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Abstract

In this paper, we give a polynomial (O(n8)) algorithm for finding a
longest common pattern between two permutations of size n given that
one is separable. We also give an algorithm for general permutations
whose complexity depends on the length of the longest simple permutation
involved in one of our permutations.

1 Introduction and basic concepts

The study of patterns in permutations has blossomed these last years: from a
combinatorial point of view with the recent proof of the Stanley-Wilf conjec-
ture by Marcus and Tardös, and from an algorithmic one with the development
of algorithms for pattern involvement. Although the general pattern involve-
ment problem is NP−hard, some polynomial solutions exist for special kinds
of patterns like the separable ones [4, 10]. In this article we study the problem
of finding a longest common pattern between two permutations σ1 and σ2 i.e.
a permutation σ which is involved in both permutations σ1 and σ2. This is
a generalization of the pattern involvement problem since finding if the longest
pattern between σ1 and σ2 is equal to σ1 is equivalent to the pattern involvement
problem.

First, we give a polynomial algorithm based on the work of [4] for finding the
longest common pattern if one permutation is separable. Then we generalize this
algorithm for general permutations. The complexity of our algorithm is based
on the length of the longest simple permutation involved in our permutations.

1.1 Permutations

A permutation σ of an interval I of N is a bijective map from I to itself. We
denote by σi the image of i under σ. The permutation σ could either be seen as
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†LIAFA, Université Paris 7 and CNRS, Paris, France, 75251, rossin@liafa.jussieu.fr,

http://www.liafa.jussieu.fr/∼rossin

1



a function or a word σiσi+1 . . . σj , where I = {h : i ≤ h ≤ j}. For example the
permutation σ = 1 4 2 5 6 3 is the bijective function such that σ(1) = 1, σ(2) = 4,
σ(3) = 2, σ(4) = 5 . . .. In the following, when we consider permutations without
giving explicitly the interval I, we mean that I = {1, . . . , n} for some n.

Definition 1.1. A permutation π = π1 . . . πk is called a pattern of the permu-
tation σ = σi+1 . . . σi+n of I = {h : i + 1 ≤ h ≤ i + n}, with k ≤ n, if and only
if there exist integers i + 1 ≤ i1 < i2 < . . . < ik ≤ i + n such that σiℓ

< σim

whenever πℓ < πm. We will also say that π is involved in σ or that σ contains
π. The subsequence σi1σi2 . . . σik

is called an occurrence of π in σ.

A permutation σ that does not contain π as a pattern is said to avoid π.

Example 1.2. For example σ = 1 4 2 5 6 3 contains the pattern 1 3 4 2, and
1 5 6 3, 1 4 6 3, 2 5 6 3 and 1 4 5 3 are the occurrences of this pattern in σ.
But σ avoids the pattern 3 2 1 as no subsequence of length 3 of σ is isomorphic
to 3 2 1, i.e. is decreasing.

A number of enumerative results has been proved on classes of pattern avoid-
ing permutations for patterns of length 3, 4 and multiple patterns. More recently
results about the algebricity of the generating function of general classes of per-
mutations have been given [6, 1].

Another field of study of these permutations is from the point of view of
pattern involvement. The problem of deciding if a permutation π is a pattern of
a permutation σ is NP−complete but this problem is proved to be polynomial
if the pattern is separable [4, 10].

Definition 1.3. A permutation σ of size n is called separable if it avoids the
patterns 3 1 4 2 and 2 4 1 3 or equivalently if it has a binary separating tree.

Definition 1.4. A binary separating tree is a binary ordered tree with n leaves
such that each internal vertex is labeled by + or −.

For each such tree, there is a unique way [4] to decorate its leaves (considering
them from left to right) by σ1, σ2, . . . , σn such that:

1. σ1 . . . σn is a permutation of {1 . . . n}.

2. Each node (internal or leaf) is decorated by a permutation of an interval.

3. Each internal node V labeled with + (resp. −) is decorated by a permu-
tation of {i . . . j}. For some h ∈ {i + 1, . . . , j}, V ’s left child is decorated
by a permutation of {i . . . h − 1} (resp. {h . . . j}) and its right child is
decorated by a permutation of {h . . . j} (resp. {i . . . h− 1}), .

It is easy to prove [4] that to each separable permutation one can associate a
binary separating tree (see Figure 1). Note that this tree is not uniquely defined
as shown in Figure 1. However, one can associate a unique tree to each separable
permutation by taking arbitrary ordered trees instead of binary ordered trees.
These trees are the contraction of the binary ones by contracting every edge
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Figure 1: Two decorated binary separating trees and the decorated contracted
separating tree of σ = 4 2 3 1 6 5 8 9 7. Dashed lines represent edges that
should be contracted to transform binary into contracted separating tree.

between two nodes with the same label + or −. In these trees, the signs of the
internal nodes are thus ranked: if the root of the tree has label + (resp. −),
then every node at odd depth has label + (resp. −) and every node at even
depth label − (resp. +), so that all labels are determined from the label of the
root.

Definition 1.5. The unique contracted separating tree associated to a separable
permutation σ is obtained from any binary separating tree of σ by contracting
every edge between nodes of the same sign.

1.2 Modular decomposition of graphs ; Interval decompo-

sition of permutations

The contracted separating trees we introduced in Definition 1.5 also appear in
graph theory. Namely, those trees are a special case of interval decomposition
trees (on which we however need to add a labeling). The interval decomposition
trees are an equivalent for permutations of the modular decomposition trees for
graphs [12, 9]. 1

1Interval decomposition trees are known as common interval decomposition trees in the

context of graph decomposition.
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Before we come to the pattern matching problem in permutations, we need
to introduce the interval decomposition trees, the labeled decomposition trees,
and finally the expanded decomposition trees that are the key structure we use
in our algorithms.

The interval decomposition of a permutation σ of size n is defined as fol-
lows. First consider all the intervals of σ that is to say all the subsequences
σjσj+1 . . . σk of consecutive entries of σ such that {σj , σj+1, . . . , σk} is an inter-
val of N. Among the intervals, the strong intervals are those that do not overlap
any other interval2. Figure 2 illustrates the notion of intervals and strong inter-
vals.

5 1 10 9 6 7 8 11 2 4 3
1 2 3 4 5 6 7 8 91011

1

2
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11

Figure 2: Interval decomposition of σ = 5 1 10 9 6 7 8 11 2 4 3.
In the first figure, intervals are represented by horizontal lines, with strong
intervals corresponding to bold lines. In the second one, intervals are represented
by squares (bold squares represent strong intervals).

The inclusion ordering yields a tree-like ordering on the set of strong inter-
vals. This ordering is represented by a tree whose leaves are σ1, σ2, . . ., σn from
left to right in this order, whose root is σ, and such that each internal node is
the union of its children.

Note that there are two different types of internal nodes in the tree of strong
intervals. For some nodes, say V , with k children V1, . . . , Vk from left to right,
there do not exist (i, j) 6= (1, k) such that 1 ≤ i < j ≤ k and the union of
Vi, Vi+1, . . . , Vj is an interval. These nodes are called prime nodes and are of
type P .

The other nodes V are such that every union of consecutive children form
an interval. Those node are called linear nodes and are of type L.

The tree along with the types P and L of the internal nodes (see Figure 3) is
called the interval decomposition tree of σ. In this tree, the order of the children
of a node depends on σ so that we have an ordered tree, unlike the modular
decomposition trees for graphs.

Note that nodes of arity 2 verify both linear and prime definitions. We
choose to consider them of type L. This choice will be explained later. For
further explanation on these trees, like the proof that a node is either linear or
prime, refer to [9].

In [3, 9] they prove the following result:

2The definition of overlapping intervals follows the intuition: we say that two intervals I

and J are overlapping when I \ J 6= ∅, J \ I 6= ∅ and I ∩ J 6= ∅
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Theorem 1.6 ([3, 9]). Computing interval decomposition tree from a permuta-

tion is linear.

P, 5 1 10 9 6 7 8 11 2 4 3

5 1

L,10 9 6 7 8 11

L,10 9 6 7 8

10 9

L,6 7 8

6 7 8 11

L,2 4 3

2

L,4 3

4 3

type,decoration

Figure 3: Interval decomposition tree for σ = 5 1 10 9 6 7 8 11 2 4 3

For our algorithmic use of interval decomposition trees, the types of the
internal nodes are not sufficient and we need to label the internal nodes of the
interval decomposition tree of a permutation.

It is easy to see that for each node V of type L, the intervals of values
corresponding to the children of V are ordered either by increasing order or by
decreasing order, when considering these children from left to right. The linear
nodes are subsequently labeled + or − respectively.

The labeling of a prime node with d children consists of a permutation σ

of size d that does not have any intervals except {1}, . . . , {d} and σ. Such
permutations are known as simple permutations [1, 2, 5, 6, 8]. The permutation
σ represents the ordering of the children V1, . . . , Vd of V between them with
respect to the values in the intervals corresponding to the Vi’s. Namely, σi < σj

if and only if the interval corresponding to Vi contains values that are smaller
than those contained in the interval corresponding to Vj . For example, the
simple permutation labeling the root of the tree on Figure 3 is 3 1 4 2.

This interval decomposition tree along with labels +,− and simple permu-
tations can be computed easily in O(n2 lnn) which is sufficient for our purpose.
Remind (Theorem 1.6) that the interval decomposition tree can be computed
in linear time. Thus it remains to add a label on each internal node V . This
can be done by sorting the intervals corresponding to the children of V .

When a interval decomposition tree is labeled, the intervals corresponding to
the nodes can be deduced from this labeling, like in the case of binary separating
trees (see Definition 1.4). Thus, the intervals can be seen as a decoration of
the nodes and the same information is contained in the tree without these
decorations.

Definition 1.7. The labeled decomposition tree of a permutation σ is the
interval decomposition tree of σ, where we add the labeling on internal nodes
described above, and where we forget the decoration.
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Figure 4 gives the labeled decomposition tree of σ = 5 1 10 9 6 7 8 11 2 4 3.
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Figure 4: Labeled decomposition tree and expanded decomposition tree for
σ = 5 1 10 9 6 7 8 11 2 4 3

We have the following nice characterization of separable permutations in
terms of labeled decomposition trees:

Proposition 1.1. The separable permutations are exactly those having a inter-

val decomposition tree with no prime nodes.

For any separable permutation, its contracted separating tree and its labeled de-

composition tree are equal.

The proof of this proposition is straightforward from the definition of sep-
arable permutations. Note that it is important to give the type L to binary
internal nodes for stating that proposition.

Proposition 1.1 states that labeled decomposition trees are a generalization
to all permutations of the contracted separating tree defined only for separable
permutations. For binary separating trees, we have an analogous generalization,
called expanded decomposition trees. In our algorithms, it is easier to work
on binary nodes so that the natural representation used later is the expanded
decomposition tree.

To transform a labeled decomposition tree into an expanded decomposition
tree, take each linear node V with children V1, . . . , Vk and note that we can
represent it by (. . . ((V1, V2), V3), . . .), Vk) as shown in Figure 4. Each positive
(resp. negative) internal node of arity k gives k − 1 positive (resp. negative)
binary internal nodes.

A consequence of Proposition 1.1 is:

Proposition 1.2. The expanded decomposition tree of a separable permutation

is one of its binary separating trees.

2 Longest common pattern between two permu-

tations, including one separable

In this section, we describe a polynomial time algorithm for finding a longest
common pattern between two permutations σ and τ provided that σ is separable.
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This algorithm uses the same technique as the one of Bose, Buss and Lubiw
[4] for finding an occurrence of a separable pattern in a general permutation.
Namely, it computes a binary separating tree Tσ of σ and uses it as a guide in
the search of the longest common pattern with τ . To avoid a complexity blow-
up, the key point is to use dynamic programming, the initial problem being
decomposed into sub-problems according to the structure of Tσ.

First recall that it can be decided in linear time whether a permutation
is separable or not. If it is, its binary separating tree can also be computed
in linear time, as described in [4]. Indeed it can be computed by reading the
permutation from left to right. This result is actually a special case of a more
general one, proved in [3, 9], and stating that the interval decomposition tree of
any permutation can be computed in linear time 1.6.

Instead of two permutations σ and τ , our algorithm takes as an input a
binary separating tree Tσ for a separable permutation σ of size k, and a permu-
tation τ in the usual representation τ1τ2 . . . τn. Notice that a binary separating
tree for σ has O(k) nodes.

More precisely, the algorithm fills in the array

M = {M(V, i, j, a, b) : V a node of Tσ, 1 ≤ i ≤ j ≤ n, 1 ≤ a ≤ b ≤ n}.

For any node V in Tσ, let us denote by σ(V ) the subpermutation of σ corre-
sponding to the subtree of Tσ rooted at V . With the notations of Section 1,
σ(V ) is the permutation decorating the node V . The cell M(V, i, j, a, b) of the
array M contains a longest common pattern π between σ(V ) on one hand, and
the subpermutation τi . . . τj of τ on the other hand, with the additional restric-
tion that the occurrence of π in τi . . . τj uses only entries of τ whose values are
between a and b. The empty pattern, of size 0, will be denoted ǫ.

Example 2.1. If the node V represents the pattern 2 1 (i.e. σ(V ) = (i +
1) i), and τ = 6 4 2 5 3 1 then we have for instance M(V, 2, 4, 3, 5) = 1,
M(V, 2, 5, 3, 4) = 2 1 and M(V, 4, 5, 1, 2) = ǫ.

The algorithm works as follows. To start the computation, we fill in the sub-
arrays M(V, , , , ) for all the leaves V of Tσ. Then, we compute M(V, , , , )
for any internal node V using the subarrays M(VL, , , , ) and M(VR, , , , )
corresponding to the left child (VL) and the right child (VR) of V . In order
to combine the patterns found in M(VL, , , , ) and M(VR, , , , ) with the
intention of filling M(V, , , , ), we need a definition of pattern concatenation.

Definition 2.2. Consider two patterns π and π′ of respective lengths k and k′.
The positive and negative concatenations of π and π′ are defined respectively by:
π⊕π′ = π1 · · ·πk(π′

1 +k) · · · (π′
k′ +k) and π⊖π′ = (π1 +k′) · · · (πk +k′)π′

1 · · ·π
′
k′

Example 2.3.

4 3 5 2 1⊕ 3 1 4 2 = 4 3 5 2 1
... 8 6 9 7

4 3 5 2 1⊖ 3 1 4 2 = 8 7 9 6 5
... 3 1 4 2
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It is clear from Definition 2.2 that the positive (resp. negative) concatena-
tion of two patterns produces again a pattern.

The detailed dynamic programming algorithm is given in Algorithm 1.

Algorithm 1 Longest common pattern between two permutations, first one
separable

1: Input: A binary separating tree Tσ of a separable permutation σ of size k

and a permutation τ of size n

2: Create an array M :

3: for any node V of Tσ and any integers i, j, a and b between 1 and n do

4: M(V, i, j, a, b)← ǫ

5: end for

6: Fill in M for the leaves of Tσ:

7: for any leaf V of Tσ do

8: for any integers i, j, a and b between 1 and n, i ≤ j, a ≤ b do

9: if there exists some h ∈ {i, i + 1, . . . , j} such that a ≤ τh ≤ b then

10: M(V, i, j, a, b)← 1
11: end if

12: end for

13: end for

14: Fill in the rest of M :

15: for any internal node V of Tσ, considering the nodes in the postfix ordering
do

16: if V is a positive node then

17: for any integers i, j, a and b between 1 and n, i ≤ j, a ≤ b do

18: M(V, i, j, a, b)← Longest({M(VL, i, h−1, a, c−1)⊕M(VR, h, j, c, b) :
i ≤ h ≤ j + 1, a ≤ c ≤ b + 1})

19: end for

20: else

21: /* V is a negative node /*
22: for any integers i, j, a and b between 1 and n, i ≤ j, a ≤ b do

23: M(V, i, j, a, b)← Longest({M(VL, i, h−1, c, b)⊖M(VR, h, j, a, c−1) :
i ≤ h ≤ j + 1, a ≤ c ≤ b + 1})

24: end for

25: end if

26: end for

27: Output: M(root of Tσ, 1, n, 1, n)

In Algorithm 1, for any set S of patterns, Longest(S) returns a longest
pattern in the set S.
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Proposition 2.1. Algorithm 1 is correct: it outputs a longest common pattern

between the two permutations σ and τ given in input.

Proof. The proof is by induction.
We show that the algorithm stores in M(V, i, j, a, b) a longest common pattern
between σ(V ) and τi . . . τj whose occurrence in τi . . . τj uses only values between
a and b. We call P this property.

If V is a leaf, the above statement is clearly true.
If V is an internal node, with two children VL (its left child) and VR (its

right child), then let i, j, a and b be integers such that 1 ≤ i ≤ j ≤ n and
1 ≤ a ≤ b ≤ n. We assume in the rest of the proof that V is a positive node, the
case of a negative node being very similar. To begin with, it is easy to see that
M(V, i, j, a, b) contains a common pattern between σ(V ) and τi . . . τj using only
values between a and b in τi . . . τj . Indeed, by induction hypothesis, we infer
that every pattern in the set S = {M(VL, i, h − 1, a, c− 1) ⊕M(VR, h, j, c, b) :
i ≤ h ≤ j + 1, a ≤ c ≤ b + 1}, and a fortiori Longest(S), is a common pattern
between σ(V ) and τi . . . τj using only values between a and b in τi . . . τj (see
Example 2.5).

To conclude the inductive step of the proof of Proposition 2.1, it remains to
show that:

Lemma 2.4. Longest(S) is of maximal length among all the common patterns

between σ(V ) and τi . . . τj using only values between a and b in τi . . . τj .

Proof. First recall that we are proving Property P for a node V , and that we
can use Property P on nodes VL and VR by induction hypothesis.

Now, let us denote by π a longest common pattern between σ(V ) and τi . . . τj ,
using only values between a and b in τi . . . τj .

As shown on Figure 5, there exist integers h ∈ {i, . . . , j + 1} and c ∈
{a, . . . , b + 1} such that π is decomposed into π = π1 ⊕ π2, with π1 a com-
mon pattern between σ(VL) and τi . . . τh−1, using only values between a and
c−1 in τi . . . τh−1, and π2 a common pattern between σ(VR) and τh . . . τj , using
only values between c and b in τh . . . τj .

Notice that in this decomposition π1 or π2 might be the empty pattern.
It can be easily seen that π1 (resp. π2) is a longest common pattern between

σ(VL) (resp. σ(VR)) and τ in the given intervals of indices and values. Indeed,
if π1 (resp. π2) were not a pattern of maximal length for the given intervals of
indices and values, then π would not be of maximal length either, contradicting
the definition of π. Consequently, by induction hypothesis, |M(VL, i, h−1, a, c−
1)| = |π1| and |M(VR, h, j, c, b)| = |π2|. The pattern stored in M(V, i, j, a, b) by
the algorithm is of length at least |M(VL, i, h− 1, a, c− 1)⊕M(VR, h, j, c, b)| =
|π1 ⊕ π2| = |π|. As π is of maximal length by assumption, we conclude that
M(V, i, j, a, b) is also of maximal length.

Finally, M(V, i, j, a, b) contains a longest common pattern between σ(V ) and
τi . . . τj whose occurrence in τi . . . τj uses only values between a and b.

9



+ node V

σ(VL) σ(VR)
σ(V ) =

π1 π2⊕

τh . . . τjτi . . . τj = τi . . . τh−1

π =

Figure 5: Proof of Lemma 2.4

When V is a negative node, we decompose π into π1⊖π2, with π1 a common
pattern between σ(VL) and τi . . . τh−1 , using only values between c and b in
τi . . . τh−1, and π2 a common pattern between σ(VR) and τh . . . τj , using only
values between a and c−1 in τh . . . τj , and the proof follows the same steps.

Example 2.5. Consider the permutations σ = 1 4 2 3 6 5 7 8 and
τ = 4 1 3 2 5 6 8 9 7. A separating tree Tσ of
σ is represented on the right. For example, we
can choose V to be the right child of the root
of Tσ. Then we have σ(V ) = 4 2 3 6 5 7 8,
σ(VL) = 4 2 3 and σ(VR) = 6 5 7 8. Now choose
i = 2, j = 7, a = 2 and b = 8. We want to show
that for any h ∈ {i, . . . j + 1} and c ∈ {a, . . . b +
1}, M(VL, i, h− 1, a, c− 1)⊕M(VR, h, j, c, b) is a
common pattern between σ(V ) and τi . . . τj using
only values between a and b in τi . . . τj . Take for
example h = 5 and c = 4.

+

1

+

-

4

+

2 3

+

-

6 5

+

7 8

By induction hypothesis, M(VL, i, h − 1, a, c − 1) contains a longest common
pattern between σ(VL) and τi . . . τh−1 using only values between a and c − 1
in τi . . . τh−1. Here, M(VL, i, h − 1, a, c − 1) = 2 1, an occurrence of 2 1 in
τi . . . τh−1 = 1 3 2 using values between 2 and 3 being 1 3 2, and an occurrence
of 2 1 in σ(VL) = 4 2 3 being 4 2 3. Similarly, we have M(VR, h, j, c, b) =
M(VR, 5, 7, 4, 8) = 1 2 3, as shown by the occurrences 5 6 8 in τh . . . τj = 5 6 8
and 6 5 7 8 in σ(VR) = 6 5 7 8. The occurrence of M(VL, i, h − 1, a, c −
1) ⊕ M(VR, h, j, c, b) = 2 1 3 4 5 in τi . . . τj using values between a and b is
thus obtained by considering simultaneously the two occurrences in τ selected
before. Namely, an occurrence of 2 1 3 4 5 in τi . . . τj = 1 3 2 5 6 8 using values
between 2 and 8 is 1 3 2 5 6 8. Notice also that the occurrence 4 2 3 6 5 7 8 of
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2 1 3 4 5 in σ(V ) = 4 2 3 6 5 7 8 is again obtained considering simultaneously
the occurrences of 2 1 and 1 2 3 in σ(VL) and σ(VR) respectively.

Proposition 2.2. Algorithm 1 has a time complexity in O(min(k, n)kn6).

Proof. Algorithm 1 handles an array M of size O(kn4), where each cell contains
a pattern of length at most min(n, k), so that the total space complexity is
O(min(n, k)kn4). For filling in the subarrays M(V, _, _, _, _) for all the leaves
V of Tσ (line 6 to 13 of Algorithm 1), the total time complexity is O(kn5).
And for any internal node V , filling in one entry of the subarray M(V, _, _, _, _)
costs O(min(k, n)n2), since at line 18 (or 23) of Algorithm 1, we search for an
element of maximal length among O(n2) elements, each of size O(min(k, n)).
Consequently, completely filling in this subarray M(V, _, _, _, _) requires a time
complexity O(min(k, n)n6). Since there are O(k) internal nodes in Tσ, we have
the announced result.

This complexity can be improved to O(kn6), by storing an integer, a label
(⊕ or ⊖), and two pointers in M(V, i, j, a, b) (when V is an internal node)
instead of a pattern. Namely, if Algorithm 1 fills in M(V, i, j, a, b) with the
pattern ρ = M(VL, i, h − 1, a, c − 1) ⊕M(VR, h, j, c, b), it is sufficient to store
in M(V, i, j, a, b) the length of ρ, the label ⊕, and two pointers pointing to the
entries M(VL, i, h−1, a, c−1) and M(VR, h, j, c, b) of the array M . At the end of
the algorithm, this system of pointers gives a binary separating tree of a longest
common pattern π between σ and τ . From this tree, π can be computed in
linear time [4].

A consequence of Properties 2.1 and 2.2 is:

Theorem 2.6. The problem of finding a longest common pattern between two

permutations, one being separable, is in P .

3 Longest common pattern between two permu-

tations

The result of Theorem 2.6 can be easily extended to classes of permutations that
are less restricted than separable permutations. Using the interval decomposi-
tion tree introduced in Section 1.2, we will see that a longest common pattern
between two permutations σ and τ can be computed in polynomial time as soon
as the arity of any prime node in the interval decomposition tree of σ is bounded
by a constant d chosen independently.

Proposition 1.2 states that expanded decomposition trees are a generaliza-
tion to all permutations of binary separating trees. From this remark, it becomes
natural to try and use expanded decomposition trees in an algorithm for finding
a longest common pattern between two general permutations. In the following,
we describe such an algorithm and analyze its complexity: it is not in gen-
eral a polynomial time algorithm, but the complexity analysis reveals classes of
permutations for which the algorithm runs in polynomial time.
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First, we notice that the expanded decomposition tree of a permutation
can be computed in polynomial time, and even in linear time if we have an
independent bound on the arity of the prime nodes. Theorem 1.6 provides a
O(n)-time algorithm for computing the interval decomposition tree Tσ of any
permutation σ of size n. This tree can easily be labeled in time O(nd log d)
where d is a bound on the arity of prime nodes: for every internal node V of Tσ

– of which there are O(n) – it is enough to sort its children to find the label of V .
Finally, the vertical expansion necessary to obtain the expanded decomposition
tree of σ requires again a linear time.

Algorithm 2 takes as an input an expanded decomposition tree Tσ of a
permutation σ and a permutation τ . It outputs a longest common pattern
between σ and τ . It works just like Algorithm 1, except for the case of prime
nodes in Tσ. The procedure in this additional case is described in Algorithm 2.

Algorithm 2 Longest common pattern between two permutations

1: Input : An expanded decomposition tree Tσ of a permutation σ of size k

and a permutation τ of size n

2: Create an array M : proceed as in Algorithm 1

3: Fill in M for the leaves of Tσ: proceed as in Algorithm 1

4: Fill in the rest of M :
5: for any internal node V of Tσ, considering the nodes in the postfix ordering

do

6: if V is a positive or a negative node then

7: proceed as in Algorithm 1
8: else

9: /* V is a prime node /*
10: Let ρ be the simple permutation labeling V

11: Let d be the arity of V , and V1, . . . , Vd the children of V , from left to
right

12: for any integers i, j, a and b between 1 and n, i ≤ j, a ≤ b do

13: M(V, i, j, a, b)← Longest(S) where
S =

{

⊙ρ (
(

M(Vk, hk−1, hk − 1, cρk−1, cρk
− 1)

)

1≤k≤d
) :

i = h0 ≤ h1 ≤ . . . ≤ hd = j + 1, a = c0 ≤ c1 ≤ . . . ≤ cd = b + 1
}

14: end for

15: end if

16: end for

17: Output : M(root of Tσ, 1, n, 1, n)

Algorithm 2 uses a more general kind of pattern concatenation than just ⊕
and ⊖. The ρ-concatenation, or pattern concatenation according to ρ, is defined
as follows:
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Definition 3.1. Given ρ = ρ1 . . . ρn a permutation of size n, and n patterns
π1, . . . , πn of respective size k1, . . . , kn, the ρ-concatenation of the (πi)1≤i≤n is

⊙ρ(π
1, . . . , πn) = shift(π1, ρ1) . . . shift(πn, ρn) where

shift(πi, ρi) = shift(πi, ρi)(1) . . . shift(πi, ρi)(ki) and

shift(πi, ρi)(x) = (πi(x) + kρ−1(1) + . . . + kρ−1(i−1)) for all x between 1 and ki

Example 3.2.

⊙25314(21, 312, 4321, 12, 231) = 4 3
... 14 12 13

... 8 7 6 5
... 1 2

... 10 11 9.

We can also notice that ⊙12 = ⊕ and ⊙21 = ⊖.
The idea behind Algorithm 2 is quite simple. When filling in M(V, i, j, a, b)

for a prime node V labeled by ρ and having d children V1 . . . Vd, we “slice”
the intervals {i, . . . , j} and {a, . . . , b} into I1 . . . Id and A1 . . . Ad respectively,
such that Ip ≺ Ik and Ap ≺ Ak whenever p < k (By A ≺ B, we mean that
∀a ∈ A, ∀b ∈ B, a < b.). Then we ρ-concatenate longest common patterns
between the σ(Vk) and τ in the intervals Ik of indices and Aρk

of values. With
the notation of Algorithm 2, Ik = {hk−1, . . . , hk−1} and Ak = {ck−1, . . . , ck−1}.

Proposition 3.1. Algorithm 2 is correct: it outputs a longest common pattern

between the two permutations σ and τ given in input.

Proof. Similar to the proof of Proposition 2.1.
With the notations of the proof of Proposition 2.1, in the case of a prime node

V labeled by ρ, with children V1 . . . Vd, there exist integers i = h0 ≤ h1 ≤ . . . ≤
hd = j + 1 and a = c0 ≤ c1 ≤ . . . ≤ cd = b + 1, such that we can decompose
π into π = ⊙ρ(π

1, . . . , πd), with πk a common pattern between σ(Vk) and
τhk−1

. . . τhk−1 , using only values between cρk−1 and cρk
− 1 in τhk−1

. . . τhk−1.
Using this decomposition of π, we can use the induction hypothesis on the nodes
(Vk)1≤k≤d and finish the proof as before.

In this proof, the trick relies on the fact that a common pattern between
σ(V ) and τi . . . τj is always a concatenation of common patterns between the
children of V and “slices” of τi . . . τj . This stability when going from parents to
children in the expanded decomposition tree also appears in a paper of Albert
and Atkinson [1], for example in their Lemma 15.

The main difference between Algorithms 1 and 2 lies in the complexity anal-
ysis. Those two algorithms deal with dynamic programming arrays of the same
size, but the cost for computing one entry can be much greater in Algorithm 2
than in Algorithm 1. Indeed, for any internal node V , in order to fill in one entry
of M(V, _, _, _, _), Algorithm 1 computes a longest pattern in a set containing
O(n2) elements, whereas in Algorithm 2, the set from which we have to extract
a longest pattern contains O(n2d−2) elements, if d is the arity of V (see line 13
of Algorithm 2).

With no hypothesis on a permutation σ of size k, the only bound we can
give on the maximal arity d of a prime node in the expanded decomposition
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tree of σ is d ≤ k. This bound is optimal since the equality d = k is achieved
when σ is a simple permutation. The total time complexity of Algorithm 2
is consequently O(min(n, k)kn2k+2), and it is not polynomial. However, if we
consider classes of permutations such that the arity of any prime node in their
expanded decomposition tree is bounded by a constant d, then Algorithm 2
has a polynomial time complexity O(min(n, k)kn2d+2). For example, any class
containing finitely many simple permutations satisfy this condition.

This can be summarized in the following theorem:

Theorem 3.3. Let d be a integer. Consider the class R of permutations having

an expanded decomposition tree with all prime nodes of arity smaller than d.

Then the problem of finding a longest common pattern between a permutation

in R and another unrestricted permutation is in P .

4 Conclusion and open problems

We generalize the algorithm given in [4] for the longest common pattern prob-
lem. Yet our algorithm seems far from optimal. For example, for separable
permutations, our work is based on [4]’s O(n7) pattern involvement algorithm,
but Ibarra [10] give a faster O(n5) algorithm for the pattern involvement prob-
lem. Could this algorithm be adapted to the longest common pattern problem?
Yet a lower bound is given by the edit distance problem [13] as the edit dis-
tance problem between two trees is a special case of the longest common pattern
problem as shown in [11].
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