Permutation classes: structure and combinatorial properties

Mathilde Bouvel

Institut für Mathematik, Universität Zürich
December 17, 2013.

Enumerative combinatorics

Discrete objects and combinatorial classes

- Examples of discrete objects:

Fully-Packed Loops

Graphs

Walks

Permutations

Discrete objects and combinatorial classes

- Examples of discrete objects:

Fully-Packed Loops

Graphs

Walks

Permutations

- A combinatorial class is a family of discrete objects is equipped with a notion of size such that for every integer n, the set of objects of size n is finite.

Discrete objects and combinatorial classes

- Examples of discrete objects:

Fully-Packed Loops

$$
n=10
$$

Graphs
$n=36$

Walks
$n=2500$

Permutations
$n=9$

- A combinatorial class is a family of discrete objects is equipped with a notion of size such that for every integer n, the set of objects of size n is finite.

Discrete objects and combinatorial classes

- Examples of discrete objects:

Fully-Packed Loops

$$
n=10
$$

Graphs
$n=36$

Walks
$n=2500$

Permutations
$n=9$

- A combinatorial class is a family of discrete objects is equipped with a notion of size such that for every integer n, the set of objects of size n is finite.
- Characterize the objects in a combinatorial class and study their combinatorial properties.
This may help understanding phenomena modeled by discrete objects.

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Exact formula for c_{n} (closed form, or summation)
$\hookrightarrow C a t_{n}=\frac{1}{n+1}\binom{2 n}{n}, B a x_{n}=\sum_{k=1}^{n} \frac{2}{n(n+1)^{2}}\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}$

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Exact formula for c_{n} (closed form, or summation)
- Enumeration refined with some statistics, $c_{n}=\sum_{k} c_{n, k}$
$\hookrightarrow c_{n, k}=$ number of objects of size n with value of the parameter k

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Exact formula for c_{n} (closed form, or summation)
- Enumeration refined with some statistics, $c_{n}=\sum_{k} c_{n, k}$
- Asymptotic equivalent for c_{n}
$\hookrightarrow S i_{n} \sim \frac{n!}{e^{2}}$, but not exact formula for $S i_{n}$

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Exact formula for c_{n} (closed form, or summation)
- Enumeration refined with some statistics, $c_{n}=\sum_{k} c_{n, k}$
- Asymptotic equivalent for c_{n}
- Equi-enumeration of several classes (preserving the distribution of some statistics)
\hookrightarrow Proved computationally or with size-preserving bijections.

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Exact formula for c_{n} (closed form, or summation)
- Enumeration refined with some statistics, $c_{n}=\sum_{k} c_{n, k}$
- Asymptotic equivalent for c_{n}
- Equi-enumeration of several classes (preserving the distribution of some statistics)
- Explicit or implicit expression of the generating function $C(z)=\sum_{n} c_{n} z^{n}$
$\hookrightarrow \operatorname{Cat}(z)=\frac{1-\sqrt{1-4 z}}{2 z}$

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Exact formula for c_{n} (closed form, or summation)
- Enumeration refined with some statistics, $c_{n}=\sum_{k} c_{n, k}$
- Asymptotic equivalent for c_{n}
- Equi-enumeration of several classes (preserving the distribution of some statistics)
- Explicit or implicit expression of the generating function $C(z)=\sum_{n} c_{n} z^{n}$
- Nature of the generating function (rational, algebraic,...)

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Exact formula for c_{n} (closed form, or summation)
- Enumeration refined with some statistics, $c_{n}=\sum_{k} c_{n, k}$
- Asymptotic equivalent for c_{n}
- Equi-enumeration of several classes (preserving the distribution of some statistics)
- Explicit or implicit expression of the generating function $C(z)=\sum_{n} c_{n} z^{n}$
- Nature of the generating function (rational, algebraic,...)
- Bivariate generating functions $C(z ; u)=\sum_{n} c_{n, k} u^{k} z^{n}$

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Exact formula for c_{n} (closed form, or summation)
- Enumeration refined with some statistics, $c_{n}=\sum_{k} c_{n, k}$
- Asymptotic equivalent for c_{n}
- Equi-enumeration of several classes (preserving the distribution of some statistics)
- Explicit or implicit expression of the generating function $C(z)=\sum_{n} c_{n} z^{n}$
- Nature of the generating function (rational, algebraic,...)
- Bivariate generating functions $C(z ; u)=\sum_{n} c_{n, k} u^{k} z^{n}$
- Asymptotic behavior of $C(z)$ near the singularity

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Many ways of answering this question!

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Many ways of answering this question!
- Further questions:
- Combinatorial characterization or properties of the objects

Such questions are often answered in the proof of an enumeration result.

What do we want to know about combinatorial classes?

Let \mathcal{C} be a combinatorial class.

- Simplest question: How many objects of size n are there in \mathcal{C} ?

Let \mathcal{C}_{n} be the set of objects of size n in \mathcal{C}, and $c_{n}=\left|\mathcal{C}_{n}\right|$.

- Many ways of answering this question!
- Further questions:
- Combinatorial characterization or properties of the objects

Such questions are often answered in the proof of an enumeration result.

- More general approach:
- Define frameworks where all combinatorial classes have common properties
\hookrightarrow For all simple varieties of trees, $c_{n} \sim \gamma \rho^{-n} n^{-3 / 2}$.

Permutations

Permutation of size $n=$ Bijection from [1..n] to itself. Set \mathfrak{S}_{n}, and $\mathfrak{S}=\cup_{n} \mathfrak{S}_{n}$.

Permutations

Permutation of size $n=$ Bijection from [1..n] to itself. Set \mathfrak{S}_{n}, and $\mathfrak{S}=\cup_{n} \mathfrak{S}_{n}$.

- Graphical description,
- Two lines notation:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 8 & 3 & 6 & 4 & 2 & 5 & 7
\end{array}\right)
$$

- Linear notation:

$$
\sigma=18364257
$$

- Description as a product of cycles:

$$
\sigma=(1)(287546)(3)
$$ or diagram:

Permutations

Permutation of size $n=$ Bijection from [1..n] to itself. Set \mathfrak{S}_{n}, and $\mathfrak{S}=\cup_{n} \mathfrak{S}_{n}$.

- Graphical description,
- Two lines notation:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 8 & 3 & 6 & 4 & 2 & 5 & 7
\end{array}\right)
$$

- Linear notation:

$$
\sigma=18364257
$$

- Description as a product of cycles:

$$
\sigma=(1)(287546)(3)
$$ or diagram:

More precisely, I study permutation patterns and permutation classes.

Permutation patterns and permutation classes

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

32754

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

32754

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

2754

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

$$
754
$$

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
12

754

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
123

754

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

$$
754
$$

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

54

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

4

The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
12364

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
123645

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236457

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231 meaning that there are no $i<j<k$ such that $\sigma_{k}<\sigma_{i}<\sigma_{j}$, or equivalently no subsequences $\cdots \sigma_{i} \cdots \sigma_{j} \cdots \sigma_{k} \cdots$ of σ whose elements are in the same relative order as 231.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231 meaning that there are no $i<j<k$ such that $\sigma_{k}<\sigma_{i}<\sigma_{j}$, or equivalently no subsequences $\cdots \sigma_{i} \cdots \sigma_{j} \cdots \sigma_{k} \cdots$ of σ whose elements are in the same relative order as 231.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231 meaning that there are no $i<j<k$ such that $\sigma_{k}<\sigma_{i}<\sigma_{j}$, or equivalently no subsequences $\cdots \sigma_{i} \cdots \sigma_{j} \cdots \sigma_{k} \cdots$ of σ whose elements are in the same relative order as 231.

Enumeration by the Catalan numbers Cat $_{n}=\frac{1}{n+1}\binom{2 n}{n}$

Permutation patterns

Pattern relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on
[1..k] yields π.
Example: $2134 \preccurlyeq 312854796$
since $3157 \equiv 2134$

Permutation patterns

Pattern relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (三) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Permutation patterns

Pattern relation \preccurlyeq :

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Permutation patterns

Pattern relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$
 since $3157 \equiv 2134$.

Permutation patterns

Pattern relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on
[1..k] yields π.

Example: $2134 \preccurlyeq 312854796$
 since $3157 \equiv 2134$.

Remark: \preccurlyeq is a partial order on $\mathfrak{S}=\bigcup_{n} \mathfrak{S}_{n}$.
This is the key to defining permutation classes.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.
- Notations: $\operatorname{Av}(\pi)=$ the set of permutations that avoid the pattern π

$$
A v(B)=\bigcap_{\pi \in B} A v(\pi)
$$

- Fact: For every permutation class $\mathcal{C}, \mathcal{C}=\operatorname{Av}(B)$ for $B=\{\sigma \notin \mathcal{C}: \forall \pi \preccurlyeq \sigma$ such that $\pi \neq \sigma, \pi \in \mathcal{C}\}$. B is an antichain, called the basis of \mathcal{C}.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.
- Notations: $\operatorname{Av}(\pi)=$ the set of permutations that avoid the pattern π

$$
A v(B)=\bigcap_{\pi \in B} A v(\pi)
$$

- Fact: For every permutation class $\mathcal{C}, \mathcal{C}=\operatorname{Av}(B)$ for $B=\{\sigma \notin \mathcal{C}: \forall \pi \preccurlyeq \sigma$ such that $\pi \neq \sigma, \pi \in \mathcal{C}\}$. B is an antichain, called the basis of \mathcal{C}.
- Remarks:
- Conversely, every set $A v(B)$ is a permutation class.
- There exist infinite antichains, hence some permutation classes have infinite basis.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.
- Notations: $\operatorname{Av}(\pi)=$ the set of permutations that avoid the pattern π

$$
A v(B)=\bigcap_{\pi \in B} A v(\pi)
$$

- Fact: For every permutation class $\mathcal{C}, \mathcal{C}=\operatorname{Av}(B)$ for $B=\{\sigma \notin \mathcal{C}: \forall \pi \preccurlyeq \sigma$ such that $\pi \neq \sigma, \pi \in \mathcal{C}\}$. B is an antichain, called the basis of \mathcal{C}.
- Remarks:
- Conversely, every set $A v(B)$ is a permutation class.
- There exist infinite antichains, hence some permutation classes have infinite basis.
- Most results about permutation classes are enumeration results.

Some early specific enumeration results

- One excluded pattern:
- of size 3 :
- Description of $\operatorname{Av}(123)$ [MacMahon 1915] and $\operatorname{Av}(231)$ [Knuth 68].
- Enumeration by the Catalan numbers in both cases.
- Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008].
- For symmetry reasons, it is enough to study $\operatorname{Av}(123)$ and $\operatorname{Av}(231)$.

Some early specific enumeration results

- One excluded pattern:
- of size 3 :
- Description of $\operatorname{Av}(123)$ [MacMahon 1915] and $\operatorname{Av}(231)$ [Knuth 68].
- Enumeration by the Catalan numbers in both cases.
- Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008].
- For symmetry reasons, it is enough to study $A v(123)$ and $A v(231)$.
- of size 4:

Only three different enumerations. Representatives are:

- Av (1342) [Bóna 97], algebraic generating function
- $\operatorname{Av}(1234)$ [Gessel 90], holonomic (or D-finite) generating function
- $\operatorname{Av}(1324) \ldots$ remains an open problem

Some early specific enumeration results

- One excluded pattern:
- of size 3 :
- Description of $\operatorname{Av}(123)$ [MacMahon 1915] and $\operatorname{Av}(231)$ [Knuth 68].
- Enumeration by the Catalan numbers in both cases.
- Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008].
- For symmetry reasons, it is enough to study $\operatorname{Av}(123)$ and $\operatorname{Av}(231)$.
- of size 4:

Only three different enumerations. Representatives are:

- $\operatorname{Av}(1342)$ [Bóna 97], algebraic generating function
- $\operatorname{Av}(1234)$ [Gessel 90], holonomic (or D-finite) generating function
- $\operatorname{Av}(1324) \ldots$ remains an open problem
- Systematic enumeration of $\operatorname{Av}(B)$ when B contains small excluded patterns (size 3 or 4)
[Simion\&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West. . . in the nineties] [Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, ...nowadays]

A general enumeration result for permutation classes

First common property of all (proper) permutation classes (i.e. classes $\mathcal{C} \neq \mathfrak{S}$):

Theorem:
For every permutation $\pi, \sqrt[n]{\left|A v_{n}(\pi)\right|}$ converges to a constant c_{π}.
Conjectured by [Stanley \& Wilf 92]; proved by [Marcus \& Tardos 04].

A general enumeration result for permutation classes

First common property of all (proper) permutation classes (i.e. classes $\mathcal{C} \neq \mathfrak{S}$):

Theorem:
For every permutation $\pi, \sqrt[n]{\left|A v_{n}(\pi)\right|}$ converges to a constant c_{π}.
Conjectured by [Stanley \& Wilf 92]; proved by [Marcus \& Tardos 04].
Hence, $\left|A v_{n}(\pi)\right| \approx c_{\pi}^{n}$.
To be compared with $\left|\mathfrak{S}_{n}\right|=n!\approx e^{n \log n}$.

A general enumeration result for permutation classes

First common property of all (proper) permutation classes
(i.e. classes $\mathcal{C} \neq \mathfrak{S}$):

Theorem:
For every permutation $\pi, \sqrt[n]{\left|A v_{n}(\pi)\right|}$ converges to a constant c_{π}.
Conjectured by [Stanley \& Wilf 92]; proved by [Marcus \& Tardos 04].
Hence, $\left|A v_{n}(\pi)\right| \approx c_{\pi}^{n}$.
To be compared with $\left|\mathfrak{S}_{n}\right|=n!\approx e^{n \log n}$.
This allows to define the growth rate of a class $\mathcal{C}=\lim \sup _{n \rightarrow \infty} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$.
Consequence: All (proper) permutation classes have finite growth rates.
Except when $\mathcal{C}=\operatorname{Av}(\pi)$, it is an open question to know
if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$ exists.

The general and the specific perspective

- Study of specific permutation classes
- Characterization and enumeration, often with ad hoc arguments
- Very precise results (distribution of statistics, ...)
- Common properties of many permutation classes
- Less precise results, but widely applicable

The general and the specific perspective

- Study of specific permutation classes
- Characterization and enumeration, often with ad hoc arguments
- Very precise results (distribution of statistics, ...)
- Common properties of many permutation classes
- Less precise results, but widely applicable

Combinatorial properties or nice enumeration follow from nice structure.

- Ad hoc description of structure gives specific results.
- General notions of structure yield both specific and general results.

The general and the specific perspective

- Study of specific permutation classes
- Characterization and enumeration, often with ad hoc arguments
- Very precise results (distribution of statistics, ...)
- Common properties of many permutation classes
- Less precise results, but widely applicable

Combinatorial properties or nice enumeration follow from nice structure.

- Ad hoc description of structure gives specific results.
- General notions of structure yield both specific and general results.
- Three possible looks at the structure of permutations:
- Graphical structure, on the diagrams
- Structure from substitution decomposition, with trees
- Structure inherited from graphs

Structure from graphics

The first example: stack-sortable permutations

- Denoting \mathcal{C} the class of stack-sortable permutations, we have [Knuth]:
- $\mathcal{C}=\operatorname{Av}(231)$;
- \mathcal{C} is enumerated by the Catalan numbers $C^{2} t_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

The first example: stack-sortable permutations

- Denoting \mathcal{C} the class of stack-sortable permutations, we have [Knuth]:
- $\mathcal{C}=A v(231)$;
- \mathcal{C} is enumerated by the Catalan numbers Cat $_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
- Proof: from the structure of \mathcal{C}.

Representing permutations as diagrams, we have

Remember diagrams:

The first example: stack-sortable permutations

- Denoting \mathcal{C} the class of stack-sortable permutations, we have [Knuth]:
- $\mathcal{C}=\operatorname{Av}(231)$;
- \mathcal{C} is enumerated by the Catalan numbers Cat $_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
- Proof: from the structure of \mathcal{C}.

Representing permutations as diagrams, we have

Remember diagrams:

- This recursive description characterizes $\operatorname{Av}(231)$.
- It implies that $C(z)=1+z C(z)^{2}$, whose solution is the generating function $\sum_{n} C a t_{n} z^{n}$

Grid classes: the block structure of permutations

- Formalize the idea of describing permutation classes by "blocks".
- A grid class \mathcal{C} is defined by a matrix, like

$$
M=\left(\begin{array}{rr}
\operatorname{Av}(1) & \operatorname{Av}(12) \\
\operatorname{Av}(21) & \operatorname{Av}(132)
\end{array}\right)
$$

- A permutation belongs to \mathcal{C} if its diagram can be decomposed in rectangular blocks to fit into	$A v(1)$	$A v(12)$
$A v(21)$	$A v(132)$	

Example:

$\sigma=156398247 \in \mathcal{C}$ defined by M, because the diagram of σ can be decomposed as

Grid classes: the block structure of permutations

- Formalize the idea of describing permutation classes by "blocks".
- A grid class \mathcal{C} is defined by a matrix, like

$$
M=\left(\begin{array}{rr}
\operatorname{Av}(1) & \operatorname{Av}(12) \\
\operatorname{Av}(21) & \operatorname{Av}(132)
\end{array}\right) .
$$

- A permutation belongs to \mathcal{C} if its diagram can be decomposed in

$$
\text { rectangular blocks to fit into } \begin{array}{|c|c|}
\hline A v(1) & A v(12) \\
\hline A v(21) & A v(132) \\
\hline
\end{array}
$$

- Some results, applicable to grid classes \mathcal{C} with additional restrictions:
- $(\mathcal{C}, \preccurlyeq)$ is a partial well order (no infinite antichains)
- \mathcal{C} has a rational generating function
- \mathcal{C} has a finite basis
[Albert, Atkinson, Brignall, Ruškuc, Vatter, Waton]

Even more geometry: Geometric grid classes

- A geometric grid class \mathcal{C} is defined by a geometric figure F, like

Even more geometry: Geometric grid classes

- A geometric grid class \mathcal{C} is defined by a geometric figure F, like
- Permutations in \mathcal{C} are those whose diagram that may be drawn on F (up to stretching and shrinking the axes)

Even more geometry: Geometric grid classes

- A geometric grid class \mathcal{C} is defined by a geometric figure F, like
- Permutations in \mathcal{C} are those whose diagram that may be drawn on F (up to stretching and shrinking the axes)

- Remark: Many of the previously studied grid classes are equivalently described as geometric grid classes.

Even more geometry: Geometric grid classes

- A geometric grid class \mathcal{C} is defined by a geometric figure F, like
- Permutations in \mathcal{C} are those whose diagram that may be drawn on F (up to stretching and shrinking the axes)

- Remark: Many of the previously studied grid classes are equivalently described as geometric grid classes.
- Theorem [Albert, Atkinson, Bouvel, Ruškuc \& Vatter 13]:

Every subclass of a geometric grid class

- is a partially well ordered for \preccurlyeq;
- has a finite basis;
- is in size-preserving bijection with the words of a regular language;
- hence has a rational generating function.

Even more geometry: Geometric grid classes

- A geometric grid class \mathcal{C} is defined by a geometric figure F, like
- Permutations in \mathcal{C} are those whose diagram that may be drawn on F (up to stretching and shrinking the axes)

- Remark: Many of the previously studied grid classes are equivalently described as geometric grid classes.
- Theorem [Albert, Atkinson, Bouvel, Ruškuc \& Vatter 13]:

Every subclass of a geometric grid class

- is a partially well ordered for \preccurlyeq;
- has a finite basis;
- is in size-preserving bijection with the words of a regular language;
- hence has a rational generating function.
- Also, use of geometric grid classes in many specific recent works.

A graphical bijection preserving structure

- $P: A v(231) \rightarrow A v(132)$ defined recursively as follows:

is a bijection between $A v(231)$ and $A v(132)$.

A graphical bijection preserving structure

- $P: A v(231) \rightarrow A v(132)$ defined recursively as follows:

is a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$.
- It preserves the join distribution of many classical permutation statistics:
- number and positions of the right-to-left maxima
- number and positions of the left-to-right maxima
- up-down word
- and hence all statistics determined by the up-down word (in particular the descent set)
[Dokos, Dwyer, Johnson, Sagan \& Selsor 12, Albert \& Bouvel 13]

A graphical bijection preserving structure

- $P: A v(231) \rightarrow A v(132)$ defined recursively as follows:
 is a bijection between $A v(231)$ and $A v(132)$.
- It preserves the join distribution of many classical permutation statistics:
- number and positions of the right-to-left maxima
- number and positions of the left-to-right maxima
- up-down word
- and hence all statistics determined by the up-down word (in particular the descent set)
[Dokos, Dwyer, Johnson, Sagan \& Selsor 12, Albert \& Bouvel 13]
This graphically-guided bijection may be used to prove two general results.

Infinitely many equi-enumeration results from P

- Theorem [Albert \& Bouvel 13]:
- A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $A v(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if

$$
\pi=\lambda^{\bullet}, \quad \text { where } \lambda_{1}=\rho_{1}=\emptyset, \lambda_{n}=\stackrel{\bullet}{\rho_{n-k}}, \rho_{n}=\lambda^{\rho_{n-1}}
$$

- In particular, for such $\pi, \operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ are Wilf-equivalent, i.e. have the same enumeration.

Infinitely many equi-enumeration results from P

- Theorem [Albert \& Bouvel 13]:
- A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $A v(231, \pi)$ and $A v(132, P(\pi))$ if and only if

$$
\pi=\stackrel{\bullet}{\lambda_{k}}, \quad \text { where } \lambda_{1}=\rho_{1}=\boxminus, \lambda_{n}=\stackrel{\bullet}{\rho_{n-k}}, \rho_{n}=\lambda_{n-1}^{\bullet}
$$

- In particular, for such $\pi, \operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ are Wilf-equivalent, i.e. have the same enumeration.
- For such π, regardless of k, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}, where $F_{1}(z)=1$ and $F_{n+1}(z)=\frac{1}{1-z F_{n}(z)}$.

Infinitely many equi-enumeration results from P

- Theorem [Albert \& Bouvel 13]:
- A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $A v(231, \pi)$ and $A v(132, P(\pi))$ if and only if

$$
\pi=\lambda^{\bullet}, \quad \text { where } \lambda_{1}=\rho_{1}=\emptyset, \lambda_{n}=\stackrel{\bullet}{\rho_{n-k}}, \rho_{n}=\lambda^{\lambda_{n-1}}
$$

- In particular, for such $\pi, \operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ are Wilf-equivalent, i.e. have the same enumeration.
- For such π, regardless of k, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}, where $F_{1}(z)=1$ and $F_{n+1}(z)=\frac{1}{1-z F_{n}(z)}$.
- Consequence:

For each n, we obtain $2 n$ Wilf-equivalent permutation classes.

Infinitely many equi-enumeration results from P

- Theorem [Albert \& Bouvel 13]:
- A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $A v(231, \pi)$ and $A v(132, P(\pi))$ if and only if

$$
\pi=\lambda^{\bullet}, \quad \text { where } \lambda_{1}=\rho_{1}=\emptyset, \lambda_{n}=\stackrel{\bullet}{\rho_{n-k}}, \rho_{n}=\lambda_{\lambda_{n-1}}^{\bullet} \text {. }
$$

- In particular, for such $\pi, \operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ are Wilf-equivalent, i.e. have the same enumeration.
- For such π, regardless of k, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}, where $F_{1}(z)=1$ and $F_{n+1}(z)=\frac{1}{1-z F_{n}(z)}$.
- Consequence:

For each n, we obtain $2 n$ Wilf-equivalent permutation classes.

- Future work: Generalization to other graphically-guided bijections

Sorting with stacks and reverse

- S the stack-sorting operator
- \mathbf{R} the reverse operator, defined by $\mathbf{R}\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right)=\sigma_{n} \ldots \sigma_{2} \sigma_{1}$.
- Question: Fix A any composition of \mathbf{S} and \mathbf{R}, like $\mathbf{A}=\mathbf{S} \circ \mathbf{R} \circ \mathbf{S} \circ \mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$. Which permutations are sortable by \mathbf{A} ?

\mathbf{A}	Characterization	Enumeration
\mathbf{S}	[Knuth 68]	[Knuth 68]
$\mathbf{S} \circ \mathbf{S}$	[West 93]	[Zeilberger 92]
$\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$	[Albert, Atkinson, Bouvel,	[Bouvel \& Guibert 12]
$\mathbf{S} \circ \alpha \circ \mathbf{S}$	Claesson \& Dukes 11]	
$\mathbf{S} \circ \mathbf{S} \circ \mathbf{S}$	[Úlfarsson 11]	??
More stacks	??	??

The original question of Claesson, Dukes, Steingrimsson is about permutations sortable by stacks and symmetries α, among which \mathbf{R}.

Sorting with stacks and reverse

- S the stack-sorting operator
- \mathbf{R} the reverse operator, defined by $\mathbf{R}\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right)=\sigma_{n} \ldots \sigma_{2} \sigma_{1}$.
- Question: Fix \mathbf{A} any composition of \mathbf{S} and \mathbf{R}, like
$\mathbf{A}=\mathbf{S} \circ \mathbf{R} \circ \mathbf{S} \circ \mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$. Which permutations are sortable by \mathbf{A} ?
- Theorem [Albert \& Bouvel 13]:

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.
Moreover, many permutation statistics are (jointly) equidistributed across these two sets.

Sorting with stacks and reverse

- S the stack-sorting operator
- \mathbf{R} the reverse operator, defined by $\mathbf{R}\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right)=\sigma_{n} \ldots \sigma_{2} \sigma_{1}$.
- Question: Fix \mathbf{A} any composition of \mathbf{S} and \mathbf{R}, like
$\mathbf{A}=\mathbf{S} \circ \mathbf{R} \circ \mathbf{S} \circ \mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$. Which permutations are sortable by \mathbf{A} ?
- Theorem [Albert \& Bouvel 13]:

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.
Moreover, many permutation statistics are (jointly) equidistributed across these two sets.

The bijection P is the key to defining the bijection Ψ_{A} between $\mathbf{S} \circ \mathbf{A}$-sortable permutations and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable permutations.

Structure from substitution decomposition

Substitution decomposition of combinatorial objects

Analogue of the decomposition of integers as products of primes

- [Möhring \& Radermacher 84]: general framework
- Applies to relations, graphs, posets, boolean functions, set systems,
- Permutations (almost) fit into this framework

Substitution decomposition of combinatorial objects

Analogue of the decomposition of integers as products of primes

- [Möhring \& Radermacher 84]: general framework
- Applies to relations, graphs, posets, boolean functions, set systems,
- Permutations (almost) fit into this framework

Relies on:

- a principle for building objects (permutations, graphs) from smaller objects: the substitution
- some "basic objects" for this construction: simple permutations, prime graphs
Required properties:
- every object can be decomposed using only "basic objects"
- this decomposition is unique

Substitution for permutations

Substitution or inflation : $\sigma=\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$.

Example: Here, $\pi=132$, and

$$
\left\{\begin{array}{l}
\alpha^{(1)}=21=\bullet \bullet \\
\alpha^{(2)}=132=\bullet \bullet \\
\alpha^{(3)}=1=\bullet
\end{array}\right.
$$

Hence $\sigma=132[21,132,1]=214653$.

Simple permutations

Interval (or block) $=$ set of elements of σ whose positions and values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation $=$ permutation with no interval, except the trivial ones: $1,2, \ldots, n$ and σ Example: 3174625 is simple

Not simple:

Simple:

Simple permutations

Interval (or block) $=$ set of elements of σ whose positions and values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation $=$ permutation with no interval, except the trivial ones: $1,2, \ldots, n$ and σ Example: 3174625 is simple

The smallest simple permutations: $12,21,2413,3142,6$ of size $5, \ldots$ Remark:
It is convenient to consider 12 and 21 not simple.
Enumeration of simple permutations:

Not simple:

Simple:

- Asymptotically $\frac{n!}{e^{2}}$, but no exact enumeration.
- The generating function is not D-finite.

Substitution decomposition theorem for permutations

Theorem: [Albert, Atkinson \& Klazar 03]
Every $\sigma(\neq 1)$ is uniquely decomposed as

- $12 \ldots k\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \oplus-indecomposable
- $k \ldots 21\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \ominus-indecomposable
- $\pi\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where π is simple of size $k \geq 4$

Remarks:

- \oplus-indecomposable: that cannot be written as $12\left[\alpha^{(1)}, \alpha^{(2)}\right]$
- \ominus-indecomposable: that cannot be written as $21\left[\alpha^{(1)}, \alpha^{(2)}\right]$
- Allows to relate the generating function for simples with that of all permutations

Substitution decomposition theorem for permutations

Theorem: [Albert, Atkinson \& Klazar 03]
Every $\sigma(\neq 1)$ is uniquely decomposed as

- $12 \ldots k\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \oplus-indecomposable
- $k \ldots 21\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \ominus-indecomposable
- $\pi\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where π is simple of size $k \geq 4$

Remarks:

- \oplus-indecomposable: that cannot be written as $12\left[\alpha^{(1)}, \alpha^{(2)}\right]$
- \ominus-indecomposable: that cannot be written as $21\left[\alpha^{(1)}, \alpha^{(2)}\right]$
- Allows to relate the generating function for simples with that of all permutations

Decomposing recursively inside the $\alpha^{(i)} \Rightarrow$ decomposition tree
[Flajolet \& Sedgewick 09]: Trees are easy to study and enumerate.

Decomposition tree: witness of this decomposition

Example: Decomposition tree of

$$
\sigma=101312111411819202117161548329567
$$

Notations and properties:

- $\oplus=12 \ldots k, \ominus=k \ldots 21$
$=$ linear nodes.
- π simple of size ≥ 4
$=$ prime node.
- No edge $\oplus-\oplus$ nor $\ominus-\ominus$.
- Rooted ordered trees.
- These conditions characterize decomposition trees.

$$
\sigma=3142[\oplus[1, \ominus[1,1,1], 1], 1, \ominus[\oplus[1,1,1,1], 1,1,1], 24153[1,1, \ominus[1,1], 1, \oplus[1,1,1]]]
$$

Bijection between permutations and their decomposition trees.

When the number of simple permutations in \mathcal{C} is finite

- Theorem [Albert \& Atkinson 05]:

If \mathcal{C} contains a finite number of simple permutations, then \mathcal{C} has a finite basis and an algebraic generating function.
The proof is constructive and uses substitution decomposition to provide a (possibly ambiguous) tree grammar describing \mathcal{C}.

When the number of simple permutations in \mathcal{C} is finite

- Theorem [Albert \& Atkinson 05]:

If \mathcal{C} contains a finite number of simple permutations, then \mathcal{C} has a finite basis and an algebraic generating function.
The proof is constructive and uses substitution decomposition to provide a (possibly ambiguous) tree grammar describing \mathcal{C}.
But... How to obtain an unambiguous grammar, i.e. a combinatorial specification? And how to do it automatically?

When the number of simple permutations in \mathcal{C} is finite

- Theorem [Albert \& Atkinson 05]:

If \mathcal{C} contains a finite number of simple permutations, then \mathcal{C} has a finite basis and an algebraic generating function.
The proof is constructive and uses substitution decomposition to provide a (possibly ambiguous) tree grammar describing \mathcal{C}.

But... How to obtain an unambiguous grammar, i.e. a combinatorial specification? And how to do it automatically?

- Theorem [Brignall, Ruškuc \& Vatter 08]: It is decidable whether \mathcal{C} given by its finite basis contains a finite number of simples.
The hard part of the proof is to decide (using automata theory) whether \mathcal{C} contains finitely many proper pin-permutations.

When the number of simple permutations in \mathcal{C} is finite

- Theorem [Albert \& Atkinson 05]:

If \mathcal{C} contains a finite number of simple permutations, then \mathcal{C} has a finite basis and an algebraic generating function.
The proof is constructive and uses substitution decomposition to provide a (possibly ambiguous) tree grammar describing \mathcal{C}.

But... How to obtain an unambiguous grammar, i.e. a combinatorial specification? And how to do it automatically?

- Theorem [Brignall, Ruškuc \& Vatter 08]: It is decidable whether \mathcal{C} given by its finite basis contains a finite number of simples.
The hard part of the proof is to decide (using automata theory) whether \mathcal{C} contains finitely many proper pin-permutations.
But... How to decide by an efficient algorithm whether \mathcal{C} contains finitely many simples?

Characterization and enumeration of pin-permutations

- Characterization of the decomposition trees of pin-permutations:
- Computation of the (rational) generating function of pin-permutations:

$$
S(z)=z \frac{8 z^{6}-20 z^{5}-4 z^{4}+12 z^{3}-9 z^{2}+6 z-1}{8 z^{8}-20 z^{7}+8 z^{6}+12 z^{5}-14 z^{4}+26 z^{3}-19 z^{2}+8 z-1}
$$

[Bassino, Bouvel \& Rossin 11]

Characterization and enumeration of pin-permutations

- Characterization of the decomposition trees of pin-permutations:
- Computation of the (rational) generating function of pin-permutations:

$$
S(z)=z \frac{8 z^{6}-20 z^{5}-4 z^{4}+12 z^{3}-9 z^{2}+6 z-1}{8 z^{8}-20 z^{7}+8 z^{6}+12 z^{5}-14 z^{4}+26 z^{3}-19 z^{2}+8 z-1}
$$

[Bassino, Bouvel \& Rossin 11]
This is also a specific result obtained with substitution decomposition.

Computation of specifications of permutation classes

- Algorithm testing whether \mathcal{C} given by its finite basis contains a finite number of simples.
[Bassino, Bouvel, Pierrot \& Rossin 13+]
- Based on substitution decomposition, our study of pin-permutations and automata theory.
- Complexity $\mathcal{O}\left(n \log n+n+s^{2 k}\right)$, to be compared to $\mathcal{O}\left(n \log n+n \cdot 8^{s^{\prime}}+2^{k \cdot s \cdot 2^{s}}\right)$ for [BRV 08].

Computation of specifications of permutation classes

- Algorithm testing whether \mathcal{C} given by its finite basis contains a finite number of simples.
[Bassino, Bouvel, Pierrot \& Rossin 13+]
- Based on substitution decomposition, our study of pin-permutations and automata theory.
- Complexity $\mathcal{O}\left(n \log n+n+s^{2 k}\right)$, to be compared to $\mathcal{O}\left(n \log n+n \cdot 8^{s^{\prime}}+2^{k \cdot s \cdot 2^{s}}\right)$ for [BRV 08].
- Algorithm computing the set of simples \mathcal{C}, in case it is finite.
- Analyzing the poset of simple permutations.

Computation of specifications of permutation classes

- Algorithm testing whether \mathcal{C} given by its finite basis contains a finite number of simples.
[Bassino, Bouvel, Pierrot \& Rossin 13+]
- Based on substitution decomposition, our study of pin-permutations and automata theory.
- Complexity $\mathcal{O}\left(n \log n+n+s^{2 k}\right)$, to be compared to $\mathcal{O}\left(n \log n+n \cdot 8^{s^{\prime}}+2^{k \cdot s \cdot 2^{s}}\right)$ for [BRV 08].
- Algorithm computing the set of simples \mathcal{C}, in case it is finite.
- Analyzing the poset of simple permutations. [Pierrot \& Rossin 12]
- Algorithm computing, from the finite set of simples in \mathcal{C}, a combinatorial specification for \mathcal{C}. [Bassino, Bouvel, Pierrot, Pivoteau \& Rossin 12]
- Propagate pattern avoidance/containment constraints into substitution decomposition.
- Unlike [AA 05], algorithm computing non-ambiguous grammars.

Byproducts of specifications

\Rightarrow Algorithmic chain
from a finite basis B to a combinatorial specification for $\mathcal{C}=\operatorname{Av}(B)$

Byproducts of specifications

\Rightarrow Algorithmic chain
from a finite basis B to a combinatorial specification for $\mathcal{C}=\operatorname{Av}(B)$

From a combinatorial specification for \mathcal{C}, we immediately get:

- A polynomial system for the generating function $C(z)$
[Flajolet \& Sedgewick 09]
- Efficient random samplers of permutations in \mathcal{C} (recursive or Boltzmann method)
[Flajolet, Zimmerman \& Van Cutsem 94]
[Duchon, Flajolet, Louchard \& Schaeffer 04]

Byproducts of specifications

\Rightarrow Algorithmic chain
from a finite basis B to a combinatorial specification for $\mathcal{C}=\operatorname{Av}(B)$

From a combinatorial specification for \mathcal{C}, we immediately get:

- A polynomial system for the generating function $C(z)$
[Flajolet \& Sedgewick 09]
- Efficient random samplers of permutations in \mathcal{C} (recursive or Boltzmann method)
[Flajolet, Zimmerman \& Van Cutsem 94]
[Duchon, Flajolet, Louchard \& Schaeffer 04]
\Rightarrow Observation of many large random permutations in permutation classes

Asymptotic properties of permutations in classes

Example:

30000 permutations
of size 500 in
$\operatorname{Av}(2413,1243,2341$,
531642, 41352)

Study average properties of random permutations in permutation classes.

Asymptotic properties of permutations in classes

Example:

30000 permutations
of size 500 in
$\operatorname{Av}(2413,1243,2341$,
531642, 41352)

Study average properties of random permutations in permutation classes. In the literature, only $A v(123)$ and $A v(132)$ have been studied from this perspective.

Structure from graphs

Permutation patterns and induced subgraphs

To $\sigma \in \mathfrak{S}$, associate the graph G_{σ} of the inversions of σ : $\sigma_{i} \longmapsto \sigma_{j}$ is an edge of G_{σ} iff $i<j$ and $\sigma_{i}>\sigma_{j}$

Permutation patterns and induced subgraphs

To $\sigma \in \mathfrak{S}$, associate the graph G_{σ} of the inversions of σ : $\sigma_{i} \longmapsto \sigma_{j}$ is an edge of G_{σ} iff $i<j$ and $\sigma_{i}>\sigma_{j}$

Example:

Permutation patterns and induced subgraphs

To $\sigma \in \mathfrak{S}$, associate the graph G_{σ} of the inversions of σ : $\sigma_{i} \longmapsto \sigma_{j}$ is an edge of G_{σ} iff $i<j$ and $\sigma_{i}>\sigma_{j}$

Example:

Permutation patterns and induced subgraphs

To $\sigma \in \mathfrak{S}$, associate the graph G_{σ} of the inversions of σ : $\sigma_{i} \longmapsto \sigma_{j}$ is an edge of G_{σ} iff $i<j$ and $\sigma_{i}>\sigma_{j}$

Example:

Permutation patterns and induced subgraphs

To $\sigma \in \mathfrak{S}$, associate the graph G_{σ} of the inversions of σ :
$\sigma_{i} \longmapsto \sigma_{j}$ is an edge of G_{σ} iff $i<j$ and $\sigma_{i}>\sigma_{j}$

Example:

Considering the unlabeled version of G_{σ}, this application is neither injective nor surjective.

But permutation patterns correspond to induced subgraphs.

Permutation patterns and induced subgraphs

To $\sigma \in \mathfrak{S}$, associate the graph G_{σ} of the inversions of σ :
$\sigma_{i} \longmapsto \sigma_{j}$ is an edge of G_{σ} iff $i<j$ and $\sigma_{i}>\sigma_{j}$

Example:

Considering the unlabeled version of G_{σ}, this application is neither injective nor surjective.

But permutation patterns correspond to induced subgraphs.

Permutation patterns and induced subgraphs

To $\sigma \in \mathfrak{S}$, associate the graph G_{σ} of the inversions of σ :
$\sigma_{i} \longmapsto \sigma_{j}$ is an edge of G_{σ} iff $i<j$ and $\sigma_{i}>\sigma_{j}$

Example:

Considering the unlabeled version of G_{σ}, this application is neither injective nor surjective.

But permutation patterns correspond to induced subgraphs.

Permutation patterns and induced subgraphs

To $\sigma \in \mathfrak{S}$, associate the graph G_{σ} of the inversions of σ :
$\sigma_{i} \longmapsto \sigma_{j}$ is an edge of G_{σ} iff $i<j$ and $\sigma_{i}>\sigma_{j}$

Example:

Considering the unlabeled version of G_{σ}, this application is neither injective nor surjective.

But permutation patterns correspond to induced subgraphs.

Permutation patterns and induced subgraphs

To $\sigma \in \mathfrak{S}$, associate the graph G_{σ} of the inversions of σ :
$\sigma_{i} \longmapsto \sigma_{j}$ is an edge of G_{σ} iff $i<j$ and $\sigma_{i}>\sigma_{j}$

Example:

Considering the unlabeled version of G_{σ}, this application is neither injective nor surjective.

But permutation patterns correspond to induced subgraphs.
And permutation classes are the analogues of induced subgraph ideals (= sets of graphs that are downward closed when taking induced subgraphs).

From graphs to permutations and conversely

- The study of induced subgraph ideals ($=$ is ideals) is a recent topic in graph theory. [Chudnovsky, Seymour and collaborators]
- Most results are of the form:

An is ideal \mathcal{I} is such that a parameter (e.g. maximum degree) is bounded if and only if \mathcal{I} does not include simpler is ideals (e.g. ideals of cliques and stars).
What can we obtain transposing this approach to permutation classes?

From graphs to permutations and conversely

- The study of induced subgraph ideals ($=$ is ideals) is a recent topic in graph theory. [Chudnovsky, Seymour and collaborators]
- Most results are of the form:

An is ideal \mathcal{I} is such that a parameter (e.g. maximum degree) is bounded if and only if \mathcal{I} does not include simpler is ideals (e.g. ideals of cliques and stars).
What can we obtain transposing this approach to permutation classes?

- State permutation analogues of conjectures on induced subgraphs (and hopefully prove them).
Does it provide insight on the graph conjecture?
Erdős-Hajnal conjecture: For every graph H, there exists a constant $\delta(H)>0$ such that every graph G with no induced subgraph isomorphic to H has either a clique or a stable set of size at least $|V(G)|^{\delta(H)}$.

Some perspectives

- From graphically-guided bijections, find infinities of Wilf-equivalences (= equi-enumeration results) between permutation classes.
This would also provide a unified framework for many known Wilf-equivalences.
- From combinatorial specifications obtained from substitution decomposition, study random permutations in permutation classes.
- Develop new problematics on permutation classes, inspired from those on induced subgraph ideals.

Some perspectives

- From graphically-guided bijections, find infinities of Wilf-equivalences (= equi-enumeration results) between permutation classes.
This would also provide a unified framework for many known Wilf-equivalences.
- From combinatorial specifications obtained from substitution decomposition, study random permutations in permutation classes.
- Develop new problematics on permutation classes, inspired from those on induced subgraph ideals.

Merci !

