
Data Structures (Not UML)

Pseudo-code Syntax, Trees

Amandine Decker & Marie Cousin

M1 TAL/SC 2023–2024

Université de Lorraine, LORIA



Class Organisation

Second Lab :

• Reminder : optional exercise TD2 (due October 27th) ;
• hand back on a sheet of paper (October 27th), send it by e-mail, or

hand back on Arche.
• Correction of the second lab (except bonus exercise) will be

uploaded today (October 20th)
• Points and feedback on the optional exercise of TD1 before

Wednesday.

How to find the Arche repository :

• on your Arche top bar (blue-ish), click on “Home” (“Accueil”) ;
• then “LORRAINE MANAGEMENT” (purple) ;
• and search for “Data Structure” ;
• Full name of the course is “Data Structures - Beginners”, password is

“Nox”.

1



Syntax



Variable

Variable
A variable is an object, or a buffer. You can create it, initialise it, modify
it. It is used to store data, like a result for example.

• Create and initialise a variable : new_var ← init_value

• Modify a variable : var ← new_value

• Create and initialise empty structures like last week :

1: S ← S0 –- creates an empty stack

• But it can work with any type of data :

1: c ← 5 –- creates a variable c of value 5
2: c ← 0 –- modifies the variable c, it is now of

value 0
3: c ← c + 3 –- modifies the variable c, it is now of

value 3 (0 + 3)

2



Variable

• There exists variables of any type ;

• When you create a variable, you can assign it to a value of any type :

• Integer :

1: var ← 5

• Boolean :

1: var ← true

2: var ← false

3: iable ← var

4: iable ← true

• String :

1: var ←
“tadaaaaa′′

• List :

1: var ← [5, 8, 6, 9, 2]

• Dictionary :

1: var ←
{(6, [12, 24]), (7, [7, 14]), (2, [6])}

• Queue :

1: var ← Q0

• Stack :

1: var ← S0

3



If Block

If/Then/Else block

If the condition is satisfied, instructions 1, 2, etc. are executed. If the
condition is not satisfied, instructions A, B, etc. are executed.
Note : It is not mandatory to have the "else" part ; in that case, when
the condition is not satisfied, no instructions are executed.

1: if condition then
2: instruction 1
3: instruction 2
4: etc.
5: else –- optional part
6: instruction A
7: instruction B
8: etc.
9: end if –- but this one is mandatory

4



Loops (1)

For loop
In a for loop, we create a variable that will take several values one after
the other, i.e., we will iterate over some elements and the variable will
take one value at a time. The loop is thus executed a known definite
number of times. The instructions 1, 2, etc. will be executed as many
times as there are elements.
Note : The loop variable (here X) can be used in the loop.

1: for X in elements do
2: instruction 1
3: instruction 2
4: etc.
5: end for

5



Loops (2)

While loop
The loop condition is a condition that is true or false, it may use some
variable used elsewhere in the algorithm. The instructions 1, 2, etc. will
be executed as long as the loop condition remains satisfied (i.e., true).

1: while loop condition do
2: instruction 1
3: instruction 2
4: etc.
5: end while

6



Return VS Print

Return instruction
This instruction returns result, and ends the algorithm.
(Note : If you encounter a return in the middle of an algorithm, THE
FOLLOWING INSTRUCTIONS WILL NOT BE EXECUTED !)

1: return result

Note : If you want to return more than one thing, use comas !

1: return result1, result2, result3

7



Trees



Trees : Idea

“I want to organise my desserts !”

desserts

cakes candies

cupcakes lollipops sugar canes

• Nox wants to organise its favourite desserts ;

• In a kind of diagram, he draws each subtype of dessert below
surtype.

• We have a tree of desserts !

8



Trees : Definition

Tree
A Tree is a data structure composed of nodes and branches.

• The unique top node is the root ;

• Each node may have children (or descendants) nodes ;

• The parent node and its children are linked by branches (arrows from
the parent to the child) ;

• A node that has no child (or descendant) is called a leaf.

root

child1 child2 child3

grand-child1 grand-child2 leaf1 grand-child3 leaf2

... ... ... ... ... ...

9



Trees : Definition

Tree
A Tree is a data structure composed of nodes and branches.

• The unique top node is the root ;

• Each node may have children (or descendants) nodes ;

• The parent node and its children are linked by branches (arrows from
the parent to the child) ;

• A node that has no child (or descendant) is called a leaf.

root

child1 child2 child3

grand-child1 grand-child2 leaf1 grand-child3 leaf2

... ... ... ... ... ...

9



Trees : Definition

Tree
A Tree is a data structure composed of nodes and branches.

• The unique top node is the root ;

• Each node may have children (or descendants) nodes ;

• The parent node and its children are linked by branches (arrows from
the parent to the child) ;

• A node that has no child (or descendant) is called a leaf.

root

child1 child2 child3

grand-child1 grand-child2 leaf1 grand-child3 leaf2

... ... ... ... ... ...

9



Trees : Definition

Tree
A Tree is a data structure composed of nodes and branches.

• The unique top node is the root ;

• Each node may have children (or descendants) nodes ;

• The parent node and its children are linked by branches (arrows from
the parent to the child) ;

• A node that has no child (or descendant) is called a leaf.

root

child1 child2 child3

grand-child1 grand-child2 leaf1 grand-child3 leaf2

... ... ... ... ... ...

9



Trees : Definition

Tree
A Tree is a data structure composed of nodes and branches.

• The unique top node is the root ;

• Each node may have children (or descendants) nodes ;

• The parent node and its children are linked by branches (arrows from
the parent to the child) ;

• A node that has no child (or descendant) is called a leaf.

→ Like a family tree in human life for example
root

child1 child2 child3

grand-child1 grand-child2 leaf1 grand-child3 leaf2

... ... ... ... ... ...
9



Trees : Definition

Properties
• The root of a tree is its unique top node ;

• The depth of a node is the number of ancestor it has (the depth of
the root is 0) (cf. the tree below, in orange) ;

• The height of a tree is the depth of the deepest leaf ;

• If each node of a tree has 0 to 2 children, the tree is said binary.

root 0

child1 1 child2 1 child3 1

grand-child1 2 grand-child2 2 leaf1 2 grand-child3 2 leaf2 2

... ... ... ... ... ...

10



Trees : Some Formalism

If we consider a set of elements E , we can write Trees(E ) the set of all
the trees containing elements of E . The empty tree { } is in Trees(E ).

We will consider only binary trees in this class. A tree (or a sub-tree) is
characterised by its root, its left sub-tree and its right sub-tree. We
represent each tree or sub-tree by a dictionary that has 3 pairs :

{(‘root ′, value), (‘left child ′, left sub−tree), (‘right child ′, right sub−tree)}

If e ∈ E , and T ∈ Trees(E ), the following operations exist :

Operations

• isEmpty(T ) returns true if the tree is empty, false otherwise ;

• T [‘root ′] returns the value of root of the tree ;

• T [‘left child ′] return the left sub-tree of T (it is a tree) ;

• T [‘right child ′] return the right sub-tree of T (it is a tree).

11



Trees : Some Formalism

Let T be the following tree.
0

1 2

1.1 1.2 2.1 2.2

1.1.1 1.2.1 1.2.2 2.2.1 2.2.2

1.2.2.1 1.2.2.2 2.2.1.1

2.2.1.1.1 2.2.1.1.2

12



Trees : Some Formalism

Let T be the following tree. Then :

• T [‘root ′] = 0 ;

• The height of T is 5.

0

1 2

1.1 1.2 2.1 2.2

1.1.1 1.2.1 1.2.2 2.2.1 2.2.2

1.2.2.1 1.2.2.2 2.2.1.1

2.2.1.1.1 2.2.1.1.2

12



Trees : Some Formalism

Let T be the following tree. Then :

• T [‘left child ′] will return the purple tree

0

1 2

1.1 1.2 2.1 2.2

1.1.1 1.2.1 1.2.2 2.2.1 2.2.2

1.2.2.1 1.2.2.2 2.2.1.1

2.2.1.1.1 2.2.1.1.2

12



Trees : Some Formalism

Let T be the following tree. Then :

• T [‘right child ′] will return the orange tree

0

1 2

1.1 1.2 2.1 2.2

1.1.1 1.2.1 1.2.2 2.2.1 2.2.2

1.2.2.1 1.2.2.2 2.2.1.1

2.2.1.1.1 2.2.1.1.2

12



Trees : Some Formalism

Let T be the following tree. Then :

• T [‘left child ′][‘right child ′][‘right child ′][‘root ′] = 1.2.2

0

1 2

1.1 1.2 2.1 2.2

1.1.1 1.2.1 1.2.2 2.2.1 2.2.2

1.2.2.1 1.2.2.2 2.2.1.1

2.2.1.1.1 2.2.1.1.2

12



Trees : Some Formalism

Let T be the following tree. Then :

• isEmpty(T [‘right child ′][‘right child ′][‘left child ′][‘right child ′])

= true

0

1 2

1.1 1.2 2.1 2.2

1.1.1 1.2.1 1.2.2 2.2.1 2.2.2

1.2.2.1 1.2.2.2 2.2.1.1

2.2.1.1.1 2.2.1.1.2

12



Trees : Some Formalism

Let T be the following tree. Then :

• isEmpty(T [‘right child ′][‘right child ′][‘left child ′][‘right child ′])

= true. Indeed, you actually encode this :

0

1 2

1.1 1.2 2.1 2.2

1.1.1 1.2.1 1.2.2 2.2.1 2.2.2

1.2.2.1 1.2.2.2 2.2.1.1

2.2.1.1.1 2.2.1.1.2

{ } { } { }

{ } { } { } { }

{ } { } { } { }

{ } { } { } { }

{ } { } { }

13



Trees : Don’t panic

Regarding trees, we expect from you :

• to be able to represent a tree, either in its "drawing" form, or in its
dictionary form ;

• to be able to apply a given algorithm on a given tree ;

• to understand a given algorithm on trees (and be able to say what it
does) ;

• to be able to write a single basic instruction or a basic algorithm
("how do I get the value of this node in this tree" for instance, for a
given tree and node) ;

• to give the principle (not the algorithm itself) of an algorithm to
answer a question ;

We do not expect from you :

• to write a whole algorithm on trees.

14



Trees : Example

Require: T , value

1: S ← S0

2: add(T ,S)

3: while !isEmpty(S) do
4: tree ← get(S)

5: remove(S)

6: if !isEmpty(tree) then
7: if tree[‘root′] == value then
8: return true

9: end if
10: if !isEmpty(tree[‘right child ′]) then
11: add(tree[‘right child ′], S)

12: end if
13: if !isEmpty(tree[‘left child ′]) then
14: add(tree[‘left child ′], S)

15: end if
16: end if
17: end while
18: return false

Question
What does this algorithm
do ?

15



Trees : Example

Require: T , value

1: S ← S0

2: add(T ,S)

3: while !isEmpty(S) do
4: tree ← get(S)

5: remove(S)

6: if !isEmpty(tree) then
7: if tree[‘root′] == value then
8: return true

9: end if
10: if !isEmpty(tree[‘right child ′]) then
11: add(tree[‘right child ′], S)

12: end if
13: if !isEmpty(tree[‘left child ′]) then
14: add(tree[‘left child ′], S)

15: end if
16: end if
17: end while
18: return false

Question
What does this algorithm
do ?
Try with the following tree
and value 5 :

8

9 3

2 4 6 5

0 7 8 1 10

15



Trees : Example

Require: T , value

1: S ← S0

2: add(T ,S)

3: while !isEmpty(S) do
4: tree ← get(S)

5: remove(S)

6: if !isEmpty(tree) then
7: if tree[‘root′] == value then
8: return true

9: end if
10: if !isEmpty(tree[‘right child ′]) then
11: add(tree[‘right child ′], S)

12: end if
13: if !isEmpty(tree[‘left child ′]) then
14: add(tree[‘left child ′], S)

15: end if
16: end if
17: end while
18: return false

Question
What does this algorithm
do ?
It takes a tree and a value as
input, and returns true if the
input value is the value of
one of the node of the input
tree, and false otherwise.

15



TD1 Optional Exercise



TD1 Optional Exercise : General Feedback

• Several solutions were possible, we put one of them on Arche ;

• Almost all of you had the right idea/principle concerning your
algorithm ;

• Read the question, and follow the given constraint ! If we say "this
algo should use at most 2 structures" do not use more than 2
structures ;

• Use the operations and instructions given during the class (no
queue.pop(), no unqueue, etc.) ;

• In general, ALWAYS comment your algorithm, and ALWAYS add a
few lines explaining the principle of your algorithm ;

16



TD1 Optional Exercise : General Feedback

• Several algorithms had syntax problems :
• A break instruction will make you go out of the current loop without

taking into the consideration the loop instruction (for loop) or the
loop condition (while loop). If you put a break just before a return,
you will not return for instance. Tip : do not use break, but define
your loop instruction/condition more precisely ;

• If you encounter the instruction return while executing (or applying)
your algorithm, the execution will stop. All the following instructions
will not be executed. So if you use two return one after the other,
the second one will never be read ;

• If you forgot the end if, end for or end while, make sure you
respected the indentation. If you forgot both (the end – and the
indentation) your algorithm becomes unreadable or false ;

17



TD1 Optional Exercise : General Feedback

• Several algorithms had queues and stacks related problems :
• Do not forget that a queue is FIFO, and a stack is LIFO ;
• If Q is a queue, get(Q) will read the first element of the queue. It

will NOT remove it. If you want to remove the element you have to
use the instruction remove(Q) (Caution, remove(Q) does NOT read
the element.) ;

• If S is a stack, get(S) will read the last element of the stack. It will
NOT remove it. If you want to remove the element you have to use
the instruction remove(S) (Caution, remove(S) does NOT read the
element.) ;

• You can’t iterate over a queue or a stack. You have to (get the
element, and then) remove the element.

18



Summary



Summary

• Trees are a complex data structure ;

• They are made of nodes and branches ;

• We will consider only binary trees (trees such that each of their
nodes has 0 to 2 children) ;

• The unique top node of a tree is the root and a node without any
child is a leaf ;

• Each node has a depth and a tree has a height ;

• We have chosen to represent trees with dictionaries ;

• Their root, left child, and right child are accessible via the keys of
the dictionary representing them ;

• Do not forget that a sub-tree is also a tree, and thus represented by
a dictionary too.

19


	Syntax
	Trees
	TD1 Optional Exercise
	Summary

