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Figure 1 shows two large separable permutations, drawn uniformly at
random among separable permutations of the same size. The goal of this
work is to explain these diagrams, by describing the “limit shape” of a
uniform random separable permutation of size n, as n goes to infinity.

Figure 1. Two typical separable permutations of sizes re-
spectively n = 204 523 and n = 903 073 (a permutation σ is
represented here with its diagram: for every i ≤ n, there is
a dot at coordinates (i, σ(i))).

Context of our work. Describing typical properties of permutations
in a given class is a question that has received quite a lot of attention in
the last few years. Most of the attention is focused on permutation classes
Av(τ) for τ of size 3. See for instance the very precise description of the
asymptotic shape of permutations in these classes by Miner and Pak [12], or
the link between large random permutations in these classes and the Brow-
nian excursion explained by Hoffman, Rizzolo and Slivken [5, 6]. Another
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approach, also of importance for our work, is that of Janson [9], following
earlier works by several authors [1, 2, 3, 7, 10, 14]: it consists in studying
the (normalized) number of occurrences of any given pattern π in a uniform
random permutation σ avoiding τ , and in finding its limiting distribution.

Our work focuses on separable permutations, which are defined by the
avoidance of the two patterns 2413 and 3142. The class of separable permu-
tations is one of the most well-known permutation classes after Av(τ) for τ of
size 3. The popularity of separable permutation is maybe explained by their
simple and robust structure. The class of separable permutations is indeed
the smallest family of permutations closed under the sum ⊕ and skew-sum
	 operations. (And thus, they form the simplest non-trivial substitution-
closed class.) Consequently, separable permutations may be encoded by
signed Schröder trees. A signed Schröder tree of size n is a tree with n
leaves whose internal vertices have degree at least 2 and are equipped with
a + or − sign. In a nutshell, a signed Schröder tree associated with a sep-
arable permutation σ describes a sequence of nested ⊕ and 	 operations
that produce σ. The tree structure of separable permutation is essential for
our purpose. Note that the correspondence between separable permutations
and signed Schröder trees can be made one-to-one by imposing the follow-
ing constraint on the trees: on each path from the root to a leaf, the signs
alternate.

Main result. Our main result is the description of the asymptotics in n
of the number of occurrences of any fixed pattern π in a uniform separable
permutation of size n. For any pattern π of size k, and any permutation σ
of size n, we denote by

õcc(π, σ) =
number of occurrences of π in σ(

n
k

)
the proportion of occurrences of π in σ. Our main theorem is the following:

Theorem 1. Let σn be a uniform random separable permutation of size
n. There exists a collection of random variables (Λπ), π ranging over all
permutations, such that for all π, 0 ≤ Λπ ≤ 1 and when n→ +∞,

õcc(π,σn)
(d)→ Λπ,

where
(d)→ denotes the convergence in distribution.

Note that we can refine the above statement to prove that the convergence
holds jointly for patterns π1, . . . , πr. Moreover, we can also prove that if
π is a separable permutation of size at least 2, Λπ is a non-deterministic
random variable. (Clearly, Λπ = 0 or 1 otherwise.) These additional results,
although interesting, are not further discussed in this abstract.

Theorem 1 is not just an existential result: we give for any pattern π a
construction of Λπ.
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Construction of Λπ. An excursion is a continuous function f : [0, 1]→
[0,+∞) with f(0) = f(1) = 0. From an excursion f and a set of points
x = {x1, . . . , xk} in [0, 1], there is a classical construction which builds a
Schröder tree, looking at the local minima of f between the xi’s. This
construction is illustrated by Figure 2 (forgetting about the signs for the
moment). We define a signed excursion as an excursion where the local
minima are given a sign + or −. As shown by Figure 2 (with the signs),
the previous construction naturally extends to signed excursions, producing
then signed Schröder trees. We denote by Tree±(f, s,x) the signed Schröder
tree associated with the signed excursion (f, s) and the set of points x.
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Figure 2. Extracting a (signed) tree from a (signed) excursion.

Let π be any pattern of size k. For any signed excursion (f, s) we define
Ψπ(f, s) as the probability that Tree±(f, s,X) is a signed Schröder tree of
π when X consists of k uniform and independent points in [0, 1].

Finally, we define the signed Brownian excursion as the pair (e, S), where
e is the Brownian excursion, and S assigns signs to the local minima of e in
a balanced and independent manner. Then, we set Λπ = Ψπ(e, S).

Hints of the proof. Why should signed trees extracted from the signed
Brownian excursion be related to patterns in separable permutations?

First, there is a deep (and well-known) connection between trees and
excursion: the contour of a tree is an excursion. This construction adapts
immediately to signed trees and signed excursions. This is illustrated by
Figure 3. Note that the leaves of the tree correspond to the peaks (i.e., local
maxima) of its contour. It is known1 from [11] or [13] that the contours of
Schröder trees converge to the Brownian excursion.

Second, it is easy to see that extracting a pattern π from a separable
permutation σ corresponds to extracting a subtree (induced by a set of
leaves `) from a signed Schröder tree of σ. Going one step further, and
considering the signed contour (f, s) associated to this signed Schröder tree,
we see that π is the permutation corresponding to Tree±(f, s,x) for x a set
of abscissa of peaks of f (those corresponding to the leaves in `).

These observations (vaguely) explain why Λπ is related to patterns in sep-
arable permutations. The main difficulty that we have in proving Theorem 1

1This is known in the unsigned case only. Proving a signed analogue is a hard problem,
that we have rather bypassed than solved.
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Figure 3. A (signed) tree and its (signed) contour.

is handling the signs, the rest following nicely from known results or adap-
tations of such. Instead of attacking the difficulty related to signs head-on
(see also footnote 1), our proof takes a detour in the unsigned world.

The first part is to show that Theorem 1 is equivalent to the seemingly
weaker statement that õcc(π,σn) converges to Λπ in expectation. Indeed,
our random variables are bounded, so convergence in distribution is equiv-
alent to the convergence of all moments; moreover, all moments of Λπ can
be expressed with expectations of Λρ, for larger permutations ρ, with a sim-
ilar statement holding in the limit for õcc(π,σn). In passing, this gives a
combinatorial and relatively efficient way of computing all moments of Λπ.

Second, proving the convergence in expectation of unsigned trees ex-
tracted from contours of unsigned Schröder trees to unsigned trees extracted
from the Brownian excursion is not too hard, and uses known techniques.
What we need to do next is to re-introduce signs on these excursions and
on the trees extracted from them.

Recall that the signs on the local minima of the signed Brownian excursion
are independent and balanced. Consequently, in a signed tree extracted from
it, signs of the internal vertices also are balanced and independent. The last
key ingredient to prove Theorem 1 is to show that this also holds in the
limit when n tends to infinity, for trees of any fixed size extracted from the
signed contours of the signed Schröder trees associated with uniform random
separable permutations of size n.

Permuton interpretation of our result. Theorem 1 also has an
interpretation in terms of permutons [8, 4]. A permuton is a measure on
the square [0, 1]2 with uniform marginals. The permutation diagram of any
permutation σ can be seen as a permuton µσ, up to normalization: with n
denoting the size of σ, just rescale the diagram of σ so that it fits in the
square [0, 1]2, and replace every point (i, σ(i)) by a square [(i− 1)/n, i/n]×
[(σ(i)− 1)/n, σ(i)/n] having weight 1/n. The weak convergence provides a
good notion of convergence for permutons, as discussed in [8].

Our Theorem 1, combined with Skorohod’s representation theorem and
Theorem 1.6(i) of [8], implies the following:

Theorem 2. Let σn be a uniform random separable permutation of size n.
There exists a random permutonµ such that µσn

tends toµ in distribution
in the weak convergence topology.
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This limit permuton µ describes the “limit shape” of the diagrams of
uniform random separable permutations that we were looking for.

It is important to note that µ is not deterministic, because Λ12 (or any
Λπ for a separable pattern π) is not deterministic. This is contrast with all
classes Av(τ) for τ of size 3 studied earlier, where the limit shape of the
diagrams is deterministic.

From our work, we can prove the existence of µ, but we have no explicit
description of µ. The construction of µ is a problem that we have recently
solved with J. Bertoin and V. Féray.

Finally, we believe that µ (or maybe rather a one-parameter deformation
µ(p) of µ, for p ∈ [0, 1]) could describe the limit shape of permutations in
other permutation classes, and more precisely in substitution-closed classes
containing a finite number of simple permutations. The reason is that the
encoding of separable permutations by trees, which is essential to our work,
extend naturally and nicely to those classes.
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