
Data Structures (Not UML)

Pseudo-code Syntax, Lists, Dictionaries

Amandine Decker & Marie Cousin

M1 TAL/SC 2023–2024

Université de Lorraine, LORIA

Class Organisation

First Lab :

• Reminder : optional exercise (due October 16th) ;

• hand back on a sheet of paper (October 13th), send it by e-mail, or
hand back on Arche.

• Correction of the first lab (except bonus exercise) will be uploaded
today (October 6th).

How to find the Arche repository :

• on your Arche top bar (blue-ish), click on “Home” (“Accueil”) ;

• then “LORRAINE MANAGEMENT” (purple) ;

• and search for “Data Structure” ;

• Full name of the course is “Data Structures - Beginners”, password is
“Nox”.

1

Syntax

Variable

Variable
A variable is an object, or a buffer. You can create it, initialise it, modify
it. It is used to store data, like a result for example.

• Create and initialise a variable : new_var ← init_value

• Modify a variable : var ← new_value

• Create and initialise empty structures like last week :

1: S ← S0 –- creates an empty stack

• But it can work with any type of data :

1: c ← 5 –- creates a variable c of value 5
2: c ← 0 –- modifies the variable c, it is now of

value 0
3: c ← c + 3 –- modifies the variable c, it is now of

value 3 (0 + 3)

2

Booleans and Negation

Boolean
A boolean is a type of object that can have the value true or false. These
values (true and false) can be assigned to a variable.

• Assign true or false to a variable : var ← true ; var is a boolean.

• Booleans are used in if and while loops.

Negation
The negation symbol is !, and it is used to change the value of a boolean.

• !true = false

• !false = true

3

If Block

If/Then/Else block

If the condition is satisfied, instructions 1, 2, etc. are executed. If the
condition is not satisfied, instructions A, B, etc. are executed.
Note : It is not mandatory to have the "else" part ; in that case, when
the condition is not satisfied, no instructions are executed.

1: if condition then
2: instruction 1
3: instruction 2
4: etc.
5: else –- optional part
6: instruction A
7: instruction B
8: etc.
9: end if –- but this one is mandatory

4

Loops (1)

For loop
In a for loop, we create a variable that will take several values one after
the other, i.e., we will iterate over some elements and the variable will
take one value at a time. The loop is thus executed a known definite
number of times. The instructions 1, 2, etc. will be executed as many
times as there are elements.
Note : The loop variable (here X) can be used in the loop.

1: for X in elements do
2: instruction 1
3: instruction 2
4: etc.
5: end for

5

Loops (2)

While loop
The loop condition is a condition that is true or false, it may use some
variable used elsewhere in the algorithm. The instructions 1, 2, etc. will
be executed as long as the loop condition remains satisfied (i.e., true).

1: while loop condition do
2: instruction 1
3: instruction 2
4: etc.
5: end while

6

Return VS Print

Return instruction
This instruction returns result, and ends the algorithm.
(Note : If you encounter a return in the middle of an algorithm, THE
FOLLOWING INSTRUCTIONS WILL NOT BE EXECUTED !)

1: Return result

Print instruction
This instruction will display data and the execution of the algorithm will
continue after it. If you want an algorithm to output something, you
should use return and not print.

1: Print data –- of whatever type

7

Some Tipps

• If I create an object or a variable : I initialise it ;

1: new_variable ← init_value

• If I want to count things : I create a variable, that will be my
counter, and I modify it to count things ;

1: counter ← 0
2: counter ← counter + 1 –- if you count one thing at a

time

• If I want to remove (/delete/overwrite/...) some data I may need
later : I create a variable to store that data.

1: –- suppose you have a queue Q and you want to
access the second element but you will need the
first one later

2: current ← get(Q)

3: remove(Q)

8

Most Important Tip

Remain consistent and logical ! If you do not write your algorithm exactly
like in the course but use a formalism that is understandable and remains
the same throughout your work it will be alright. Examples :

• Do not use ← on one line and = like in Python in the next one ;

• Do not use → instead of ← because it does not make sense in terms
of what is really happening (in var ← e, var becomes e, it receives
the value e, etc.).

If you have any doubt on the way you write something, ask us ! Or
describe precisely what you mean with a certain notation. Always
comment and explain what you do.

9

Lists

Lists : Idea

“I want to sort my lollipops !”

[0] [1] [2] [3] [4]
https ://www.crushpixel.com/stock-vector/vector-drawing-variety-

candies-on-5907417.html

• Nox wants to sort his lollipops ;

• In a basic shelf, he puts one lollipop per compartment, one after the
other ;

• We have a list of lollipops !

10

Lists : Definition

List
A List is an linear indexed structure containing some objects, organised
one after the other. To each element of the list is associated an index.

Operations
• add an element at the end of the list ;

• get the element of the list corresponding to a given index ;

• modify the element of the list corresponding to a given index ;

• check if the list is empty ;

• a list has a length, we can get its number of elements.

11

Lists : Definition

List
A List is an linear indexed structure containing some objects, organised
one after the other. To each element of the list is associated an index.

→ Like the lists you are used to in human life : grocery list, todo list, etc.

Operations
• add an element at the end of the list ;

• get the element of the list corresponding to a given index ;

• modify the element of the list corresponding to a given index ;

• check if the list is empty ;

• a list has a length, we can get its number of elements.

11

Some Formalism

If we consider a set of elements E , we can write Lists(E) the set of all
the lists containing elements of E . The empty list [] is in Lists(E).

If e ∈ E , and L, L′ ∈ Lists(E), the following operations exist :

• len(L) : returns the length of L ;
• L[i]← e : sets the value of L[i] to e provided that i < len(L) ;
• L[i] : returns the value e of L[i] provided that i < len(L) ;
• L[i : j] : returns a list L′ corresponding to the sub-list between

indexes i and j − 1 of L provided that i < len(L) and j ≤ len(L) ;
• add(e, L) : adds the element e at the end of L ;
• L+ L′ returns the concatenation of L and L′ (i.e., the elements of L

followed by the elements of L′) ;

and the following properties :

• isEmpty([]) = True

• add(e, L) = L :: e

• isEmpty(add(e, L)) = False

• if len(L) = n then
len(add(e, L)) = n + 1 12

Lists : How to Write it ?

• Create the empty list :

1: L← []

• Given an already existing list L, we can add an element, for instance
5 :

1: add(5, L)
• Modify the 6th element of a given list :

1: idx ← 6
2: if idx < len(L) then
3: L[idx]← 85
4: end if

• Do something with all the elements of a list one after the other :

1: L← [2, 4, 1, 8, 4]
2: for x in L do
3: print(x) –- Or anything you would like to do

with x
4: end for 13

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Sort
Given an unordered list of natural integers, we sort them from the
smallest to the largest one, by finding the smallest element of the list,
exchanging it with the first one, and repeating the process but at the
next place. The next smallest element will go at the second place, etc.

14

Lists : Example

Require: L

1: for i in [0, len(L)− 1] do –- i: index of the future
smallest element

2: min← i –- index of the smallest not-yet-sorted
element of L

3: for j in [i , len(L)] do –- to find the smallest element
4: if L[j] < L[min] then
5: min← j

6: end if
7: end for
8: buffer ← L[i]

9: L[i]← L[min]

10: L[min]← buffer

11: end for
12: return L

15

Dictionaries / Associative Tables

Dictionaries / Associative Tables : Idea

“I want to sort my lollipops !”

cherry cola mint apple lemon
https ://www.crushpixel.com/stock-vector/vector-drawing-variety-

candies-on-5907417.html

• Nox wants to sort his lollipops by flavor ;

• In a shelf, he puts one lollipop per compartment. The compartments
are labelled with a chosen key, the flavor ;

• We have a dictionary of lollipops !

16

Dictionaries / Associative Tables : Definition

Dictionary or Associative Table

A dictionary or an associative table is a structure containing (key, value)
pairs. To each value of the dictionary is associated a key. The key must
be unique, while the value may be anything.

Operations
• add an element to the dictionary ;

• get the element of the dictionary corresponding to a given key ;

• modify the element of the dictionary corresponding to a given key ;

• check if the dictionary is empty ;

• a dictionary has a number of pairs, we can get it.

17

Dictionaries / Associative Tables : Definition

Dictionary or Associative Table

A dictionary or an associative table is a structure containing (key, value)
pairs. To each value of the dictionary is associated a key. The key must
be unique, while the value may be anything.

→ Like the dictionary you are used to in human life : a word dictionary,
etc.

Operations
• add an element to the dictionary ;

• get the element of the dictionary corresponding to a given key ;

• modify the element of the dictionary corresponding to a given key ;

• check if the dictionary is empty ;

• a dictionary has a number of pairs, we can get it.

17

Some Formalism

If we consider a set of elements E , and a set of keys K we can write
Dict(K ,E) the set of all the tables (or dictionaries) containing pairs of
keys of K and elements of E . The empty table/dictionary {} is in
Dict(K ,E).

If e ∈ E , k ∈ K and D ∈ Dict(K ,E), the following operations exist :

• isEmpty(D) : returns true or false depending on whether D is empty
or not ;

• len(D) : returns the number of (key, value)-pairs of D ;

• D.keys() : returns the keys of D ;

• D[k]← e : sets the value of D[k] to e provided that k ∈ D.keys ;

• D[k] : returns the value e of D[k] provided that that k ∈ D.keys ;

• add(k , e,D) (or based on the Python syntax : D[k]← e) : adds the
couple (k , e) to D provided that that k /∈ D.keys.

18

Dictionaries / Associative Tables : How to write

• Create the empty dictionary :

1: D ← {}
• Given an already existing dictionary, we can add a (key, value)-pair,

for example (raspberry , 3) :

1: if rasperry /∈ D.keys then
2: add(raspberry , 3,D) –- or D[k]← 3
3: end if

19

Dictionaries / Associative Tables : How to write

• Modify the value of a key (for instance raspberry) of a given
dictionary :

1: if rasperry ∈ D.keys then
2: D[raspberry] ← 8
3: end if

• Do something with all the pairs of a dictionary one after the other :

1: D ← {(blue, elephant), (red , bird), (orange, tiger), (yellow , lion)}
2: for x in D.keys do
3: print(D[x]) –- Or anything you would like to do

with x
4: end for

20

Dictionaries / Associative Tables : Example

Count occurrences
Given a list of words, we want to know how many times each word
appears.

["cherry", "mint", "apple", "mint", "cola", "mint", "apple", "lemon",
"mint", "cola", "cola"]

"cherry" : 1

"mint" : 4

"apple" : 2

"cola" : 3

"lemon" : 1

21

Dictionaries / Associative Tables : Example

Count occurrences
Given a list of words, we want to know how many times each word
appears.

["cherry", "mint", "apple", "mint", "cola", "mint", "apple", "lemon",
"mint", "cola", "cola"]

"cherry" : 1

"mint" : 4

"apple" : 2

"cola" : 3

"lemon" : 1

21

Dictionaries / Associative Tables : Example

Count occurrences
Given a list of words, we want to know how many times each word
appears.

["cherry", "mint", "apple", "mint", "cola", "mint", "apple", "lemon",
"mint", "cola", "cola"]

"cherry" : 1

"mint" : 4

"apple" : 2

"cola" : 3

"lemon" : 1

21

Dictionaries / Associative Tables : Example

Count occurrences
Given a list of words, we want to know how many times each word
appears.

["cherry", "mint", "apple", "mint", "cola", "mint", "apple", "lemon",
"mint", "cola", "cola"]

"cherry" : 1

"mint" : 4

"apple" : 2

"cola" : 3

"lemon" : 1

21

Dictionaries / Associative Tables : Example

Count occurrences
Given a list of words, we want to know how many times each word
appears.

["cherry", "mint", "apple", "mint", "cola", "mint", "apple", "lemon",
"mint", "cola", "cola"]

"cherry" : 1

"mint" : 4

"apple" : 2

"cola" : 3

"lemon" : 1

21

Dictionaries / Associative Tables : Example

Count occurrences
Given a list of words, we want to know how many times each word
appears.

["cherry", "mint", "apple", "mint", "cola", "mint", "apple", "lemon",
"mint", "cola", "cola"]

"cherry" : 1

"mint" : 4

"apple" : 2

"cola" : 3

"lemon" : 1

21

Dictionaries / Associative Tables : Example

Count occurrences
Given a list of words, we want to know how many times each word
appears.

["cherry", "mint", "apple", "mint", "cola", "mint", "apple", "lemon",
"mint", "cola", "cola"]

"cherry" : 1

"mint" : 4

"apple" : 2

"cola" : 3

"lemon" : 1

21

Dictionaries / Associative Tables : Example

Require: L

1: D ← {}
2: for x in L do
3: if x in D.keys then
4: D[x]← D[x] + 1 –- Add 1 to the right counter
5: else
6: D[x]← 1 –- Create a new key and initialise the

counter to 1
7: end if
8: end for
9: return D

22

Summary

Summary

• Lists are a data structure that has an index ;

• The elements in a list are accessible via this index ;

• Dictionaries or associative tables are another data structure,
containing (key, value)-pairs ;

• The elements in a dictionary are accessible via the keys ;

• Before doing anything in a dictionary, you have to check if the key
exists.

23

	Syntax
	Lists
	Dictionaries / Associative Tables
	Summary

