
Data Structures (Not UML)

Pseudo-code Syntax, Overview and Conclusion

Amandine Decker & Marie Cousin

M1 TAL/SC 2023–2024

Université de Lorraine, LORIA



Class Organisation

Third Lab :

• Reminder : optional exercise TD4 (due December 22nd) ;
• hand back on a sheet of paper (December 19th), send it by e-mail,

or hand back on Arche ;
• Correction of the fourth lab (except bonus exercise) is available on

Arche ;
• Points and feedback on the optional exercise of TD3 will be on

Arche before Wednesday.

Exam :

• January 23rd, from 2pm to 4pm ;
• Closed book exam, except one A4 paper sheet per person ;
• Write in the language you want (French or English) ;
• End grade = exam grade + sum of bonus exercises points.
• If you have “tiers temps”, please send us an email before january.

1



TD3 Optional Exercise



TD3 Optional Exercise : General Feedback

• Do not mix a tree and its root :
• add(tree[‘left child’], Q) adds the whole left child (i.e., the whole

sub-tree) to Q ;
• add(tree[‘left child’][root’], Q) adds only the root of the left child

(i.e., a single value) to Q ;
• you can’t compare a tree’s root to a tree’s right child (i.e., a

sub-tree), but you can compare it to a tree’s right child’s root.

• Do not mix queues (FIFO) and stacks (LIFO) ;
• “What does this algorithm do ?” : we expect the idea of the

algorithm, not a translation of the instruction in natural language ;
• When adding trees to a queue (or a stack), pay attention to the

wanted order, and do not do it “nicely”. For example, in the question

1.a., one of the state of Q is Q = |
4

1 ,

12

5 14 |, and the next one

is Q = |

12

5 14 ,

1

{} {} |, and not Q = |

1

{} {} ,

12

5 14 |

2



TD3 Optional Exercise : General Feedback

• Do not mix a tree and its root :
• add(tree[‘left child’], Q) adds the whole left child (i.e., the whole

sub-tree) to Q ;
• add(tree[‘left child’][root’], Q) adds only the root of the left child

(i.e., a single value) to Q ;
• you can’t compare a tree’s root to a tree’s right child (i.e., a

sub-tree), but you can compare it to a tree’s right child’s root.

• Do not mix queues (FIFO) and stacks (LIFO) ;

• “What does this algorithm do ?” : we expect the idea of the
algorithm, not a translation of the instruction in natural language ;

• When adding trees to a queue (or a stack), pay attention to the
wanted order, and do not do it “nicely”. For example, in the question

1.a., one of the state of Q is Q = |
4

1 ,

12

5 14 |, and the next one

is Q = |

12

5 14 ,

1

{} {} |, and not Q = |

1

{} {} ,

12

5 14 |

2



TD3 Optional Exercise : General Feedback

• Do not mix a tree and its root :
• add(tree[‘left child’], Q) adds the whole left child (i.e., the whole

sub-tree) to Q ;
• add(tree[‘left child’][root’], Q) adds only the root of the left child

(i.e., a single value) to Q ;
• you can’t compare a tree’s root to a tree’s right child (i.e., a

sub-tree), but you can compare it to a tree’s right child’s root.

• Do not mix queues (FIFO) and stacks (LIFO) ;
• “What does this algorithm do ?” : we expect the idea of the

algorithm, not a translation of the instruction in natural language ;

• When adding trees to a queue (or a stack), pay attention to the
wanted order, and do not do it “nicely”. For example, in the question

1.a., one of the state of Q is Q = |
4

1 ,

12

5 14 |, and the next one

is Q = |

12

5 14 ,

1

{} {} |, and not Q = |

1

{} {} ,

12

5 14 |

2



TD3 Optional Exercise : General Feedback

• Do not mix a tree and its root :
• add(tree[‘left child’], Q) adds the whole left child (i.e., the whole

sub-tree) to Q ;
• add(tree[‘left child’][root’], Q) adds only the root of the left child

(i.e., a single value) to Q ;
• you can’t compare a tree’s root to a tree’s right child (i.e., a

sub-tree), but you can compare it to a tree’s right child’s root.

• Do not mix queues (FIFO) and stacks (LIFO) ;
• “What does this algorithm do ?” : we expect the idea of the

algorithm, not a translation of the instruction in natural language ;
• When adding trees to a queue (or a stack), pay attention to the

wanted order, and do not do it “nicely”. For example, in the question

1.a., one of the state of Q is Q = |
4

1 ,

12

5 14 |, and the next one

is Q = |

12

5 14 ,

1

{} {} |, and not Q = |

1

{} {} ,

12

5 14 |

2



Syntax



Structures we have seen so far

Structure Accessibility Iterable ?

Queue First element only (FIFO) No iteration
Stack Last element only (LIFO) No iteration

List Any element by ID
Iteration over elements or
by IDs

Dict. Any element by key Iteration without order

Tree
Access root, left child, right
child

No iteration (traversal al-
gorithms)

Graph

node, nodes directly acces-
sible from it, nodes from
which it is directly accessible
and the related edges

Informal iteration "for
each node of the graph
..."

3



Variable

Variable
A variable is an object, or a buffer. You can create it, initialise it, modify
it. It is used to store data, like a result for example.

Example
1: counter ← 0
2: s ← ”Number of apples : ”

3: ...
4: res ← s + str(counter)

• Create and initialise a variable ;

• There exists variables of any type ;

• Modify a variable ;

4



If Block

If/Then/Else block

If the condition is satisfied, instructions 1, 2, etc. are executed. If the
condition is not satisfied, instructions A, B, etc. are executed.
Note : It is not mandatory to have the "else" part ; in that case, when
the condition is not satisfied, no instructions are executed.

Example
1: i ← 10
2: ...
3: if i < 6 then
4: print(True)
5: i ← i + 1
6: else
7:

print(False)
8: end if

• The else part is optional ;

• The end if instruction is mandatory ;

• Do not forget to use indentation ;

• The variable i is NOT created by the block,
we need to create it by hand to use it ;

• The block does not change the value of
variable i except if a specific instruction to do
so is written ;

5



Loops (1)

For loop
In a for loop, we create a variable that will take several values one after
the other, i.e., we will iterate over some elements and the variable will
take one value at a time. The loop is thus executed a known definite
number of times.

While loop
The loop condition is a condition that is True or False, it may use some
variable used elsewhere in the algorithm. The instructions 1, 2, etc. will
be executed as long as the loop condition remains satisfied (i.e., True).

6



Loops (1)

For loop

1: for i in range(0,5) do
2: print(i)
3: end for

• The variable i is created by the loop and
can be used inside it ;

• It is also incremented by the loop, we do
not need to change it by hand.

While loop
1: i ← 0
2: while i < 5 do
3: print(i)
4: i ← i + 1
5: end while

• The variable i is NOT created by the loop,
we need to create it by hand to use it ;

• It is NOT incremented by the loop, we
must change it by hand if we want it to
change.

6



Loops (2)

Nested loops
When you use a loop inside another loop, they are NOT executed in
parallel. The inside loop will be executed at every step of the outside
loop.

1: for i in range(0, 3) do
2: for j in range(0, 5) do
3: print(j)

4: end for
5: end for

This algorithm will print 0, then 1, then 2,
then 3, then 4 (j loop) and repeat this
three times in total (because of i loop).

7



Loops (2)

Nested loops
When you use a loop inside another loop, they are NOT executed in
parallel. The inside loop will be executed at every step of the outside
loop.

1: L← [0, 1, 2]
2: while !isEmpty(L) do
3: for x in L do
4: print(x)

5: end for
6: end while

This algorithm will print 0, then 1, then 2
(For loop) and repeat this an infinite
number of time because the condition of
the While loop will remain True.

7



Return

Return instruction
This instruction returns result, and ends the algorithm.
(Note : If you encounter a return in the middle of an algorithm, THE
FOLLOWING INSTRUCTIONS WILL NOT BE EXECUTED !)

1: if condition then
2: print(“condition True′′)

3: return result

4: else
5: print(“condition False′′)

6: end if
7: print(“If block finished ′′)

• If condition is True, the algorithm will
print “condition True′′, return result,
and stop ;

• If condition is False, the algorithm will
print “condition False′′, get out of the
If block and print “If block finished ′′.

Note : If you want to return more than one thing, use comas !

1: return result1, result2, result3

8



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

9



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

When requiring an input DO NOT :

• Create an arbitrary object :

1: L← [1, 2, 3, 4, 5, 6] –- Use Require: L instead

9



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

When requiring an input DO NOT :
• Re-use your variable to store something else / Overwrite your

variable :

Require: L –- We require a list L
1: L← [] –- This erases the values given in the

input
9



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

When requiring an input DO NOT :
• Use Require AND create the object afterwards :

Require: L –- We require a list L
1: L← [1, 2, 3, 4, 5, 6] –- This erases the values given

in the input, use a comment to say that L must be a
list

9



Require

Require instruction
This instruction requires the user to give a certain input to your
algorithm. The input is stored in a variable that can be used in the
algorithm.

• Comment your instruction to explicit the input you want. For
example, if your algorithm requires a list, you can write “Require:
L – We need a list as input” ;

• If you need to require several objects, separate the variables with a
comma.

Difference between Require and Creating a new variable for later :

Require: L –- We require a list of integers L
1: L_even← [] –- We create an empty list to store all

the even numbers of L

9



Data Structures



Queues - Recap (1)

“I want to eat some cupcakes !”

http ://miam-images.centerblog.net

Queue
A queue is a structure containing some objects, organised one after the
other. It uses the FIFO principle : First In, First Out (the first object to
enter the queue will be the first to leave the queue).

10



Queues - Recap (2)

Operations on queues
• add an element at the

end of the queue ;

• remove the first
element of the queue ;

• get the first element of
the queue ;

• check if the queue is
empty ;

• a queue has a length ;

Notation : Q0 is the empty
queue.

The comments give the results of the
algorithms when applied to Q1 = |5,1,9|.

• To check if a queue is empty :

Require: Q –- if Q1
1: return isEmpty(Q) –- False

• To get an element from queue :

Require: Q –- if Q1
1: elt ← get(Q) –- elt=5

• To add an element to a queue :

Require: Q –- if Q1
1: add(8,Q) –- Q1=|5,1,9,8|

• To remove an element of a queue :

Require: Q –- if Q1
1: remove(Q) –- Q1=|1,9,8|

11



Queues - Pay Attention

FIFO
Queues are FIFO = First In First Out (do not mix with stacks, that are
LIFO)

The empty queue Q0

Q0 is the empty queue. It is a notation we use. When writing “Q ← Q0”,
it means that Q is a queue (since Q0 is) and that Q is now empty.

1: Q1← Q0

2: add(5,Q1)
3: Q0 ← Q1

This algorithm will return an error : you
can’t assign a (non empty) value to a fix
empty structure.

1: S ← Q0

2: L← Q0

3: add(5,S)
4: L← S

In this algorithm, S and L are both queues
because Q0 is a queue.

12



Queues - Pay Attention

No iteration
You can’t iterate on a queue. It is NOT AN ITERABLE STRUCTURE.

Require: Q

1: elt ← Q[5]

This algorithm returns an error ! A queue is
not iterable.

Require: Q

1: for elt in Q do
2: ...
3: end for

This algorithm returns an error ! A queue is
not iterable.

12



Queues - Pay Attention

FIFO
Queues are FIFO = First In First Out (do not mix with stacks, that are
LIFO)

The empty queue Q0

Q0 is the empty queue. It is a notation we use. When writing “Q ← Q0”,
it means that Q is a queue (since Q0 is) and that Q is now empty.

No iteration
You can’t iterate on a queue. It is NOT AN ITERABLE STRUCTURE.

12



Stacks - Recap (1)

“I want to eat some pancakes !”

http ://miam-images.centerblog.net

Stack
A stack is a structure containing some objects, organised one on top of
the other. It uses the LIFO principle : Last In, First Out (the last object
to enter the stack will be the first to leave the stack).

13



Stacks - Recap (2)

Operations on stacks
• add an element on top

of the stack ;

• remove the element on
top of the stack ;

• get the last (= top)
element of the stack ;

• check if the stack is
empty ;

• a stack has a length.

Notation : S0 is the empty
stack.

The comments give the results of the
algorithms when applied to S1 = ⊢5,1,9 ⊢.

• To check if a stack is empty :

Require: S –- if S1
1: return isEmpty(S) –- False

• To get an element from a stack :

Require: S –- if S1
1: elt ← get(S) –- elt=9

• To add an element to a stack :

Require: S –- if S1
1: add(8,S) –- S1= ⊢5,1,9,8 ⊢

• To remove an element of a stack :

Require: S –- if S1
1: remove(S) –- S1= ⊢5,1,9 ⊢

14



Stacks - Pay Attention

LIFO
Stacks are LIFO = Last In First Out (do not mix with queues, that are
FIFO)

The empty stack S0

S0 is the empty stack. It is a notation we use. When writing “S ← S0”, it
means that S is a stack (since S0 is) and that S is now empty.

1: S1← S0

2: add(5,S1)
3: S0 ← S1

This algorithm will return an error : you
can’t assign a (non empty) value to a fix
empty structure.

1: Q ← S0

2: L← S0

3: add(5,Q)

4: L← Q

In this algorithm, Q and L are both stacks
because S0 is a stack.

15



Stacks - Pay Attention

No iteration
You can’t iterate on a stack. It is NOT AN ITERABLE STRUCTURE.

Require: S

1: elt ← S [5]

This algorithm returns an error ! A stack is
not iterable.

Require: S

1: for elt in S do
2: ...
3: end for

This algorithm returns an error ! A stack is
not iterable.

15



Stacks - Pay Attention

LIFO
Stacks are LIFO = Last In First Out (do not mix with queues, that are
FIFO)

The empty stack S0

S0 is the empty stack. It is a notation we use. When writing “S ← S0”, it
means that S is a stack (since S0 is) and that S is now empty.

No iteration
You can’t iterate on a stack. It is NOT AN ITERABLE STRUCTURE.

15



Lists - Recap (1)

“I want to sort my lollipops !”

[0] [1] [2] [3] [4]
https ://www.crushpixel.com/stock-vector/vector-drawing-variety-

candies-on-5907417.html

List
A List is an linear indexed structure containing some objects, organised
one after the other. To each element of the list is associated an index.

16



Lists - Recap (2)

Operations on lists
• add an element at the

end of the list ;

• get the element of the
list corresponding to a
given index ;

• modify the element of
the list corresponding
to a given index ;

• check if the list is
empty ;

• a list has a length.

Notation : [ ] is the empty
list.

The comments give the results of the
algorithms when applied to L1 = [5,1,9].

• To check if a list is empty :

Require: L –- if L1
1: return isEmpty(L) –- False

• To get an element from a list :

Require: L –- if L1
1: elt ← L[2] –- elt=9

• To add an element to a list :

Require: L –- if L1
1: add(8, L) –- L1=[5,1,9,8]
2: L1← L1 + [6] –- [5,1,9,8,6]

• To modify an element of a list :

Require: L –- if L1
1: L[1]← 3 –- L1= [5,3,9,8,6]

17



Lists - Pay Attention

The empty list [ ]

[ ] is the empty list. It is a notation we use. When writing “L ← [ ]”, it
means that L is a list (since [ ] is) and that L is now empty.

Iteration
You can iterate on a list. You can either use its indexes, or its elements.
Warning : when using its elements, you do not have access to its indexes
anymore.

18



Lists - Pay Attention

Iteration
You can iterate on a list. You can either use its indexes, or its elements.
Warning : when using its elements, you do not have access to its indexes
anymore.

Require: L

1: for i in range(0, len(L)− 1)
do

2: print(L[i ], i)

3: end for

This algorithm displays all the elements of
the input list with their indexes.

Require: L

1: for elt in L do
2: print(elt)

3: end for

This algorithm displays all the elements of
the list. We do not have access to their
indexes with this kind of iteration.

18



Lists - Pay Attention

The empty list [ ]

[ ] is the empty list. It is a notation we use. When writing “L ← [ ]”, it
means that L is a list (since [ ] is) and that L is now empty.

Iteration
You can iterate on a list. You can either use its indexes, or its elements.
Warning : when using its elements, you do not have access to its indexes
anymore.

Deletion
You can’t delete an element from a list ! You can modify it, set its value
to None, but not remove it. “remove(L[4])” is not a legit operation.

18



Dictionaries - Recap (1)

“I want to sort my lollipops !”

cherry cola mint apple lemon
https ://www.crushpixel.com/stock-vector/vector-drawing-variety-

candies-on-5907417.html

Dictionary or Associative Table

A dictionary or an associative table is a structure containing (key, value)
pairs. To each value of the dictionary is associated a key. The key must
be unique, while the value may be anything.

19



Dictionaries - Recap (2)

Operations on a dictionary
• add an element to the

dictionary ;

• get the element of the
dictionary corresponding
to a given key ;

• modify the element of the
dictionary corresponding
to a given key ;

• check if the dictionary is
empty ;

• a dictionary has a number
of pairs : its length.

Notation : { } is the empty
dictionary.

Example : D1 = {(’unicorns’,0), (’dragons’,1)}.

• To check if a dictionary is empty :

Require: D –- if D1
1: return isEmpty(D) –- False

• To get an element from a dictionary :

Require: D –- if D1
1: elt ← D[‘unicorns ′] –- elt=0

• To add/modify an element to a dictionary :

Require: D –- if D1
1: D[‘griffin′]← 5

add pair (‘griffin’, 5) to D1 if ‘griffin’ is not in
D1.keys, else modify D1[‘griffin’] to 5

• To check if a key is in a dictionary :

Require: D –- if D1
1: return (′cats ′ in D.keys) –- False

20



Dictionaries - Pay Attention

The empty dictionary { }
{ } is the empty dictionary. It is a notation we use. When writing “D ←
{ }”, it means that D is a dictionary (since { } is) and that D is now
empty.

Iteration
You can iterate on a dictionary using its keys. A dictionary does not have
any indexes but keys !

21



Dictionaries - Pay Attention

Iteration
You can iterate on a dictionary using its keys. A dictionary does not have
any indexes but keys !

Require: D

1: for k in D.keys do
2: print(D[k], k)

3: end for

This algorithm displays all the elements
with their keys of the input dictionary.

21



Dictionaries - Pay Attention

The empty dictionary { }
{ } is the empty dictionary. It is a notation we use. When writing “D ←
{ }”, it means that D is a dictionary (since { } is) and that D is now
empty.

Iteration
You can iterate on a dictionary using its keys. A dictionary does not have
any indexes but keys !

Deletion
You can’t delete an element from a dictionary ! You can modify it, set
one of its value value to None, but not remove it. “remove(D[’cat’])” is
not a legit operation.

21



Trees - Recap (1)

“I want to organise my desserts !”

desserts

cakes candies

cupcakes lollipops sugar canes

Tree
A Tree is a data structure composed of nodes and branches.

• The unique top node is the root ;

• Each node may have children (or descendants) nodes. If each node of a
tree has 0 to 2 children, the tree is said binary ;

• A node that has no child (or descendant) is called a leaf ;

• The depth of a node is the number of its ancestors (depth of the root is 0) ;

• The height of a tree is the depth of the deepest leaf. 22



Trees - Recap (2)

Operations
• Check if a tree is empty ;

• Get the root of a tree ;

• Get the left sub-tree of a
tree ;

• Get the right sub-tree of
a tree ;

We will consider only binary
trees in the algorithms. We
represent each tree or sub-tree
by a dictionary that has 3
pairs : {(′root ′, value),
(′left child ′, left sub − tree),

(′right child ′, right sub−tree)}

Example : T1 =

‘H’

‘K’ ‘M’

‘P’ ‘D’ ‘U’

• To check if a tree is empty :

Require: T –- if T1
1: return isEmpty(T ) –- False

• To get the root of a tree :

Require: T –- if T1
1: r ← T [′root ′] –- ‘H’

• To get the left sub-tree of a tree :

Require: T –- if T1
1: l ← T [′left child ′] –- tree ‘K’→‘P’

• To get right sub-tree’s root of a tree :

Require: T –- if T1
1: r ← T [′right child ′][′root ′] –- ‘M’

23



Trees - Pay Attention

The empty tree { }
{ } is the empty tree. Since we represent trees as dictionaries, the empty
dictionary is used for the empty tree. When writing “T ← { }”, it actually
means that T is a dictionary (since { } is) and that T is now empty.

Single child and Leaves
If a node has a single child, it is ITS LEFT CHILD by default, the right
one is then empty. A leaf has no children, we represent it with a node
having two empty children.

24



Trees - Pay Attention

Single child and Leaves
If a node has a single child, it is ITS LEFT CHILD by default, the right
one is then empty. A leaf has no children, we represent it with a node
having two empty children.

• {(′root ′,N), (′left child ′,C ), (′right child ′, {})} : In this tree (that
may be part of a bigger tree of course), the node N has a single
child C ;

• {(′root ′, L), (′left child ′, {}), (′right child ′, {})} : In this tree (that
may be part of a bigger tree of course), the node L has no children,
it is a leaf.

24



Trees - Pay Attention

The empty tree { }
{ } is the empty tree. Since we represent trees as dictionaries, the empty
dictionary is used for the empty tree. When writing “T ← { }”, it actually
means that T is a dictionary (since { } is) and that T is now empty.

Single child and Leaves
If a node has a single child, it is ITS LEFT CHILD by default, the right
one is then empty. A leaf has no children, we represent it with a node
having two empty children.

Iteration
You can’t iterate on trees. But you can use a traversal procedure as we
did in the labs with a queue or a stack for instance.

Deletion
You can’t delete an element from a dictionary ! Hence you can’t delete an
element from a tree as well.

24



Graphs - Recap (1)

“I want to find all the desserts !”

Graph
A Graph is a data structure composed of nodes and edges.

• The nodes can be connected by edges ;

• The edges are either ALL directed or ALL un-directed :
• If they are un-directed, both direction work ;
• If they are directed, only the indicated direction(s) work ;

• A node can be connected to itself.
25



Graphs - Recap (2)

Properties
• Size of a graph : its number

of nodes ;

• Each node has a set of
directly accessible nodes :
the nodes linked to them by
an edge ;

• We say that a node B is
accessible from a node A if
there exist a path from
node A to node B ;

• Length of a path between
two nodes : the number of
edges used to go from one
to the other.

Operations on graphs
Note that if the graph is directed the
direction of the edges must be specified.

• Creating an edge between two
existing nodes.
→ Create the edge 1→ 3.

• Creating a node.
→ Create the node 8.

• Removing an edge.
→ Remove the edge 5→ 4.

• Removing a node : removing an
existing node from a graph and all the
edges coming from or to this node.
→ Remove the node 3.

26



Graphs - Pay Attention

Adding edges

When adding an edge, you need both nodes (starting and ending node of
the edge) to exist. You can’t add an edge if one of its nodes does not
already exist in the graph.

Deletion
You can delete an element from a graph. When removing an edge,
nothing more happens, but when removing a node, all the edges linked to
this node are also removed.

Some legit “one-step” instructions :
Add :

• the node X ;

• the edge Z → Y (provided
BOTH nodes Z and Y EXIST
in the graph.

Delete :

• the node X ;

• the edge X → Y ;

• all the edges coming to node X ;

• all the edges coming from node X.
27



Graphs - Pay Attention

Informal iteration
You can use two methods to go through a graph : exploring the paths
starting from a node of your choice, or “for each node ...”.
Warning : when exploring all the paths, pay attention not to forget (or
delete) a possible path, or some elements you wanted to explore.

If you choose “for each node of the
graph, ...” :

• there is no (defined) starting node ;

• you do not have a specific order to
explore the graph ;

• if you delete some edges/nodes, it
will not have a consequence on
what you are doing.

If you choose to explore the paths :

• you need a starting node ;

• the way you explore the graph is
ordered (neighbour after neighbour) ;

• if you modify the graph (like deleting
some edges/nodes) on you way, it
may have an impact on what you are
doing (inaccessible nodes, etc.).

27



Graphs - Pay Attention

Informal iteration
You can use two methods to go through a graph : exploring the paths
starting from a node of your choice, or “for each node ...”.
Warning : when exploring all the paths, pay attention not to forget (or
delete) a possible path, or some elements you wanted to explore.

Note : When you want some information, if you can have it in one step
(i.e., the node, its direct neighbours, from which nodes it is direct
neighbours), then you can write it just like that. Else (you need mode
than one step), you need to do something (exploring the paths, going
through the graph, etc.).

27



Graphs - Pay Attention

Adding edges

When adding an edge, you need both nodes (starting and ending node of
the edge) to exist. You can’t add an edge if one of its nodes does not
already exist in the graph.

Deletion
You can delete an element from a graph. When removing an edge,
nothing more happens, but when removing a node, all the edges linked to
this node are also removed.

Informal iteration
You can use two methods to go through a graph : exploring the paths
starting from a node of your choice, or “for each node ...”.
Warning : when exploring all the paths, pay attention not to forget (or
delete) a possible path, or some elements you wanted to explore.

27



About queues and stack use

You can add whatever you want to a queue or a stack. When adding (or
removing) something (an integer, a list, a tree, a graph, etc.) to a queue
or a stack, you add the whole object. You do not need to cut it in parts
and add parts after parts. (The same goes for setting values to elements
of the lists.)
→ If you add a person to a CROUS queue, you add the whole person.
You do not behead them, cut their arms and legs, and add first the head,
then the arms, then the body, then the legs. Same idea when someone
finally have their lunch and quit the queue !

28



About queues and stack use

You can add whatever you want to a queue or a stack. When adding (or
removing) something (an integer, a list, a tree, a graph, etc.) to a queue
or a stack, you add the whole object. You do not need to cut it in parts
and add parts after parts. (The same goes for setting values to elements
of the lists.)

• Require: T –- a tree
1: Q ← Q0

2: add(T ,Q)

Example : T1=
‘H’

‘K’ ‘M’

‘P’ ‘D’ ‘U’

Q=

|

‘H’

‘K’ ‘M’

‘P’ ‘D’ ‘U’ |

• Require: T –- a tree
1: S ← S0

2: add(T ,S)

3: add(T [′left child ′],S)

4: remove(S)

Example : T1=
‘H’

‘K’ ‘M’

‘P’ ‘D’ ‘U’

S=

⊢

‘H’

‘K’ ‘M’

‘P’ ‘D’ ‘U’ ,

‘K’

‘P’ ⊢

28



Exercise



Dijkstra Algorithm (1)

Dijkstra Algorithm
Idea : Find the path of minimal weight from a node to another one in a
weighted graph.

Weighted Graph

A weighted graph is a graph where each edge has a (numerical) value,
called a weight. When talking about the “shortest path” in a weighted
graph, we usually mean the “lighter path”, i.e., the one of minimal weight.

A

B C D E

F G

4

6
2

3

5 3

4

0

1

2

0

3

4
10

1

29



Dijkstra Algorithm (2)

Dijkstra Algorithm
• Input : a weighted graph, which weights are positive integers, and a

starting node X ;

• Initialisation + Main part (see next slides) ;

• Output : a table allowing to know the minimal path weight from the
chosen starting node to each of the other nodes. This table also
allow to find the minimal path associated to the minimal path
weight.

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Initialisation (first step)

• Draw a table having one line per node. The columns will be the
steps of the algo. In the starting node’s line, write 0 in the first
column (i.e., first step) and in all other nodes line, write ∞ in the
first column ;

• Main part (see next slide) ;

step1 step2 step3 step4 step5 step6 step7 step8
A
B
C
D
E
F
G

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Initialisation (first step)

• Draw a table having one line per node. The columns will be the
steps of the algo. In the starting node’s line, write 0 in the first
column (i.e., first step) and in all other nodes line, write ∞ in the
first column ;

• Main part (see next slide) ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [detailed]

For each following step :

• in the previous column (i.e., previous algo step) chose one minimal
value (one path of minimal weight) and underline it ;

• it correspond to a node Y (the node corresponding to the line) ;

• write / in all following columns for this node : you found the
minimal path to access it from X ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them ;

• if the computed path is smaller than the one you had before, write
its new (smaller) value in the current column of the table ;

• repeat until all the minimal paths have been chosen/found ;

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6
C ∞ 4
D ∞ ∞
E ∞ 2
F ∞ ∞
G ∞ ∞

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6
C ∞ 4
D ∞ ∞
E ∞ 2
F ∞ ∞
G ∞ ∞

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6
C ∞ 4 4
D ∞ ∞ 4
E ∞ 2 / / / / / /
F ∞ ∞ ∞
G ∞ ∞ 3

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6
C ∞ 4 4
D ∞ ∞ 4
E ∞ 2 / / / / / /
F ∞ ∞ ∞
G ∞ ∞ 3

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6
C ∞ 4 4 4
D ∞ ∞ 4 4
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13
G ∞ ∞ 3 / / / / /

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6
C ∞ 4 4 4
D ∞ ∞ 4 4
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13
G ∞ ∞ 3 / / / / /

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6 6
C ∞ 4 4 4 / / / /
D ∞ ∞ 4 4 4
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13 13
G ∞ ∞ 3 / / / / /

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6 6
C ∞ 4 4 4 / / / /
D ∞ ∞ 4 4 4
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13 13
G ∞ ∞ 3 / / / / /

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6 6 6
C ∞ 4 4 4 / / / /
D ∞ ∞ 4 4 4 / / /
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13 13 8
G ∞ ∞ 3 / / / / /

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6 6 6
C ∞ 4 4 4 / / / /
D ∞ ∞ 4 4 4 / / /
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13 13 8
G ∞ ∞ 3 / / / / /

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6 6 6 / /
C ∞ 4 4 4 / / / /
D ∞ ∞ 4 4 4 / / /
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13 13 8 8
G ∞ ∞ 3 / / / / /

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6 6 6 / /
C ∞ 4 4 4 / / / /
D ∞ ∞ 4 4 4 / / /
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13 13 8 8
G ∞ ∞ 3 / / / / /

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6 6 6 / /
C ∞ 4 4 4 / / / /
D ∞ ∞ 4 4 4 / / /
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13 13 8 8 /
G ∞ ∞ 3 / / / / /

30



Dijkstra Algorithm (2)

Dijkstra Algorithm’s Main part [summarized]

For each step (repeat until all the minimal paths have been found) :

• Chose one minimal value in the previous column and write / in all
following columns for this node Y ;

• for all neighbours N of Y, compute the total path weight if you go
from (X to) Y to them, if the computed path is smaller than the one
you had before, change its value in the table ;

step1 step2 step3 step4 step5 step6 step7 step8
A 0 / / / / / / /
B ∞ 6 6 6 6 6 / /
C ∞ 4 4 4 / / / /
D ∞ ∞ 4 4 4 / / /
E ∞ 2 / / / / / /
F ∞ ∞ ∞ 13 13 8 8 /
G ∞ ∞ 3 / / / / /

30


	TD3 Optional Exercise
	Syntax
	Data Structures
	Exercise

