in permutation classes.
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Asymptotic properties of permutations in classes

Example:
30 000 permutations
of size 500 in
Av(2413, 1243, 2341,
531642, 41352)

Study average properties of random permutations in permutation classes.

In the literature, only Av(123) and Av(132) have been studied from this
perspective. [Miner & Pak 13]
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Structure from graphs



Permutation patterns and induced subgraphs

To σ ∈ S, associate the graph Gσ of the inversions of σ:
σi σj is an edge of Gσ iff i < j and σi > σj
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Permutation patterns and induced subgraphs

To σ ∈ S, associate the graph Gσ of the inversions of σ:
σi σj is an edge of Gσ iff i < j and σi > σj

Example:
σ =

3 1 2 8 5 4 7 9 6

7−→ Gσ = 3

1

2

8
5

4

7

9

6

Mathilde Bouvel (I-Math, UZH) Permutation classes Dec. 17, 2013 32 / 34



Permutation patterns and induced subgraphs

To σ ∈ S, associate the graph Gσ of the inversions of σ:
σi σj is an edge of Gσ iff i < j and σi > σj

Example:
σ =

3 1 2 8 5 4 7 9 6

7−→ Gσ = 3

1

2

8
5

4

7

9

6

Mathilde Bouvel (I-Math, UZH) Permutation classes Dec. 17, 2013 32 / 34



Permutation patterns and induced subgraphs

To σ ∈ S, associate the graph Gσ of the inversions of σ:
σi σj is an edge of Gσ iff i < j and σi > σj

Example:
σ =

3 1 2 8 5 4 7 9 6

7−→ Gσ = 3

1

2

8
5

4

7

9

6

Mathilde Bouvel (I-Math, UZH) Permutation classes Dec. 17, 2013 32 / 34



Permutation patterns and induced subgraphs

To σ ∈ S, associate the graph Gσ of the inversions of σ:
σi σj is an edge of Gσ iff i < j and σi > σj

Example:
σ =

3 1 2 8 5 4 7 9 6

7−→ Gσ =

Considering the unlabeled version of Gσ, this application is neither
injective nor surjective.

But permutation patterns correspond to induced subgraphs.
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Permutation patterns and induced subgraphs

To σ ∈ S, associate the graph Gσ of the inversions of σ:
σi σj is an edge of Gσ iff i < j and σi > σj

Example:
σ =

3 1 2 8 5 4 7 9 6

7−→ Gσ =

Considering the unlabeled version of Gσ, this application is neither
injective nor surjective.

But permutation patterns correspond to induced subgraphs.

And permutation classes are the analogues of induced subgraph ideals (=
sets of graphs that are downward closed when taking induced subgraphs).
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From graphs to permutations and conversely

• The study of induced subgraph ideals (= is ideals) is a recent topic in
graph theory. [Chudnovsky, Seymour and collaborators]

• Most results are of the form:
An is ideal I is such that a parameter (e.g. maximum degree) is bounded
if and only if I does not include simpler is ideals (e.g. ideals of cliques and
stars).

What can we obtain transposing this approach to permutation classes?
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From graphs to permutations and conversely

• The study of induced subgraph ideals (= is ideals) is a recent topic in
graph theory. [Chudnovsky, Seymour and collaborators]

• Most results are of the form:
An is ideal I is such that a parameter (e.g. maximum degree) is bounded
if and only if I does not include simpler is ideals (e.g. ideals of cliques and
stars).

What can we obtain transposing this approach to permutation classes?

• State permutation analogues of conjectures on induced subgraphs (and
hopefully prove them).

Does it provide insight on the graph conjecture?

Erdős-Hajnal conjecture: For every graph H, there exists a constant
δ(H) > 0 such that every graph G with no induced subgraph isomorphic
to H has either a clique or a stable set of size at least |V (G )|δ(H).
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Some perspectives

• From graphically-guided bijections, find infinities of Wilf-equivalences (=
equi-enumeration results) between permutation classes.

This would also provide a unified framework for many known
Wilf-equivalences.

• From combinatorial specifications obtained from substitution
decomposition, study random permutations in permutation classes.

• Develop new problematics on permutation classes, inspired from those
on induced subgraph ideals.
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• From graphically-guided bijections, find infinities of Wilf-equivalences (=
equi-enumeration results) between permutation classes.

This would also provide a unified framework for many known
Wilf-equivalences.

• From combinatorial specifications obtained from substitution
decomposition, study random permutations in permutation classes.

• Develop new problematics on permutation classes, inspired from those
on induced subgraph ideals.

Merci !
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