SMOOTH INTRODUCTION TO AUTOMATIC CLASSIFICATION

MasterClass Brasilia Nov2023

Marie-Dominique Devignes LORIA, Nancy

CLASSIFICATION AS A HUMAN SKILL

Games for children in kindergarten

The tree of life: example de hierarchical classification

CLASSIFICATION : MATHEMATICAL DEFINITION

Definition : action of grouping objects into groups or classes on the basis of shared properties (shape, color, etc.)

 Distinguish from « ranking » (sometimes known as classification also) which consists of finding an order between objects (from largest to smallest for example)

CLASSIFICATION AND ARTIFICIAL INTELLIGENCE

Classification tasks belong to artificial intelligence (AI)

Finding classes in a datset = learning a « descriptive model »

Finding the class of a new given object = requires a « predictive model »

CLASSIFICATION AND KNOWLEDGE DISCOVERY

- Classification is part of Data Mining (synonym of Machine Learning or Pattern Recognition)
- Attention: data mining is not restricted to « information retrieval » from huge database

DEUX PARTS

I. Non supervised classification: « clustering »II. Supervised classification

I. NON SUPERVISED CLASSIFICATION OR « CLUSTERING » (1/5)

Non supervised = the classes de each object is unknown

Goal : to find groups or classes in a set of objects. The set of groups with their shared features is a 'descriptive model' for a dataset

- Members of a class must be as similar as possible = cohesion of the class
- Members of a class must be as different as possible from the members of the other classes = discrimination between classes.
- 1. Question of similarity or distance between objets

By défault : euclidean distance between feature vectors

For two points P and Q with coordinates (p1, p2) and (q1, q2),

$$d(P,Q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

Generalisation for two points
$$X_i$$
 et X_j de
coordonnées $(d_1^i, d_2^i, \dots, d_m^i)$ et $(d_1^j, d_2^j, \dots, d_m^j)$.
$$d(X_i, Xj) = \sqrt{\sum_{z=1}^m (d_z^i - d_z^j)^2}$$

Alternative : some classification algorithms can take as input a similarity matrix between pairs of objects

NON SUPERVISED CLASSIFICATION OR « CLUSTERING » (2/5)

NON SUPERVISED CLASSIFICATION OR « CLUSTERING » (3/5)

3. Example: algorithme for hierarchical ascending clustering (HAC)

From C. Rieux's thesis https://www.researchgate.net/figure/Exemple-de-Classification-Ascendante-Hierarchique-CAH-Les-6-objets-sont-finalement_fig41_325956424

NON SUPERVISED CLASSIFICATION OR « CLUSTERING » (4/5)

4. Searching the optimal number of clusters (K) by the 'elbow' method

'Elbow' : inflection point of the cohesion curve

Cohesion coefficient = within-cluster sum of squares (wss)

- For each cluster, one computes the sum of the squares of the distances between eah pair of objects
- These 'within-cluster' sums are summed for all clusters.

The cohesion coefficient is calculated and plotted for various K values

The inflection point is identified visually.

NON SUPERVISED CLASSIFICATION OR « CLUSTERING » (5/5)

5. Searching the optimal number of clusters (K) by the 'silhouette' method

Optimal K value is determined at the maximum of average silhouette coefficient

Silhouette : compromise between within-cluster cohesion and intercluster discrimination.

- For each object X assigned to cluster C, calculate the mean a_X of the distances of X to the other objects of C: (within-cluster mean),
- And the mean \boldsymbol{b}_X of the distances of X to all objects of the closest cluster to C
- Silhouette coefficient of X, $Silh(X) = \frac{b_X a_X}{Max(a_X, b_X)}$
- Silh(X) = -1 if $b_X = 0$ -> poor discrimination between clusters
- Silh(X) = +1 if $a_X = 0 \rightarrow excellent$ cohesion
- Average all silhouette coefficient on all objects of each cluster, and then on all clusters

Plot the average slihouette coefficient for various K values

Optimal K value is for maximal average silhouette coefficient

II. SUPERVISED CLASSIFICATION

Supervised = The class is known for each object in a training dataset

Goal : learn how to classify new objects in known classes

Method : construct a '**predictive model**' by training a '**classifier**' (neural network, Support Vector Machines, decision tree, random forests), then use this classifier to assign a class to new objects.

1. Preparing the training dataset

Objects X_i represented by a feature vector and by their class Y_i

Training dataset = { $(X_1, Y_1), (X_2, Y_1), (X_3, Y_0), \dots, (X_n, Y_0)$ }

• If binary problem then Y has only two values, e.g. True and False, or + and -, or 1 and 0.

If multiclass problem, then Y takes as many values as classes.

Attributes Objects	d ₁	d ₂	d ₃		Class (+ or -)
X1	3,5	0	Jaune		+
X2	57,9	1	Jaune		-
X3	2,8	0	Jaune		+
•••	• • •		• • •		
Xn	67,3	0	Vert	•••	-

Example of training dataset with two classes + and -

EXAMPLE OF ALGORITHM FOR SUPERVISED CLASSIFICATION : DECISION TREE

Dataset Iris.2D : 3 iris species setosa, virginica, versicolor = 3 classes

Training dataset :

- 50 samples or 'instances' of each class.
- 2 descriptors for each sample in addition to class : petal_width and petal_length

The decision tree is calculated here with the J48 algorithm.

SUPERVISED CLASSIFICATION: MODEL EVALUATION

Cross-validation

- The training dataset is divided in 10 equivalent subsets (same number of instances and same proposition of classes as in the total dataset = 10 'folds'
 - Example 150 iris samples with 50 samples from each class -> 10 folds of 15 iris with 5 samples from each class in each fold.
- One fold is kept apart (test set) and a decision tree is built with the 9 other folds. Then the decision tree is tested on the test fold (metrics described below)
- The process (training + test) is repeated 9-times with the 9 other folds taken consecutively as test set -> in total 10 decision trees are built and tested.
 - All examples have been tested at the end.
- The results of the test are compiled in a confusion matrix

	======Confusion Matrix =========				
_	a	b	С	\leftarrow classified as	
	49	1	0	a = Iris setosa	
	0	47	3	b = Iris versicolor	
	0	2	48	c = Iris virginica	

Example of quality metrics Well-classified ratio (when classes are well balanced) Sum of counts in the diagonal divided by the total number of samples $\frac{49+47+48}{150} = 0,96$

OTHER EVALUATION METRICS

Kappa statistics : % of well-classified samples corrected by the random distribution across classes (propensity) as a function of effectifs in each class.

- PO = sum of the diagonal (well classified) $PO = p_{11} + p_{22}$
- Pe = probability to obtain this distribution just by chance $Pe = p_1 p_1 + p_2 p_2$

$$\mathsf{Kappa} = \frac{P0 - Pe}{1 - Pe}$$

Precision, recall and F-measure (for a given class noted +)

- True positive count TP
- False positive count FP
- Precision $\frac{TP}{TP+FP}$ Recall or sensitivity $\frac{TP}{TP+FN}$

• **F-mesure** $\frac{2TP}{2TP+FP+FN}$

MCC Matthews correlation coefficient

- More complicated but takes into account also the TN
- Less optimistic than F1 measure

Area under the ROC curve (see next slide)

== Probability matrix ==				
1	2	← clas	ssified as	
p_{11}	p_{12}	$p_{1.}$	1	
p_{21}	p_{22}	$p_{2.}$	2	
$p_{.1}$	$p_{.2}$			

Sam ples	True Class	Predicted Class	Score*
X6	+	+	0,99
X30	+	+	0,99
X7	-	-	0,75
X43	-	+	0,75
X37	+	-	0,64
X12	+	+	0,64
X103	-	+	0,33
•••			•••

* The score reflects the degree to which the instance belongs to its class according to the prediction. For a decision tree, it can be the % of samples of the majoritary class in the leaf.

Threshold 0,9 -> confusion matrix at 0.9 -> (TPR, FPR) Threshold 0,7 -> confusion matrix at 0.7 -> (TPR, FPR) Threshold 0,6 -> confusion matrix at 0.7

-> (TPR, FPR)

16

The **larger** the AUC (Area Under the ROC Curve), the **better** the classifier. Max AUC = 1

https://stats.stackexchange.com/questions/523760/regarding-roc-curve-of-good-classifier-why-tpr-and-fpr-both-increase?noredirect=1&lq=1

TO GO FURTHER

Download and use WEKA !

Software :

https://waikato.github.io/weka-wiki/downloading_weka/

User guide :

https://www.cs.waikato.ac.nz/~ml/weka/book.html

https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf