
A variant of the tandem duplication - random loss model of

genome rearrangement

Mathilde Bouvel and Dominique Rossin

1 The tandem duplication - random loss model

In the usual models of genome rearrangement, duplications and losses of genes are not taken into
account. There were attempts to incorporate them to the classical models, but the consecutive
combinatorial complexity of the models so obtained made their study quite difficult. Following
[3], we focus on the duplication-loss problem by considering the tandem duplication - random loss
model of genome rearrangement in which genomes are modified only by duplications and losses of
genes.

One step of tandem duplication - random loss, or duplication-loss for short, consists in (1)
the tandem duplication of a contiguous fragment of the genome, i.e., the duplicated fragment
is inserted immediately after the original fragment, and (2) the loss of one of the two copies of
every duplicated gene. We assume that the loss occurs immediately after the duplication of genes,
which is, on an evolutionary time-scale, a good approximation to reality. The width of a step is
the number of duplicated genes. See Figure 1 for an example.

1 2
︷ ︸︸ ︷

3 4 5 6 7  1 2
︷ ︸︸ ︷

3 4 5 6
︷ ︸︸ ︷

3 4 5 6 7

(tandem duplication)

 1 2 3� 4 5 6� 3 4� 5� 6 7

(random loss)

 1 2 4 5 3 6 7

Figure 1: Example of one step of tandem duplication - random loss of width 4

From a formal point of view, a genome consisting of n genes is modelled by a permutation
π ∈ Sn of the set of integers {1, 2, . . . , n}. In [3], the authors define the cost of a duplication-
loss step of width k to be αk, α ≥ 1 being a constant parameter. They suggest that other
cost functions can be considered, and in particular affine functions. In this paper, we consider a
piecewise constant cost function: the cost of a step of width k is 1 if k ≤ K and is infinite for
k > K, for some fixed parameter K ∈ N ∪ {∞}. Obviously, for this model to be meaningful, we
assume that K ≥ 2. We also consider the possibility that K = K(n) is dependent on the size
n of the permutation on which the duplication-loss operations are performed. Both models are
generalizations of the whole genome duplication - random loss model : it corresponds to the case
α = 1 in the model of [3], K =∞ or K = K(n) = n in our model.

Many models of evolution of permutations are inspired by computational biology issues: see
[2], [4], [5], [6] for examples in the litterature.

Our model of evolution of permutations can be viewed in the framework of permuting machines
defined in [1]. Such a machine takes a permutation in input, and transforms it into an output
permutation, the transformation being subject to satisfy the two properties of independance with
respect to the values and of stability with respect to pattern-involvement (see [1] for more details).

1



The important point is that the duplication-loss transformation satisfies these two properties.
Thus, one duplication-loss step (in one of the models defined above) corresponds to running an
adequate permuting machine once. When we will consider permutations obtained after a sequence
of duplication-loss steps, it will correspond to permutations obtained in the output of a combination
in series of identical permuting machines.

Though not appearing clearly for the moment, there exist strong links between the duplication-
loss model and some pattern-avoiding classes of permutations. Hence, we need to recall a few
definitions concerning those classes.

A permutation σ ∈ Sn is a bijective map from [1..n] to itself. The integer n is called the size
of σ, denoted |σ|. We denote by σi the image of i under σ. A permutation can be seen as a word
σ1σ2 . . . σn containing exactly once each letter i ∈ [1..n]. For each entry σi of a permutation σ, we
call i its position and σi its value.

Definition 1. A permutation π ∈ Sk is a pattern of a permutation σ ∈ Sn if there is a subsequence
of σ which is order-isomorphic to π; in other words, if there is a subsequence σi1σi2 . . . σik

of σ
(with 1 ≤ i1 < i2 < . . . < ik ≤ n) such that σiℓ

< σim
whenever πℓ < πm.

We also say that π is involved in σ and call σi1σi2 . . . σik
an occurrence of π in σ.

We write π ≺ σ to denote that π is a pattern of σ.
A permutation σ that does not contain π as a pattern is said to avoid π. The class of all

permutations avoiding the patterns π1, π2 . . . πk is denoted S(π1, π2, . . . , πk), and Sn(π1, π2, . . . , πk)
denotes the set of permutations of size n avoiding π1, π2, . . . , πk. We say that S(π1, π2, . . . , πk) is
a class of pattern-avoiding permutations of basis {π1, π2, . . . , πk}.

Example 1. For example σ = 142563 contains the pattern π = 1342; and 1563, 1463, 2563 and
1453 are the occurrences of this pattern in σ. But σ ∈ S(321): σ avoids the pattern 321 as no
subsequence of size 3 of σ is isomorphic to 321, i.e., is decreasing.

2 Our study of this model

2.1 Characterization with excluded patterns

In the tandem duplication - random loss model described above, we will focus on two kinds of
problems. First, as hinted before, we will consider permutations obtained after a certain number
of duplication-loss steps, that is to say permutations in output of a combination in series of a
certain number of permuting machines. For this, we define the class C(K, p) as follows:

Definition 2. The class C(K, p) denotes the class of all permutations obtained from 12 . . . n (for
any n) after p duplication-loss steps of width at most K, for some constant parameters p and K.

We do not consider the case K = K(n) here.
Be careful that the duplication-loss steps are not reversible, as noticed in [3], and that con-

sequently C(K, p) is not the class of permutations that can be sorted to 12 . . . n in p steps of
duplication-loss of width at most K.

Like for the various classes of permutations obtained after a combination in series of permuting
machines considered in [1], we obtained combinatorial properties of C(K, p) in terms of pattern-
avoidance. Namely, we show that C(K, p) is a class of pattern-avoiding permutations, whose
basis is finite. Indeed, since C(K, p) is stable for the pattern-involvement relation ≺, it is a simple
consequence that C(K, p) is a class of pattern-avoiding permutations, and that its basis is composed
of the minimal permutations (minimal being intended in the sense of ≺) that do not belong to
C(K, p). Our goal is then to characterize those minimal permutations, and prove that there is only
a finite number of them.

In the case p = 1, we give a precise description of the basis B of excluded patterns that describe
C(K, 1):

2



Proposition 1. C(K, 1) is a class of pattern-avoiding permutations S(B) whose basis B is finite.
More precisely, B = {321, 3142, 2143}∪D, D being the set of all permutations of SK+1 that do
not start with 1 nor end with K + 1, and containing exactly one descent ( i.e. two consecutive
elements in decreasing order).

In particular, B is of cardinality 3 + 2K−1 and contains patterns of size at most K + 1.
For the general case C(K, p), we cannot get such a precise result but only a bound on the size

of the excluded patterns. This is achieved by defining the value-position vectors and value-position
domains on permutations.

The vector from i to j in a permutation σ consists of all elements whose positions lie between
the positions of i and j, i and j being included. The size of a vector is the number of elements in

it. For example, the vector from 7 to 2 in the permutation 4123576 is
←−−
2357, and has size 4.

Definition 3. Let σ be a permutation of Sn. The value-position vector associated with i ∈ [1..n]
is the vector of σ going from i to σi, if i is not a fixpoint of σ. In the case i = σi, the value-position
vector associated with i is empty.

Let σ be a permutation of Sn. The value-position domain of σ is composed of all elements of
σ appearing in at least one value-position vector.

This definition is illustrated on Figure 2.

σ = 4 1 2 3 5 7 6 value-position domain of σ

= {1, 2, 3, 4, 6, 7}

Figure 2: value-position vectors and value-position domain for σ = 4123576

With these tools, we can bound the size of the value-position domain of any minimal permu-
tation (in the sense of ≺) that do not belong to C(K, p). Further technical considerations allow
us to prove that the minimal permutations that do not belong to C(K, p) are of size at most
(Kp + 2)2 − 2. This finally shows that:

Proposition 2. C(K, p) is a class of pattern-avoiding permutations whose basis is finite and
contains patterns of size at most (Kp + 2)2 − 2.

2.2 Number of steps of width K to obtain any permutation of size n

A second point of view is to examine how many steps of a given width are necessary to obtain
any permutation of Sn starting from 12 . . . n. Namely we fix a width K (constant, or K = K(n))
and a size n and search for the number p such that any permutation of Sn can be obtained from
12 . . . n in at most p duplication-loss steps of width at most K.

Algorithm 1 An optimal whole genome duplication - random loss scenario from 12 . . .K to
σ ∈ SK

1: π = 12 . . .K
2: Partition σ into maximal increasing substrings, from left to right
3: Each element of [1..K] appearing in the ith maximal increasing substring gets as a label the

binary representation of i
4: for j = 1 to ⌈log2(number of maximal increasing substrings of σ)⌉ do

5: Perform a duplication-loss step on π that keeps in the first copy of π exactly the elements
whose label has a 0 in its jth least significant bit

6: end for

We describe an algorithm computing a possible scenario of duplications and losses for any

π ∈ Sn, this scenario involving Θ( n
K log K + n2

K2 ) duplication-loss steps in the worst case and on
average.

3



For this purpose, we use the algorithm described in [3] that computes a scenario whose number
of steps is minimal in the whole genome duplication - random loss model. This procedure is
described in Algorithm 1.

Note that the same algorithm can be used to compute an optimal whole genome duplication -
random loss scenario from i1i2 . . . ik, with k ≤ K and i1 < i2 < . . . < ik, to any permutation of
{i1, i2, . . . , ik}.

Our procedure for computing a tandem duplication - random loss scenario for any permutation
σ ∈ Sn is given in Algorithm 2.

Algorithm 2 A duplication-loss scenario from 12 . . . n to σ ∈ Sn

1: π ← 12 . . . n
2: for i = 1 to ⌈ n−K

⌊K/2⌋⌉ do

3: Let Li = {σj : n− i⌊K/2⌋+ 1 ≤ j ≤ n− (i− 1)⌊K/2⌋}
4: Perform duplication-loss steps on π to move from left to right the elements of Li to the

positions n− i⌊K/2⌋+ 1 to n− (i− 1)⌊K/2⌋ of π, without changing their respective order
5: end for

6: for i = 1 to ⌈ n−K
⌊K/2⌋⌉ do

7: Perform Algorithm 1 on the window of π between the indices n− i⌊K/2⌋+ 1 and n− (i−
1)⌊K/2⌋

8: end for

9: Perform Algorithm 1 on the window of π between the indices 1 and n− ⌈ n−K
⌊K/2⌋⌉⌊K/2⌋

A few keys to understand Algorithm 2 are the following remarks.
The set Li of values defined at line 3 represents the rightmost ⌊K/2⌋ elements of σ not yet

examined. At the end of the first loop (line 5), π is decomposed into windows of width ⌊K/2⌋
(except the leftmost one which is of width at most K) ; and each of these windows is an increasing
sequence containing exactly the same elements as the window of σ corresponding to the same
indices. In the second loop, we consider these windows from right to left and since there are of
width less than K, we can call Algorithm 1 (that implements whole genome duplication-random
loss) on each window successively to transform π into σ.

We could analyse the number of steps of the scenario produced by Algorithm 2 and prove that:

Proposition 3. The number of duplication-loss steps of a scenario produced by Algorithm 2 on a

permutation of size n is at most Θ( n
K log K + n2

K2 ) asymptotically. The same holds for the average
number of steps.

Provided with this upper bound on the number of steps that are necessary to obtain a per-
mutation from the indentity in the tandem duplication - random loss model, we now turn to the
computation of lower bounds. Again, [3] provides us with a Ω(log n) lower bound, refering to the
whole genome duplication - random loss model which is more general than ours, so that this bound
applies in our context. Simple considerations on the number on inversions that a duplication-loss

step can create yield a Ω( n2

K2 ) lower bound. Those results hold for the worst case and for the
average case.

We finally obtain that:

Proposition 4. Ω(log n + n2

K2 ) duplication-loss steps are necessary (in the worst case and on
average) to obtain any permutation of Sn from 12 . . . n.

We could not provide lower bounds that coincide with the upper bounds given above, but we
claim that they are tight in many cases. Indeed, whenever K = o( n

log n ), we get that n
K log K =

o( n2

K2 ), and consequently the upper bound can be rewritten as Θ( n
K log K + n2

K2 ) = Θ( n2

K2 ), which

coincides up to a constant factor with the lower bound Ω(log n + n2

K2 ) = Ω( n2

K2 ). For the case
K = Θ( n

log n ), the same argument holds, but the constant factor between the lower and the upper

4



bound might be much greater. Finally, if K = Θ(n), then Θ( n
K log K + n2

K2 ) = Θ(log n) and

Ω(log n + n2

K2 ) = Ω(log n), so that upper and lower bounds coincide again.
On the contrary, when n

log n ≪ K ≪ n, the upper and lower bounds provided do not coincide.
We leave as an open question the problem of finding an algorithm that computes a duplication-loss
scenario whose number of steps is optimal (on average and in the worst case) up to a constant
factor, when the width K of the duplicated windows satisfies n

log n ≪ K ≪ n.

References

[1] M.H. Albert, R.E.L. Aldred, M.D. Atkinson, H.P. Van Ditmarsch, C.C. Handley, D.A. Hotlon,
and D.J. McCaughan. Compositions of pattern restricted sets of permutations. Technical
report, University of Otago, 2004. Technical report number OUCS-2004-12.

[2] S. Bérard, A. Bergeron, C. Chauve, and C. Paul. Perfect sorting by reversals is not always
difficult. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(1), 2007.

[3] K. Chaudhuri, K. Chen, R. Mihaescu, and S. Rao. On the tandem duplication-random loss
model of genome rearrangement. SODA, pages 564 – 570, 2006.

[4] M.C. Chen and R.C.T. Lee. Sorting by transpositions based on the first increasing substring
concept. In BIBE ’04: Proceedings of the 4th IEEE Symposium on Bioinformatics and Bio-
engineering, page 553, Washington, DC, USA, 2004. IEEE Computer Society.

[5] Anthony Labarre. A new tight upper bound on the transposition distance. In Rita Casadio
and Gene Myers, editors, WABI, volume 3692 of Lecture Notes in Computer Science, pages
216–227. Springer, 2005.

[6] Anthony Labarre. New bounds and tractable instances for the transposition distance.
IEEE/ACM Trans. Comput. Biology Bioinform, 3(4):380–394, 2006.

5


