
Data Structures (Not UML)

Pseudo-code Syntax, Graphs

Amandine Decker & Marie Cousin

M1 TAL/SC 2023–2024

Université de Lorraine, LORIA



Class Organisation

Third Lab :

• Reminder : optional exercise TD3 (due December 8th) ;
• hand back on a sheet of paper (December 8th), send it by e-mail, or

hand back on Arche ;
• Correction of the third lab (except bonus exercise) is available on

Arche ;
• Points and feedback on the optional exercise of TD2 are on Arche as

well.

How to find the Arche repository :

• on your Arche top bar (blue-ish), click on “Home” (“Accueil”) ;
• then “LORRAINE MANAGEMENT” (purple) ;
• and search for “Data Structure” ;
• Full name of the course is “Data Structures - Beginners”, password is

“Nox”.

1



Syntax



Structures we have seen so far

Structure Accessibility Iterable ?

Queue First element only (FIFO) No iteration
Stack Last element only (LIFO) No iteration

List Any element by ID
Iteration over elements or
by IDs

Dict. Any element by key Iteration without order

Tree
Access root, left child, right
child

No iteration (traversal al-
gorithms)

2



Loops (1)

For loop
In a for loop, we create a variable that will take several values one after
the other, i.e., we will iterate over some elements and the variable will
take one value at a time. The loop is thus executed a known definite
number of times.

While loop
The loop condition is a condition that is true or false, it may use some
variable used elsewhere in the algorithm. The instructions 1, 2, etc. will
be executed as long as the loop condition remains satisfied (i.e., true).

3



Loops (1)

For loop

1: for i in range(0,5) do
2: print(i)
3: end for

• The variable i is created by the loop and
can be used inside it ;

• It is also incremented by the loop, we do
not need to change it by hand.

While loop
1: i ← 0
2: while i < 5 do
3: print(i)
4: i ← i + 1
5: end while

• The variable i is NOT created by the loop,
we need to create it by hand to use it ;

• It is NOT incremented by the loop, we
must change it by hand if we want it to
change.

3



Loops (2)

Nested loops
When you use a loop inside another loop, they are NOT executed in
parallel. The inside loop will be executed at every step of the outside
loop.

1: for i in range(0, 3) do
2: for j in range(0, 5) do
3: print(j)

4: end for
5: end for

This algorithm will print 0, then 1, then 2,
then 3, then 4 (j loop) and repeat this
three times in total (because of i loop).

4



Loops (2)

Nested loops
When you use a loop inside another loop, they are NOT executed in
parallel. The inside loop will be executed at every step of the outside
loop.

1: L← [0, 1, 2]
2: while !isEmpty(L) do
3: for x in L do
4: print(x)

5: end for
6: end while

This algorithm will print 0, then 1, then 2
(For loop) and repeat this an infinite
number of time because the condition of
the While loop will remain True.

4



Return

Return instruction
This instruction returns result, and ends the algorithm.
(Note : If you encounter a return in the middle of an algorithm, THE
FOLLOWING INSTRUCTIONS WILL NOT BE EXECUTED !)

1: if condition then
2: print(”condition True”)

3: return result

4: else
5: print(”condition False”)

6: end if
7: print(”If block finished”)

• If condition is True, the algorithm will
print ”condition True”, return result,
and stop ;

• If condition is False, the algorithm will
print ”condition False”, get out of the
If block and print ”If block finished”.

Note : If you want to return more than one thing, use comas !

1: return result1, result2, result3

5



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

6



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

DO NOT :

• Create an arbitrary object :

1: L← [1, 2, 3, 4, 5, 6] –- Use Require: L instead

6



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

DO NOT :
• Re-use your variable to store something else / Overwrite your

variable :

Require: L –- We require a list L
1: L← [] –- This erases the values given in the

input
6



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

DO NOT :

• Use Require AND create the object afterwards :

Require: L –- We require a list L
1: L← [] –- This erases the values given in the

input, use a comment to say that L must be a list

6



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

Difference between Require and Creating a new variable for later :

Require: L –- We require a list of integers L
1: L_even← [] –- We create an empty list to store all

the even numbers of L

6



Graphs



Graphs : Idea

“I want to find all the desserts !”

• Nox is in front of a maze where each room contains a dessert ;

• Some rooms have a door to other rooms ;

• We have a graph of desserts !

7



Graphs : Definition

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :

• If they are un-directed, both direction work ;
• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.

8



Graphs : Definition

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :

• If they are un-directed, both direction work ;
• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.

8



Graphs : Definition

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :

• If they are un-directed, both direction work ;
• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.

8



Graphs : Definition

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :

• If they are un-directed, both direction work ;
• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.

8



Graphs : Definition

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :
• If they are un-directed, both direction work ;

• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.

8



Graphs : Definition

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :
• If they are un-directed, both direction work ;
• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.

8



Graphs : Definition

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :
• If they are un-directed, both direction work ;
• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.

8



Graphs : Definition

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :
• If they are un-directed, both direction work ;
• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.

8



Graphs : Definition

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :
• If they are un-directed, both direction work ;
• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.

8



Graphs : Definition

Properties
• The size of a graph is its number of nodes ;

• Each node has a set of directly accessible nodes : the nodes linked to
them by an edge ;

• We say that a node B is accessible from a node A if there exist a
path (i.e., a sequence of edges) going from node A to node B (A
and B can be the same node) ;

• The length of a path between two nodes is the number of edges
used to go from one to the other.

1

2 3 4 5

6 7 9



Graphs : Definition

Properties
• The size of a graph is its number of nodes ; → 7 here

• Each node has a set of directly accessible nodes : the nodes linked to
them by an edge ;

• We say that a node B is accessible from a node A if there exist a
path (i.e., a sequence of edges) going from node A to node B (A
and B can be the same node) ;

• The length of a path between two nodes is the number of edges
used to go from one to the other.

1

2 3 4 5

6 7 9



Graphs : Definition

Properties
• The size of a graph is its number of nodes ;

• Each node has a set of directly accessible nodes : the nodes linked to
them by an edge ; → 2 and 7 are directly accessible from 6

• We say that a node B is accessible from a node A if there exist a
path (i.e., a sequence of edges) going from node A to node B (A
and B can be the same node) ;

• The length of a path between two nodes is the number of edges
used to go from one to the other.

1

2 3 4 5

6 7 9



Graphs : Definition

Properties
• The size of a graph is its number of nodes ;

• Each node has a set of directly accessible nodes : the nodes linked to
them by an edge ;

• We say that a node B is accessible from a node A if there exist a
path (i.e., a sequence of edges) going from node A to node B (A
and B can be the same node) ; → 5 is accessible from 4

• The length of a path between two nodes is the number of edges
used to go from one to the other.

1

2 3 4 5

6 7 9



Graphs : Definition

Properties
• The size of a graph is its number of nodes ;

• Each node has a set of directly accessible nodes : the nodes linked to
them by an edge ;

• We say that a node B is accessible from a node A if there exist a
path (i.e., a sequence of edges) going from node A to node B (A
and B can be the same node) ;

• The length of a path between two nodes is the number of edges used
to go from one to the other. → The path from 4 to 5 is of length 3

1

2 3 4 5

6 7 9



Graphs : No Formalism

Operations
• Creating an edge means adding an edge linking two existing nodes

(possibly the same node to itself). If the graph is directed the
direction of the new edge must be specified. → Create the edge
1→ 3.

• Creating a node means adding a new node to the graph. The edges
coming from and to this new node can be specified (see creating an
edge). → Create the edge 8 with the edges 2→ 8 and 8→ 5.

• Removing an edge means removing the edge from one node to
another (possibly the same node to itself). If the graph is directed
the direction of the deleted edge must be specified. → Remove the
edge 5→ 4.

• Removing a node means removing an existing node from a graph
and all the edges coming from or to this node. → Remove the node
3.

10



Graphs : Don’t panic

Regarding graphs, we expect from you :

• To be able to draw a graph given instructions such as “The nodes 3,
7 and 12 and the edges 3→ 12, 12→ 3, 7→ 12, and 7→ 3”

• To be able to read a graph and find the nodes that are accessible to
each other ;

• To be able to explain operations on a graph such as adding and
removing edges and nodes ;

• To explain in English the principle of basic algorithms.

We do not expect from you :

• to read or write algorithms on graphs.

11



Graphs : Example

Question
How do you find all the nodes accessible from a given node X in a graph ?

1

2 3 4 5

6 7

12



Graphs : Example

Question
How do you find all the nodes accessible from a given node X in a graph ?

Solution
Intuition : All the nodes directly accessible from X are accessible, so are
the nodes directly accessible from the ones we just found, etc.

• We need to store two things : the accessible nodes, and the nodes
we have already visited to avoid checking them several times ;

• All the nodes directly accessible from X are accessible : we store
them as accessible nodes and X as checked nodes ;

• All the nodes directly accessible from the ones we have just found
are accessible from X as well : For all the nodes in accessible nodes,
if we have not checked them already ; add their direct neighbours to
the accessible nodes and add the nodes we just checked to checked
nodes ;

• We repeat this until all the accessible nodes have been checked.
12



Graphs : Example

Question
How do you find all the nodes accessible from a given node X in a graph ?

Let’s try with X = 6 :
• We will need to store the accessible

nodes and the already checked nodes
• Accessible nodes : []
• Checked nodes : []

1

2 3 4 5

6 7

12



Graphs : Example

Question
How do you find all the nodes accessible from a given node X in a graph ?

Let’s try with X = 6 :
• We look for all the nodes directly

accessible from 6 (2, 7) :
• Accessible nodes : [2, 7]
• Checked nodes : [6]

1

2 3 4 5

6 7

12



Graphs : Example

Question
How do you find all the nodes accessible from a given node X in a graph ?

Let’s try with X = 6 :
• Neither 2 nor 7 have been checked yet

so we look for all the nodes directly
accessible from 2 (3, 6) and from 7
(5) :

• Accessible nodes : [2, 3, 5, 6, 7]
• Checked nodes : [2, 6, 7]

1

2 3 4 5

6 7

12



Graphs : Example

Question
How do you find all the nodes accessible from a given node X in a graph ?

Let’s try with X = 6 :
• In our accessible nodes, only 3 and 5

have not been checked yet so we look
for all the nodes directly accessible
from 3 (3) and from 5 (3, 4) :

• Accessible nodes : [2, 3, 4, 5, 6, 7]
• Checked nodes : [2, 3, 5, 6, 7]

1

2 3 4 55

6 7

12



Graphs : Example

Question
How do you find all the nodes accessible from a given node X in a graph ?

Let’s try with X = 6 :
• In our accessible nodes, only 4 has not

been checked yet so we look for all the
nodes directly accessible from 4 (6) :

• Accessible nodes : [2, 3, 4, 5, 6, 7]
• Checked nodes : [2, 3, 4, 5, 6, 7]

1

2 3 4 5

6 7

12



Graphs : Example

Question
How do you find all the nodes accessible from a given node X in a graph ?

Let’s try with X = 6 :
• All of our accessible nodes have been

checked so this is our final answer :
• All the nodes accessible from 6 are

[2, 3, 4, 5, 6, 7]

1

2 3 4 5

6 7

12



TD2 Optional Exercise



TD2 Optional Exercise : General Feedback

• Read the question carefully, most of the time it indicates the input
and output structures you should use !

• If the algorithm must take an input, use Require (do not define an
arbitrary structure) ;

• Remove does not exist for lists ;

• Modifying a list while iterating over it (“for x in L do:”) can
create problems in some programming languages ;

• Comment your algorithm and write a short description (you can get
points even when your algorithm does not work perfectly if the idea
is good and well explained) ;

• Please use English when required.

13



Summary



Summary

• Graphs are complex structures ;

→ not linear like trees ;

• They are constituted of Nodes and Edges ;
• Nodes can also be called Vertices or sometimes States for specific

types of graphs ;
• Edges can also be called Lines or Arcs ;

• Nodes are accessible to each other ;

• A graph has a size ;

• A certain path between two nodes has a length ;

• No formalism, only descriptions in English, drawings, etc.

14


	Syntax
	Graphs
	TD2 Optional Exercise
	Summary

