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Summary. We 
onsider Lehmann-Rabin's randomized

solution to the well-known problem of the dining philoso-

phers. Up to now, su
h an analysis has always required a

\fairness" assumption on the s
heduling me
hanism: if a

philosopher is 
ontinuously hungry then he must eventu-

ally be s
heduled. In 
ontrast, we modify here the algo-

rithm in order to get rid of the fairness assumption, and

we 
laim that the spirit of the original algorithm is pre-

served. We prove that, for any (possibly unfair) s
hedul-

ing, the modi�ed algorithm 
onverges: every 
omputa-

tion rea
hes with probability 1 a 
on�guration where

some philosopher eats. Furthermore, we are now able

to evaluate the expe
ted time of 
onvergen
e in terms

of the number of transitions. We show that, for some

\mali
ious" s
heduling, this expe
ted time is at least ex-

ponential in the number N of philosophers.

1 Introdu
tion

Re
ently, due to the rising risk of traÆ
 
ongestion, there

has been an in
reasing interest in providing di�erenti-

ated Internet servi
es, departing from the traditional no-

tion of fairness for bandwidth allo
ations [4,7℄. This mo-

tivates re
onsidering the need for fairness assumptions,


lassi
al in resour
e-allo
ation algorithms (see, e.g., 
hap-

ter 11 of [11℄). Here we 
onsider Lehmann-Rabin's ran-

domized solution to a spe
ial 
ase of resour
e-allo
ation

problem: the dining philosophers.

N philosophers, P

0

; � � � ; P

N�1

(where N is a parameter),

are seated around a table, and variously think or try to

?

This paper is a revised and extended version of a 
ommu-

ni
ation given by the same authors, at 2nd IFIP Int. Conf.

on Theoreti
al Computer S
ien
e (TCS�2002).

eat by using some shared forks. The problem is to �nd a

distributed proto
ol guaranteeing that some philosopher

will eventually eat. A philosopher is only able to exe
ute

a step provided he is sele
ted by a general s
heduling

me
hanism. When a philosopher is s
heduled, he exe-


utes exa
tly one a
tion (and nothing is done by the

others). Let L be the set of 
on�gurations, 
alled here

\legitimate", where some philosopher eats. We show here

that the algorithm rea
hes L within a �nite time with

probability 1. In the following, we 
all this property 
on-

vergen
e. (We will also employ the term `progress', whi
h

is often used in the 
ontext of dining philosophers; see,

e.g., [11℄.) Up to now, su
h a property has always been

proved using a \fairness" assumption on the s
hedul-

ing: if a philosopher is 
ontinuously hungry (i.e., trying

to eat) then he must eventually be s
heduled. Fairness

guarantees that there exist rounds, intervals in whi
h

ea
h philosopher has been s
heduled at least on
e. It is

shown in [11{13,16℄ that within a 
onstant number of

rounds, the probability of rea
hing L is greater than 0.

It follows that the algorithm 
onverges towards a 
on�g-

uration in L with probability 1.

In 
ontrast, we 
onsider here arbitrary s
hedulings,

without any fairness assumption (so we do not use the

notion of rounds). We modify the original Lehmann-

Rabin algorithm by removing self-looping a
tions. We

show that the new algorithm still 
onverges towards L

with probability 1. This is done by 
onstru
ting a mea-

sure � over 
on�gurations that de
reases with positive

probability at ea
h 
omputation step (that does not rea
h

L). We thus propose a solution to the resour
e allo
ation

problem for dining philosophers under arbitrary s
hedul-

ing. We also show that the expe
ted time of 
onvergen
e,

in terms of individual a
tions, is at least exponential in

N , for some \mali
ious" s
heduling.
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The plan of the paper is as follows. In Se
tion 2 we

�rst present the kind of systems we 
onsider and our

method for proving 
onvergen
e when the s
heduler is

arbitrary. Se
tion 3 presents Lehmann and Rabin's ran-

domized dining philosophers algorithm, and the 
hanges

introdu
ed in our variant. The 
onvergen
e proof of our

variant without fairness, as well as a 
omputation of ex-

pe
ted time of 
onvergen
e are given in se
tion 4. We


on
lude in Se
tion 5.

2 Theoreti
al Framework

2.1 Randomized Uniform Ring Systems

The notions presented here are inspired from [9℄ and [17℄.

A randomized uniform ring system is a triple (N;�!

R

; Q)

where N is the number of pro
esses in the system, �!

R

is

a state transition algorithm, and Q is the alphabet, i.e.

a �nite set of pro
ess states. The N pro
esses P

1

; :::; P

N

form a ring: there is an edge between two 
onse
utive

pro
esses, whi
h means that P

i


an observe the states

q

i�1

and q

i+1

of P

i�1

and P

i+1

respe
tively. Cal
ula-

tions on indi
es i of pro
esses are done modulo N . Let

Q be the state set of P

i

. The system is uniform in the

sense that �!

R

and Q are 
ommon to all pro
esses. A


on�guration is an N -tuple of pro
ess states (or letters);

if the 
urrent state of pro
ess P

i

is q

i

2 Q, then the 
on-

�guration of the system is x = q

1

q

2

� � � q

N

. We denote by

X the set of all 
on�gurations, i.e., X = Q

N

. The state

transition algorithm �!

R

is given as a set R of rules, 
on-

sisting of deterministi
 or probabilisti
 rewrite rules

1

. A

deterministi
 rule is here of one the following forms:

� q ! q

0

� qr ! q

0

r,

� rq ! rq

0

where q; q

0

, r denote states of Q.

In this paper, we only 
onsider probabilisti
 rules being

of of the form:

q !

(

q

0

0

with probability p

0

q

0

1

with probability 1� p

0

:

where q; q

0

0

; q

0

1

denote states of Q. So, we asso
iate to

every probabilisti
 rule a random 
ip with two possible

out
omes in f0; 1g and, a

ordingly, two output letters

q

0

0

; q

0

1

.

1

Rewrite rules 
an be more general than those des
ribed

here (e.g., with three letters in ea
h side). For the sake of

shortness, we just present the kind of rules needed for the

philosophers problem.

The left-hand side letter q is the old letter of the

rule, the right-hand side letter q

0

(with possible sub-

s
ripts) being its new letter of the rule. For readability,

the old and new letters will often be written in bold

within rules. A rewrite rule R of the left-hand side q is

appli
able at position i of a 
on�guration x if the i-th

letter of x is q. Likewise, a rewrite rule R of left-hand

side qr (resp. rq) is appli
able at position i if the i-th

letter of x is q and the (i+1)-th (resp. (i� 1)-th) letter

is r.

Given a 
on�guration x, we say that pro
ess P

i

(or

position i) is enabled if at least one rewrite rule is appli
a-

ble to the i-th letter of x. Let E(x) be the set of indi
es of

the enabled pro
esses of x. We suppose hen
eforth that

the system has no deadlo
k, i.e.: 8x 2 X E(x) 6= ;.

Given x and an enabled position i of x, a transition

leads from x to the 
on�guration y obtained from x by


hanging the i-th letter of x equal to the old letter of

some appli
able rule, say R, into the new letter. Su
h a

transition is written x

i

�!

R

y (or more simply x

i

�! y). The

probability asso
iated to this transition is 1 if rule R is

deterministi
, or p

0

(resp. p

1

= 1�p

0

) if R is probabilisti
,

the new letter being q

0

0

(resp. q

0

1

).

Without loss of understanding, we will abbreviate

hen
eforth the randomized uniform ring system previ-

ously denoted (N;�!

R

; Q) as�!

R

(or sometimes even more

simply as !). We now arbitrarily �x a 
on�guration x

0

as the initial 
on�guration.

A past behaviour up to step j of ! is a sequen
e

of transitions x

0

i

0

��!

R

i

0

x

1

i

1

��!

R

i

1

� � �

i

j�2

���!

R

i

j�2

x

j�1

i

j�1

���!

R

i

j�1

x

j

starting from x

0

. (So i

k

is the pro
ess sele
ted at k+1-th

step, for all k � 0.)

A 
entral s
hedule is a fun
tion that assigns to every

past behaviour x

0

i

0

��!

R

i

0

� � �

i

j�1

���!

R

i

j�1

x

j

, the enabled position

of x

j

at whi
h a rule will be applied at step j + 1.

2

For a given starting 
on�guration x

0

, a given s
hed-

ule S and spe
i�
 out
omes of the random 
ips F (F

is an in�nite sequen
e of elements of the set f0; 1g),

we get a parti
ular 
omputation of ! under S, denoted

COM

R

(x

0

;S; F ), whi
h is an in�nite sequen
e of tran-

sitions of the form x

0

i

0

��!

R

i

0

� � �

i

j�1

���!

R

i

j�1

x

j

i

j

��!

R

i

j

� � � where i

j

is the pro
ess sele
ted by S at j+1-th step. We shall use

the term �nite 
omputation to denote a �nite sequen
e

of transitions.

2

As usual in the dining philosophers problem [17℄, we only

fo
us on 
entral s
hedules (only one enabled position is se-

le
ted at ea
h step), but see Remark of se
tion 3.3.
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A 
omputation C is fair if, in C, the state of every

pro
ess P

i

(1 � i � N) is rewritten in�nitely often. A

s
hedule S is fair if, for every sequen
e F of out
omes

of the random 
ips and every starting 
on�guration x

0

,

the 
omputation COM

R

(x

0

;S; F ) is fair.

An L-traversing 
omputation C is a 
omputation of

the form x

0

i

0

��!

R

i

0

� � �

i

j�1

���!

R

i

j�1

x

j

i

j

��!

R

i

j

� � � su
h that x

j

2 L

for some j � 0.

The fun
tion COM

R

asso
iates with every s
hedule

S and every starting 
on�guration x

0

a probability dis-

tribution on the spa
e of 
omputations, the probability

Pr of a set G of 
omputations being de�ned as the proba-

bility of the set of sequen
es of random 
ips F su
h that

COM

R

(x

0

;S; F ) is in G. For a more formal de�nition

of the probabilisti
 spa
e 
onsidered, based on parti
u-

lar 
omputation sets 
alled 
ones or basi
 
ylinder sets,

and for a pre
ise 
hara
terization of the measurable 
om-

putation sets (i.e. sets for whi
h the probability is well

de�ned), see [18℄ (
.f. [10℄).

As pointed out in [17℄, given a s
hedule S and a start-

ing 
on�guration x

0

, the set of L-traversing 
omputa-

tions has a well-de�ned probability:

Pr(f F j C = COM

R

(x

0

; S; F ) is L-traversing g),

whi
h will be abbreviated in the following as

Pr(x

0

S

�!

R

�

L).

Given a s
hedule S, we are interested in proving the

following progress (or 
onvergen
e) property: no mat-

ter whi
h initial 
on�guration x

0

one starts from, the

probability for a 
omputation via �!

R

under S to be L-

traversing, is 1, i.e.: Pr(x

0

S

�!

R

�

L) = 1.

A suÆ
ient 
ondition for ensuring su
h a progress

property is given in se
tion 2.2.

Example: In [2℄, Beauquier, Gradinariu and Johnen present

a randomized token 
ir
ulation algorithm whi
h ensures


onvergen
e towards the set of 
on�gurations with one

probabilisti
 token whatever the s
hedule is. We 
onsider

the 
ase where the number of pro
esses is odd. The state

of a pro
ess is a 
ouple (d; p) where d is a deterministi


state and p a probabilisti
 state, with d; p 2 f0; 1g. In

the following, d (resp. p) denotes the 
omplementary of

d (resp. p). The transition system ! is de�ned by:

(d; p)(d;p) ! (d; p)(d;p)

(d; p)(d;p) !

(

(d; p)(d;p) with probability 1=2

(d; p)(d;p) with probability 1=2

Given a 
on�guration x, let (d

i

; p

i

) denote the state

at position i in x. We say that there is a deterministi


(resp. probabilisti
) token at position i if d

i

= d

i�1

(resp.

p

i

= p

i�1

). The enabled positions are those with a de-

terministi
 token. Let us 
onsider the 
on�guration x =

(0; 1)(1; 0)(1; 0)(0; 1)(1; 1). The only enabled position is 3

(d

3

= d

2

= 1). Depending on the out
ome of the random


ip, we have x ! y

1

= (0; 1)(1; 0)(0; 0)(0; 1)(1; 1) with

probability 1=2, and x! y

2

= (0; 1)(1; 0)(0; 1)(0; 1)(1; 1)

with probability 1=2. The set L of legitimate 
on�gura-

tions is de�ned as the set of 
on�gurations with a single

probabilisti
 token.

2.2 A SuÆ
ient Condition for Progress

In [6℄, we gave a suÆ
ient 
ondition for ensuring progress,

whatever the 
entral s
hedule is. This result is restated

here as follows:

Theorem 1. Given a ring system �!

R

with no deadlo
k,

if there exist a measure � and an order � su
h that

Prop: 8x =2 L 8i 2 E(x)

9y (x

i

�!

R

y ^ (y 2 L _�(y)� �(x))),

then, for any 
entral s
hedule S: 8x Pr(x

S

�!

R

�

L) = 1.

For the sake of self 
ontainment, a proof of Theo-

rem 1 is given in Appendix A. The existential quanti�-


ation on y in Prop 
orresponds to a \rewriting poli
y"

for probabilisti
 transitions. Prop states that, whatever

the sele
ted pro
ess is, we 
an 
hoose the output of the

appli
able probabilisti
 rule so that � de
reases. Theo-

rem 1 
an be seen as a restri
ted version of Theorem 3.5

of [3℄ (
f. Theorem 1 of [1℄). An example applying Theo-

rem 1 to Beauquier-Gradinariu-Johnen's algorithm (see

example of se
tion 2.1) is given in appendix B.

In se
tion 4, we will apply a variant of Theorem 1

(viz., Theorem 3) in order to prove the progress prop-

erty for a variant of Lehmann-Rabin's algorithm, for all

(
entral) s
hedules, even the unfair ones.

3 Randomized Dining Philosophers With and

Without Fairness

3.1 The Dining Philosophers Problem

The dining philosophers problem was introdu
ed by Di-

jkstra [5℄, and has be
ome a paradigm for a large 
lass

of 
on
urren
y 
ontrol problems. The idea is as follows:

there are N philosophers sitting around a table (N is a

parameter), with one fork between ea
h pair of neigh-

bours. A philosopher 
an either think (having no inter-

a
tion with his neighbours) or try to eat. To do so, a



4 Marie Du
ot et al.: Randomized Dining Philosophers Without Fairness Assumption

philosopher needs both his left fork and his right fork. As

both forks are ea
h shared with a neighbour, a philoso-

pher 
an eat only if none of his neighbours holds any of

these forks. Ea
h philosopher may address at most one

shared variable through a rule. Ea
h rule is a `test and

set' operation, in whi
h a philosopher reads the 
urrent

value of the shared variable and assigns it a new value,

whi
h is a fun
tion of the old value and the philosopher's


urrent internal state. The problem is to �nd an individ-

ual algorithm (set of rules) 
ommon to all the philoso-

phers that guarantees the following progress property:

as soon as one philosopher is hungry, some philosopher

(not ne
essarily the same) will eat eventually, whatever

the s
hedule is.

Lehmann and Rabin have shown in [17℄ that this

problem has no deterministi
, truly distributed (s.t. ea
h

philosopher may address only its internal state and one

shared variable at a time) and symmetri
 (s.t. all philoso-

phers start in the same state) solution. This is be
ause

there exists always a mali
ious s
hedule that sele
ts philoso-

phers in a round-about manner so that symmetry is al-

ways met at the end of ea
h round (whi
h prevents some

philosopher to hold simultaneously two forks). There-

fore, they in
orporate random 
hoi
es into the individual

philosopher's algorithm, ensuring that, with probability

one, the symmetry will be broken. Their solution, de-

s
ribed in se
tion 3.2, however assumes that the s
hedul-

ing is fair.

3.2 Lehmann-Rabin's Algorithm

We present Lehmann-Rabin's probabilisti
 dining philoso-

phers algorithm [17℄ along the lines of [13℄.

The state set of ea
h philosopher is

Q = fT;H;

 �

W;

�!

W;

 �

S ;

�!

S ;

 �

D;

�!

D;E;L

1

; L

2

g. The letter T

represents thinking, H that a philosopher is hungry,

 �

W

(resp.

�!

W ) that a philosopher waits in order to attempt to

pi
k up the left (resp. right) fork next time he is s
hed-

uled,

 �

S (resp.

�!

S ) that he is holding only the left (resp.

right) fork,

 �

D (resp.

�!

D) that he will put down the left

(resp. right) fork next time he is s
heduled, E that he

eats, L

1

that he will put down one fork (say, the right

one), and L

2

the se
ond one.

The details relating to the shared forks are omitted

here. Thus, for example, if P

i

is in state

 �

S or P

i�1

is in state

�!

S , it means the variable representing the

shared fork (between P

i

and P

i�1

) has been set to a

value `taken'. Note that, be
ause of the uniqueness of

the shared variable addressed by a rule, a philosopher


annot go dire
tly, e.g., from state

�!

S to H without

passing by

�!

D : he must dis
over that the left fork is

held by his neighbour through a �rst operation before

putting down the right fork on the table. In this model-

ing, not all 
on�gurations of Q

N

are possible, as a fork


an be taken by at most one philosopher. More pre-


isely, we say that a 
on�guration is admissible i� it

does not 
ontain any substring of the form

�!

�

 �

� , with

�!

� 2 f

�!

S ;

�!

D;E;L

1

g;

 �

� 2 f

 �

S ;

 �

D;E;L

1

; L

2

g. It is easy

to see that the set of admissible 
on�gurations is 
losed

via appli
ation of any rule des
ribed below. Hen
eforth,

we will assume that the starting 
on�guration, and hen
e

the subsequent ones, are admissible.

The set R of rewrite rules is:

Q0: T ! T

Q1: T ! H

R0: H !

 �

W with probability 1=2

or

�!

W with probability 1=2.

R1: :

��!

hold

 �

W ! :

��!

hold

 �

S

R2:

��!

hold

 �

W !

��!

hold

 �

W

R3:

�!

W :

 ��

hold !

�!

S :

 ��

hold

R4:

�!

W

 ��

hold !

�!

W

 ��

hold

R5:

 �

S :

 ��

hold ! E :

 ��

hold

R6:

 �

S

 ��

hold !

 �

D

 ��

hold

R7: :

��!

hold

�!

S ! :

��!

hold E

R8:

��!

hold

�!

S !

��!

hold

�!

D

R9:

 �

D ! H

R10:

�!

D ! H

R11: E! L

1

R12: L

1

! L

2

R13: L

2

! T

where

��!

hold (resp.

 ��

hold) denotes any state of Q 
or-

responding to a philosopher holding his right fork (resp.

left fork), i.e.

�!

S ,

�!

D , E or L

1

(resp.

 �

S ,

 �

D , E, L

1

or

L

2

), and :

��!

hold (resp. :

 ��

hold) denotes any state of the


omplementary set.

The rules des
ribe the behaviour of a sele
ted philoso-

pher as follows: initially he thinks \repeatedly" (Q0); he

be
omes hungry (Q1); he de
ides randomly whi
h fork

to pi
k up �rst (R0); next he persists with his de
ision

(R2 or R4) until he �nally pi
ks it up when available (R1

or R3), only putting it down later if he �nds that his

other fork is already held by his neighbour (R6 followed

by R9, or R8 followed by R10); if he �nds that his other

fork is not held, he takes it and eats (R5 or R7). After

that, he leaves the eating phase (R11), puts down the

left fork (R12), then the right fork (R13), going ba
k to
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thinking phase. This behaviour is depi
ted on �gure 1

(drawn from [15℄).

The legitimate set L is here the set of all (admissible)


on�gurations of Q

�

EQ

�

, i.e. the 
on�gurations in whi
h

at least one philosopher is eating.

3.3 Our Variant: Removal of Stuttering Rules

Let us observe that rule Q0 (resp. R2, R4) is \stuttering"

in the sense that the old and new letters of the rule


oin
ide. When a sele
ted philosopher is thinking (resp.

waiting for pi
king up a �rst fork held by a neighbour),

a transition that does not 
hange the 
on�guration may

o

ur. This is depi
ted by a self-loop on state T (resp.

 �

W ,

�!

W ) in �gure 1. We modify Lehmann-Rabin's algorithm

mainly by removing stuttering rules Q0, R2 and R4:

� without Q0, when a philosopher in state T is sele
ted,

his state always be
omes H via Q1. States T and H

then play the same role and will be merged together

in the following;

� without R2 (resp. R4), when a philosopher waits for a

�rst fork that is held by a neighbour, i.e., is in state

 �

W (resp.

�!

W ) and his left (resp. right) neighbour in

state

��!

hold (resp.

 ��

hold), he is no longer enabled: no

rule applies to him. In su
h a situation, the philoso-

pher 
annot be sele
ted anymore. Note that this dif-

fers from Lehmann-Rabin's original algorithm where

every pro
ess 
an always be sele
ted.

Sin
e the state T is merged with H , the new state

set Q

0

is Q � fTg and rule R13: L

2

! T be
omes

R13': L

2

! H . The rewrite system R is transformed

into R

0

= R [ fR13'g � fQ0; Q1; R2; R4; R13g. The be-

haviour of a sele
ted philosopher under R

0

is depi
ted

on �gure 2. A

ordingly, the new legitimate set L

0

is

(the set of admissible 
on�gurations in) Q

0�

EQ

0�

.

Dis
ussion.

In Lehmann-Rabin's algorithm, a non-eating philosopher

either thinks (state T ) or tries to eat (states fH;W;S;Dg).

In our version of the algorithm, as the state T has been

merged withH , this philosopher 
an only try to eat. This

feature may be seen as a limitation. A
tually, sin
e we

have no fairness assumption on the s
heduling, a philoso-

pher 
an be inde�nitely ignored, thus behaving in state

H as he used to do originally in state T (i.e., not trying

to pi
k up a fork). We thus 
laim that our modi�ed al-

gorithm is similar in spirit to the original one.

The original progress property of Lehmann-Rabin's al-

gorithm 
an be stated as follows:

for every fair (
entral) s
hedule S and every 
on�g-

uration x 2 Q

�

fH;W;S;DgQ

�

; P r(x

S

�!

R

�

L) = 1.

Surprisingly, as shown in se
tion 4, for our modi�ed ver-

sionR

0

ofR, the progress property holds with no fairness

assumption, i.e.:

Theorem 2. For any arbitrary 
entral s
hedule S and

every x 2 Q

0�

,

Pr(x

S

��!

R

0

�

L

0

) = 1.

Theorem 2 will be proven in se
tion 4 using a variant

of Theorem 1, by exhibiting an appropriate measure �.

Remark:

The observation done in [17℄ (p.340) for relaxing the as-

sumption of 
entral s
heduling is independent of their

assumption of fairness, hen
e applies also in our 
ontext:

\No two rules take pla
e at exa
tly the same time;

this restri
tion 
ould be easily lifted to allow rules on

di�erent pro
esses, as long as they do not address the

same shared variable, to take pla
e exa
tly at the same

time."

4 Proof of Progress Without Fairness

We are going to exhibit a measure � on 
on�gurations

that will 
hara
terize in some sense the \distan
e" of the


urrent 
on�guration x to L

0

. We will show that, with

an appropriate rewriting poli
y, � de
reases at ea
h step

of 
omputation. More pre
isely, we will show that, for a


ertain 
hoi
e of the output of probabilisti
 rule R0 (i.e.,

either

 �

W or

�!

W , depending on the 
ontext of H in x):

� the appli
ation of R0 makes � de
rease,

� the appli
ation of any other (deterministi
) rule makes

� de
rease or leads to L

0

.

SymbolW denotes a letter of f

 �

W;

�!

Wg. Likewise, S (resp.

D) denotes a letter of f

 �

S ;

�!

S g (resp. f

 �

D;

�!

Dg). Let

 �

Q

0

=

fH;

 �

W;

 �

S ;

 �

Dg and

�!

Q

0

= fH;

�!

W;

�!

S ;

�!

Dg. (Note that

 �

Q

0

\

�!

Q

0

= fHg.)

4.1 Ideas behind the Proof

In order to de�ne �, we exploit the fa
t that, after a

�nite time, any non-legitimate 
on�guration 
an be de-


omposed into:

� \bonds", i.e. strings of two letters in

 �

Q

0

�!

Q

0

.

� \anti-bonds", that are, roughly speaking, strings of

two letters in

�!

Q

0

 �

Q

0

.
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E

 �

D

�!

D

 �

S

�!

S

 �

W

�!

W

HT

L

1

L

2

Q0

R2

R4

Q1

R3

R1

R0

R6

R8

R5

R7

R9

R10

R11R13

R12

Fig. 1. Illustration of Lehmann and Rabin's algorithm.

E

 �

D

�!

D

 �

S

�!

S

 �

W

�!

W

H

L

1

L

2

R3

R1

R0

R6

R8

R5

R7

R9

R10

R11

R13'

R12

Fig. 2. Illustration of our variant algorithm.

� letters belonging to neither a bond nor an anti-bond.

(These letters are in fW;S;Dg

�

, sin
e every H be-

longs to a bond or an anti-bond; see Proposition 2

below.)

If at some point the 
on�guration has no bond, for ex-

ample

 �

W

N

, then, the �rst time an H is produ
ed, a

bond appears. Our rewriting poli
y aims at preserving

the bonds and their position, i.e., repla
ing via R0: H

�!

�

into

 �

W

�!

� , and

 �

�H into

 �

�

�!

W. With this rewriting pol-

i
y, a bond never disappears on
e it has been 
reated.

A bond 
orresponds to the situation des
ribed in [17℄,

in whi
h some philosopher's last random 
ip is left while

his right neighbour's last random 
ip is right. We know

that in this 
ase, after a �nite number of rewritings of

the bond, one of the two philosophers will eat (Lemma

3, p.342, in [17℄). In Lehmann-Rabin's 
ontext, the proof

of progress is then almost done be
ause, by fairness as-

sumption on the s
heduling, every bond is guaranteed to

be in�nitely rewritten along any (in�nite) 
omputation.

Still in our 
ontext, we have to show that no in�nite

rewriting 
an o

ur outside bonds (i.e., at anti-bond po-

sitions or between bonds and anti-bonds). We shall use

the fa
t that, after a bond has been initially 
reated,

every 
on�guration is a repeated sequen
e of the form:

 �

�

1

�!

�

1

�!

Q

0�

�!




 �

Æ

 �

Q

0�

 �

�

2

�!

�

2

or

 �

�

1

�!

�

1

 �

�

2

�!

�

2

.

In the �rst 
ase, an anti-bond

�!




 �

Æ lies between two 
on-

se
utive bonds; in the se
ond 
ase, the two 
onse
utive

bonds are adja
ent. We shall also use a measure �, de-

�ned as a 7-uple (�

1

; � � � ; �

7

). Ea
h 
omponent �

i

is,

roughly speaking, a fun
tion from Q

N

in N, whi
h makes

� de
rease lexi
ographi
ally at ea
h step of rewriting

(unless L

0

is rea
hed). This is shown by a tedious 
ase

analysis (see se
tion 4.4), the main 
ases of whi
h are

summarized below.

First 
onsider the 
ase where rewriting o

urs at a

bond position. As already noti
ed, thanks to our rewrit-

ing poli
y, �

1

is preserved. On the other hand, rewrit-

ing of D into H , H into W , or W into S de
reases �

2

(be
ause �

2

(D) > �

2

(H) > �

2

(W ) > �

2

(S)) while

rewriting of S into E yields a 
on�guration of L

0

. There-

fore the rewriting of a bond always de
reases � or yields

a legitimate 
on�guration.

Let us now sket
h out why � also de
reases when

anti-bonds are rewritten. Our rewriting poli
y for anti-
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bonds aims at keeping them at the same position. For

example, an anti-bond of the form H

 �

Æ will be written

into

�!

W

 �

Æ , and

�!


H into

�!




 �

W. Besides, anti-bonds are

of two kinds:

- unoriented (i.e. of the form H

 �

W ,

�!

W

 �

W or

�!

WH), or

- leftward oriented (i.e. of the form f

�!

S ;

�!

Dg

 �

Æ ) or

rightward oriented (i.e. of the form

�!


 f

 �

S ;

 �

Dg).

An unoriented anti-bond 
annot be rewritten twi
e with-

out be
oming oriented (thus de
reasing the opposite num-

ber�

4

of oriented anti-bonds). Furthermore, an oriented

anti-bond of the form, say f

�!

S ;

�!

Dg

 �

Æ , when rewritten,


an either:

� stay at the same position with the same orientation,

whi
h de
reases �

6

(the sum of the 
oeÆ
ients of anti-

bond letters),

� stay at the same position but loosing its orienta-

tion, whi
h de
reases �

3

(a

ounting for the number of

fH;

�!

Wg

�!

D and

 �

DfH;

 �

Wg), or

� move one position left with the same orientation,

whi
h de
reases�

5

(a

ounting for the distan
e between

oriented anti-bonds and their 
losest bonds).

For example, the rewriting of

�!

S

 �

W into

�!

D

 �

W de-


reases �

6

(be
ause �

6

(S) > �

6

(D)). On the other

hand, the rewriting of �

�!

D

 �

W into �H

 �

W de
reases �

3

or

�

5

depending on the letter � to the left of the anti-bond:

if � is

�!

W , then

�!

W

�!

D

 �

W rewrites to

�!

WH

 �

W , the anti-bond

be
omes unoriented and�

3

de
reases (be
ause an o

ur-

ren
e of

�!

W

�!

D disappears); if � is

�!

S , then

�!

S

�!

D

 �

W rewrites

to

�!

SH

 �

W , the anti-bond be
omes

�!

SH, one position to

the left, and �

5

de
reases. In any 
ase, the rewriting of

an anti-bond de
reases �.

Suppose �nally that rewriting o

urs between bonds

and anti-bonds. Re
all that letters between bonds and

anti-bonds are only of the form

 �

D ,

 �

W ,

 �

S or symmet-

ri
ally (see Proposition 2). Rewriting of D into H 
re-

ates a new bond (thus de
reasing �

1

); rewriting of W

into S, or S into D de
reases �

7

(be
ause �

7

(W ) >

�

7

(S) > �

7

(D)) while rewriting of S into E yields a le-

gitimate 
on�guration. In any 
ase, rewriting de
reases

� or yields a 
on�guration of L

0

.

Therefore, at any position, every step of rewriting de-


reases � unless L

0

is rea
hed. This ends our informal

explanation of why � always de
reases.

A typi
al example of 
omputation, with the asso
i-

ated evolution of �, is given in Appendix A. Note that

every H of a given 
on�guration x 
an belong a priori

to two \overlapping" bonds of x (see se
tion 4.2). In or-

der to solve su
h ambiguities, every 
on�guration x will

be 
oupled with two lists: a bond list � de�ned from x,

and an anti-bond list  de�ned from x and �. � will be

de�ned for every triple (x; �;  ). In order to prove the

progress property, we will use a version of Theorem 1

reformulated as follows:

Theorem 3. Given a ring system ��!

R

0

with no deadlo
k

, if there exist a measure � and an order � su
h that

Prop': 8(x; �;  ) with x =2 L

0

;8i 2 E(x) 9(x

0

; �

0

;  

0

)

(x

i

��!

R

0

x

0

^ (x

0

2 L

0

_ �(x

0

; �

0

;  

0

)� �(x; �;  )));

then, for any 
entral s
hedule S:

8x Pr(x

S

��!

R

0

�

L

0

) = 1.

Se
tions 4.2 to 4.4 are devoted to the formal proof of

statement Prop' (see Proposition 3). The 
on�gurations

will be impli
itly non-legitimate (i.e, belong to (Q

0

�

fEg)

�

). For the sake of simpli
ity, we will also fo
us on


on�gurations whi
h do not 
ontain any letter L

1

or L

2

(obtained when a philosopher, after eating, puts down

his forks, one after another). This is not a restri
tion

as long as no philosopher has eaten yet. We explain at

the end of se
tion 4.4 how this proof 
an be modi�ed to


onsider also states L

1

and L

2

.

4.2 Bonds and �

1

, �

2

, �

3

A bond in a 
on�guration x is a substring of x made of

two 
onse
utive letters in

 �

Q

0

�!

Q

0

.

The index of a bond

 �

�

�!

� is the position of its �rst letter

 �

� . Note that, due to letter H , two bonds may overlap:

for example, in expression

 �

WH

�!

S there are two over-

lapping bonds

 �

WH and H

�!

S . In the following, given a


on�guration x, we fo
us on a sequen
e � of indi
es of

disjoint bonds of x, i.e., su
h that i+ 2 � j, for all 
on-

se
utive indi
es i and j of �. We suppose also that � is

maximal, i.e., su
h that between two 
onse
utive indi
es

i; j 2 � there is no bond of index k with i+2 � k � j�2.

A maximal sequen
e � of indi
es of disjoint bonds of x is


alled a bond list of x. Note that su
h a list is not unique.

Bond(�) is de�ned as the set of letters of x at position

` su
h that ` = i or ` = i+ 1 for some i 2 �.

Example: For the 
on�guration

 �

W

�!

W

 �

S

 �

WH

�!

D , there are

two possible bond lists �

1

= f1; 4g and �

2

= f1; 5g.

Bonds are

 �

W

�!

W and

 �

WH for �

1

, and

 �

W

�!

W and H

�!

D for

�

2

.

Hen
eforth, every non-legitimate 
on�guration x will

be provided with a bond list �. The bond list �

0

of the

initial 
on�guration x

0

is arbitrary. Given a 
on�gura-

tion x, a bond list � of x, and a rewriting of x into x

0

via some rule of R

0

, the bond list �

0

asso
iated with x

0

is 
onstru
ted from � as follows:
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� If the rewriting 
hanges a H 2 Bond(�) via proba-

bilisti
 rule R0, we apply the following rewriting pol-

i
y:

� if H is the �rst letter of a bond of �, then H

is 
hanged into

 �

W ,

� if H is the se
ond letter of a bond of �, then

H is 
hanged into

�!

W .

Bonds of � are thus preserved, and we let: �

0

= �.

� If the rewriting 
reates a new bond of index k disjoint

from every bond of �, then �

0

is � [ fkg.

� In all other 
ases, we let �

0

= �.

We now de�ne �

1

, �

2

, �

3

as follows:

�

1

: Let �

1

(x; �) be N minus the number of elements

of �.

The bond 
oeÆ
ient is 3 for D, 2 for H , 1 for W

and 0 for S. The weight of a bond

 �

�

�!

� is the sum of

the bond 
oeÆ
ients of

 �

� and

�!

� : for example, the

weight of bond HH is 4.

�

2

: We de�ne �

2

(x; �) as the sum of the weights of all

the bonds of x indexed by �.

�

3

: The 
omponent �

3

(x) is de�ned as the number of

two-letter strings of the form

 �

DH ,

 �

D

 �

W ,H

�!

D or

�!

W

�!

D

of x.

Example: In the 
on�guration

 �

W

�!

W

 �

S

 �

WH

�!

D of the pre-

vious example, we have �

1

= 4, �

2

= 5 for �

1

= f1; 4g,

and �

1

= 4, �

2

= 7 for �

2

= f1; 5g. In both 
ases,

�

3

= 1.

4.3 Anti-bonds and �

4

, �

5

, �

6

Given a 
on�guration x and a bond list � of x, an anti-

bond is a substring of two letters of x

�!




 �

Æ 2

�!

Q

0

 �

Q

0

su
h

that

�!


 62 Bond(�) or

 �

Æ 62 Bond(�). The last 
ondition

means that

�!


 and

 �

Æ do not belong simultaneously to

bonds of �.

The index of an anti-bond of x is the position of its

�rst letter (

�!


 in this des
ription).

Consider two bonds

 �

�

�!

� and

 �

�

0

�!

�

0

indexed by 
on-

se
utive index i and i

0

of �. Then either:

�

 �

�

�!

� and

 �

�

0

�!

�

0

are 
ontiguous (i.e: i

0

= i + 2)

and there is no anti-bond in between (i.e: no anti-bond

indexed by j with i+ 1 � j � i

0

� 1), or

�

 �

�

�!

� and

 �

�

0

�!

�

0

are not 
ontiguous (i.e: i

0

� i+3).

In the latter 
ase, it is easy to see that, between

 �

�

�!

� and

 �

�

0

�!

�

0

, there is no substring of the form � � �

 �


 � � �

�!

Æ � � �

with

 �


 2

 �

Q

0

and

�!

Æ 2

�!

Q

0

. (Otherwise, there would be

a disjoint bond between

 �

�

�!

� and

 �

�

0

�!

�

0

, and � would

not be maximal.) Hen
e the substring between

 �

�

�!

� and

 �

�

0

�!

�

0

is of the form

�!

Q

0�

 �

Q

0�

with either no H (
ase (H0))

or just one H (
ase (H1)). More pre
isely, the substring

delimited by the two bonds is of the form:

� (H0):

 �

�

�!

�

�!

I

 �

I

 �

�

0

�!

�

0

, or

� (H1):

 �

�

�!

�

�!

I H

 �

I

 �

�

0

�!

�

0

,

with

�!

I 2 f

�!

W;

�!

S ;

�!

Dg

�

and

 �

I 2 f

 �

W;

 �

S ;

 �

Dg

�

. Let

�!

�

and

 �

� be the last letter of

�!

�

�!

I and the �rst letter of

 �

I

 �

�

0

respe
tively. Between the two bonds, there is:

� (H0): a single anti-bond, viz:

�!

�

 �

� , or

� (H1): two overlapping anti-bonds, viz:

�!

� H and

H

 �

� .

Given �, we 
onstru
t a so-
alled anti-bond list  of x as

a set of indi
es obtained by putting, for every 
ouple of

non-
ontiguous 
onse
utive bonds indexed by �:

� the index of

�!

�

 �

� in 
ase (H0),

� the index of either

�!

� H or H

 �

� in 
ase (H1).

Given a 
on�guration x and a bond list � of x, an

anti-bond list  of x, is thus a maximal set of indi
es j

of anti-bonds of (x; �). More pre
isely:

Proposition 1. Given a 
on�guration x and a bond list

� of x, an anti-bond list  of x, is su
h that, for any


ouple of 
onse
utive indi
es i; i

0

2 �, either:

� the bonds indexed by i and i

0

are 
ontiguous (i

0

=

i+2), in whi
h 
ase no anti-bond of  lies between them

(i.e., no j 2  su
h that i+ 1 � j � i

0

� 1), or

� they are not 
ontiguous (i

0

� i+ 3), in whi
h 
ase

exa
tly one anti-bond indexed by j 2  lies between them

(i.e., 9! j 2  : i+ 1 � j � i

0

� 1).

Note that, in any 
ase, the o

urren
e of H (if any)

between

 �

�

�!

� and

 �

�

0

�!

�

0

always belongs to an anti-bond

indexed by an element of  . Formally:

Proposition 2. For a given 
on�guration x 62 L

0

, a bond

list � of x and an anti-bond list  , every H of x belongs

to a bond of � or an anti-bond of  .

Example: For the 
on�guration

�!

WH

 �

S

�!

D

�!

W

 �

W

 �

D , we

have one bond list � = f3; 7g and two possible anti-

bond lists  

1

= f1; 5g and  

2

= f2; 5g. Anti-bonds are

�!

WH and

�!

W

 �

W for  

1

, H

 �

S and

�!

W

 �

W for  

2

.

Hen
eforth, every 
on�guration x 
oupled with a bond

list �, will be provided with an anti-bond list  . The anti-

bond list  

0

asso
iated with the initial 
ouple (x

0

; �

0

) is

arbitrary. Given a 
ouple (x; �) and an asso
iated anti-

bond list  , the rewriting of x into x

0

via probabilisti


rule R0 preserves � when a bond is rewritten, using the

rewriting poli
y des
ribed in se
tion 4.2. Rewriting via

R0 also preserves  using the following rewriting poli
y:

� if H is the 1st letter of an anti-bond of  , then H

is 
hanged into

�!

W ;
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� if H is the 2nd letter of an anti-bond of  , then H

is 
hanged into

 �

W .

It is easy to see that this rewriting poli
y is 
ompati-

ble with the one for bonds: if H is shared by a bond of �

and an anti-bond of  , both rewriting poli
ies agree for

rewriting H either into

 �

W or

�!

W . For example, if H is in

 �

SH

 �

S , the expression rewrites to

 �

S

�!

W

 �

S . The rewriting

of x into x

0

via the other rules transforms � into �

0

as ex-

plained in the previous paragraph, and  into  

0

where

 

0

=  ex
ept in some 
ases where D is repla
ed by H

via R9 or R10. (These 
ases are made expli
it in the 
ase

analysis of the proof of Proposition 3 in se
tion 4.4.)

We say that an anti-bond is oriented leftwards (resp.

oriented rightwards) if it is of the form f

�!

S ;

�!

Dgf

 �

W;Hg

(resp. f

�!

W;Hgf

 �

S ;

 �

Dg).

Given a bond list � and an anti-bond A of index k

oriented leftwards (resp. rightwards), the �-distan
e of

A is k� i (resp. i� k) where i is the index of the 
losest

bond of � to the left (resp. right) of A.

We now de�ne �

4

; �

5

; �

6

as follows:

�

4

: Let �

4

(x;  ) be N minus the number of oriented

anti-bonds of x indexed by  .

�

5

: Let �

5

(x; �;  ) be the sum of �-distan
es of all the

oriented anti-bonds of  .

The anti-bond 
oeÆ
ient is 3 for H , 2 for W , 1 for S

and 0 for D. The weight of an anti-bond

�!

�

 �

� is the sum

of the anti-bond 
oeÆ
ients of

�!

� and

 �

� : for example,

the weight of H

 �

W is 5.

�

6

: Let �

6

(x;  ) be the sum of the weights of all the

anti-bonds of x indexed by  .

Example: In the 
on�guration

�!

WH

 �

S

�!

D

�!

W

 �

W

 �

D of the

previous example, we have �

4

= 7(= N), �

5

= 0, �

6

=

9 for  

1

= f1; 5g, and �

4

= 6, �

5

= 1, �

6

= 8 for

 

2

= f2; 5g. In  

1

no anti-bond is oriented. In  

2

, the

anti-bondH

 �

S is oriented rightwards. Its �-distan
e with

bond

 �

S

�!

D is 1.

4.4 Measure � and Progress Proof

The WSD-
oeÆ
ient is 2 for W , 1 for S and 0 for D.

�

7

: Let �

7

(x) be the sum of the WSD-
oeÆ
ients of

all the letters of x distin
t from H .

Example: In the 
on�guration

�!

WH

 �

S

�!

D

�!

W

 �

W

 �

D , as there

are one S and three W , we have �

7

= 7.

Let us now de�ne �:

�: Given a 
on�guration x 62 L

0

, a bond list � and an

anti-bond list  , measure � is de�ned as a 7-tuple

(�

1

; �

2

; �

3

; �

4

; �

5

; �

6

; �

7

).

To prove that the measure � de
reases at ea
h step

for our rewriting poli
y, we will use the following lemma:

Lemma 1. Consider a 
on�guration x 62 L

0

, a bond list

� of x, and a 
on�guration x

0

su
h that x ! x

0

for the

bond list �

0

of x

0


onstru
ted as des
ribed before. If �

1

and �

2

stay 
onstant for this transition, then �

3

(x

0

) �

�

3

(x).

Proof. By 
ontraposition. Given x 62 L

0

, a bond list �

and a 
on�guration x

0

su
h that x ! x

0

with �

3

(x

0

) >

�

3

(x), let us show that there exists a bond list �

0

of x

0

su
h that�

1

(x

0

; �

0

) < �

1

(x; �) or�

2

(x

0

; �

0

) < �

2

(x; �).

Sin
e �

3

(x

0

) > �

3

(x) by assumption, a pattern of

the form f

�!

W;Hg

�!

D or

 �

Df

 �

W;Hg must have appeared in

x

0

after rewriting of x. By symmetry, we 
an 
onsider

only the 
ase x

0

= � � � f

�!

W;Hg

�!

D � � � . It implies that x =

� � ��� � � � where �; � 2 Q

0

are su
h that �� rewrites to

f

�!

W;Hg

�!

D . Hen
e, either:

� � = f

�!

W;Hg and � is 
hanged into

�!

D , or

� � is 
hanged into

�!

W and � =

�!

D , or

� � is 
hanged into H and � =

�!

D .

The 1st 
ase is impossible, be
ause it would mean � =

�!

S , and a rule �

�!

S ! �

�!

D 
an be applied only if � 2

��!

hold,

whi
h is not true here.

In the 2nd 
ase, the rule applied is R0 and � = H then

�� = H

�!

D and �

3

(x

0

) = �

3

(x) , whi
h 
ontradi
ts our

assumption.

Let us 
onsider the 3rd 
ase: �� = �

�!

D 
hanged intoH

�!

D .

This means that � is of the form D. We have to 
onsider

two sub
ases: � 2 Bond(�) or � 62 Bond(�). If � 2

Bond(�), then we set �

0

= � and we have �

2

(x

0

; �

0

) <

�

2

(x; �). If � 62 Bond(�), then � =

�!

D 62 Bond(�) (as

it 
annot be the �rst letter of a bond).The letter � must

be oriented rightwards: � =

�!

D . (Otherwise �� =

 �

D

�!

D

would be a bond of x, disjoint from Bond(�) sin
e it does

not 
ontain a H .) So �� =

�!

D

�!

D is 
hanged into H

�!

D . A

new bond H

�!

D (disjoint from �) is thus 
reated at index,

say k. We have �

0

= �[fkg, hen
e�

1

(x

0

; �

0

) < �

1

(x; �).

In every 
ase, we showed that: if �

3

(x

0

) > �

3

(x)

then �

1

(x

0

; �

0

) < �

1

(x; �) _�

2

(x

0

; �

0

) < �

2

(x; �). ut

By Proposition 2, any 
on�guration 
an be de
om-

posed into bonds, anti-bonds and W;S;D-letters. Using

this fa
t, it 
an be shown by 
ase analysis that, under

our rewriting poli
y, for all (x; �;  ), � de
reases when

x rewrites to x

0

and lists �

0

and  

0

, asso
iated to x

0

, are


onstru
ted from � and  as des
ribed in se
tions 4.2



10 Marie Du
ot et al.: Randomized Dining Philosophers Without Fairness Assumption

and 4.3. Formally, let � be the lexi
ographi
 extension

of <. We have:

Proposition 3. For every x 62 L

0

, every bond list � and

anti-bond list  of x, and every position i in E(x), there

exist a 
on�guration x

0

, a bond list �

0

and an anti-bond

list  

0

of x

0

su
h that:

x

i

��!

R

0

x

0

^ (x

0

2 L

0

_ �(x

0

; �

0

;  

0

)� �(x; �;  )).

Proof. Consider a non-legitimate 
on�guration x, a list

� of x, and an anti-bond list  . Suppose that x

i

��!

R

0

x

0

by

applying the rewriting poli
y des
ribed in the previous

subse
tions used for probabilisti
 rule R0. To prove the

theorem, we need to 
onsider only x

0

62 L

0

(so rules R5

and R7 are not used), and x 62 L

0

(so rule R11 is not

used). In a �rst time, we assume that x does not 
ontain

any L

1

or L

2

(so rules R12 and R13' are not used). We

are going to show that, for any rule of the form S ! D

(i.e.: R6, R8), D ! H (i.e.: R9, R10), H !W (i.e.: R0) or

W ! S (i.e.: R1, R3), we have �(x

0

; �

0

;  

0

)� �(x; �;  ).

The proof is done by a 
ase analysis depending on the

lo
ation of the letter 
hanged by rewriting: inside a bond,

inside an anti-bond (but not a bond), or anywhere else.

In the following, when we say that a 
omponent �

i

(2 � i � 7) of � de
reases, we impli
itly mean that

the previous 
omponents (�

j

for j < i) stay 
onstant.

When 
hanges in � or  are not spe
i�ed, then �

0

= �

and  

0

=  . If the rewriting o

urs:

1. In a bond

 �

�

�!

� of �:

� rewriting via probabilisti
 rule H !W (R0) pre-

serves �

1

thanks to our rewriting poli
y, and de-


reases �

2

.

� rewriting via D ! H or W ! S de
reases �

2

.

� rewriting of

 �

� via R6:

 �

S !

 �

D is impossible sin
e

the right neighbour

�!

� 
annot be

 ��

hold. Symmetri-


ally, rewriting of

�!

� via R8:

�!

S !

�!

D is impossible

be
ause the left neighbour

 �

� 
annot be

��!

hold.

2. In an anti-bond A of  , indexed by i:

(a) If A is a �-disjoint anti-bond

�!




 �

Æ (

�!


 2 f

�!

W;

�!

S ;

�!

Dg

and

 �

Æ 2 fH;

 �

Wg, or

�!


 2 fH;

�!

Wg and

 �

Æ 2

f

 �

W;

 �

S ;

 �

Dg), then �

1

and �

2

stay 
onstant, and

from lemma 1, �

3


annot in
rease. We have sev-

eral sub
ases.

� A = H

 �

W andH is rewritten: with our rewrit-

ing poli
y we obtain

�!

W

 �

W and �

6

de
reases.

� A = H

 �

W and

 �

W is rewritten: we obtain H

 �

S

and �

4

de
reases.

� A =

�!

W

 �

W : we obtain

�!

S

 �

W or

�!

W

 �

S , and �

4

de
reases.

� A =

�!

S

 �

W : sin
e

 �

W 
annot be rewritten, we

obtain

�!

D

 �

W and �

6

de
reases.

� A = H

 ��

hold and H is rewritten: with our

rewriting poli
y we obtain

�!

W

 ��

hold, and �

6

de
reases.

� A = H

 �

S and

 �

S is rewritten: �

6

de
reases.

� A = H

 �

D and

 �

D is rewritten: a new dis-

joint bond HH is 
reated with index i. We

let �

0

= � [ fig, thus de
reasing �

1

.  

0

is an

anti-bond list asso
iated with (x

0

; �

0

), 
hosen

arbitrarily.

� A =

�!

D

 �

W : A is an anti-bond oriented left-

wards. Sin
e

 �

W 
annot be rewritten, A is

rewritten via

�!

D ! H into H

 �

W . The left

neighbour of A is a letter

�!

� 2

�!

Q

0

. (Otherwise

�!

D would belong to a bond, and A would not

be �-disjoint.) There are two possibilities:

{ If

�!

� 2 fH;

�!

Wg, then �

3

de
reases.

{ If

�!

� =

��!

hold, the substring

�!

� A =

��!

hold

�!

D

 �

W

rewrites to

��!

holdH

 �

W . There are now two

overlapping anti-bonds

��!

holdH and H

 �

W

at position i�1 and i. Let us sele
t

��!

holdH

for the new anti-bond list, i.e. let  

0

=

 �fig[fi�1g and �

0

= �. The new anti-

bond

��!

holdH is still oriented leftwards, but

its distan
e to the 
losest bond of � = �

0

to the left, is smaller than the distan
e of

A =

�!

D

 �

W . So �

4

stays 
onstant and �

5

de
reases by 1.

� Cases A =

�!

WH;

�!

W

 �

S ;

�!

W

 �

D;

�!

S H and

�!

DH

are symmetri
al to 
ases previously treated,

hen
e omitted.

(b) If A is not �-disjoint, then it is of the form

�!




 �

�

with

 �

� 2 Bond(�), or

�!

�

 �

Æ with

�!

� 2 Bond(�).

Suppose A =

�!




 �

� . (The other 
ase is symmet-

ri
al and omitted.) Sin
e the rewriting of

 �

� has

already been studied in 
ase 1, we only 
onsider

the rewriting of

�!


 . For the same reasons as in


ase 2(b), as long as we do not 
hange � and  ,

�

1

and �

2

stay 
onstant. We have several sub-


ases.

�

�!


 = H : with our rewriting poli
y, it rewrites

to

�!

W . Thus A = H

 �

� be
omes A

0

=

�!

W

 �

� .

Let �

0

= � and  

0

=  . If A is non-oriented,

then so is A

0

. If A is oriented of distan
e d,

then A

0

is oriented in the same dire
tion with

same distan
e d. So �

4

and �

5

stay 
onstant

while �

6

de
reases.

�

�!


 =

�!

W : the rewriting is possible only if

 �

� is in fH;

 �

Wg. Thus A =

�!

W

 �

� be
omes

A

0

=

�!

S

 �

� . Unlike A, A

0

is oriented, hen
e

�

4

de
reases.
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�

�!


 =

�!

S : the anti-bond be
omes

�!

D

 �

� and �

6

de
reases.

�

�!


 =

�!

D : then the 
ase is similar to the rewrit-

ing

�!

D ! H 
onsidered for the �-disjoint anti-

bond (
ase 2(a)):

{ If the left neighbour

�!

� of A is in fH;

�!

Wg,

then �

3

de
reases.

{ If

�!

� =

��!

hold, then we 
an 
hange  into

 

0

so that �

5

de
reases.

3. Outside bonds and anti-bonds:

in this 
ase, either a bond is 
reated (�

1

de
reases)

or �

1

; �

2

; �

4

; �

5

and �

6

stay 
onstant while �

3

or

�

7

de
reases (by Lemma 1, �

3


annot in
rease when

�

1

and �

2

stay 
onstant).

More pre
isely, let � be the 
hanged letter and i its

position. By proposition 2, � belongs to fW;S;Dg.

We have the following sub
ases.

� � =

�!

W : rewriting via

�!

W !

�!

S de
reases either�

3

if the right neighbour of � is

�!

D , or �

7

otherwise.

� � =

�!

S : rewriting via

�!

S !

�!

D de
reases �

7

.

� � =

�!

D : sin
e � belongs to neither a bond of

� nor an anti-bond of  , its right neighbour �

must belong to

�!

Q

0

. (Otherwise, �� would be of

the form

�!

D

 �

� , i.e. an anti-bond of  .) Rewriting

� via

�!

D ! H thus yields H� with � 2

�!

Q

0

. This is

a new disjoint bond of index i. We let �

0

= �[fig,

thus de
reasing �

1

.  

0

is an anti-bond list asso-


iated with (x

0

; �

0

), 
hosen arbitrarily.

� � =

 �

W;

 �

S or

 �

D : these 
ases are symmetri
al to

the previous ones.

This ends the proof under the assumption that 
on�gu-

ration x did not 
ontain any letter L

1

or L

2

. The proof


an easily be extended to take into a

ount letters L

1

and L

2

, as follows:

� The set

�!

Q

0

is augmented with the letter L

2

, whi
h


orresponds to a philosopher about to put down the

right fork. De�nitions of bond and anti-bond are pre-

served as far as we 
onsider the new set

�!

Q

0

.

� The de�nition of oriented anti-bond now in
ludes

substrings of the form L

2

 �

Æ .

� As a letter L

1


orresponds to a philosopher holding

both forks, an anti-bond 
an now lie between two

letters L

1

or between one letter L

1

and a bond. It


an also overlap with a letter L

1

. The �-distan
e of

an anti-bond oriented leftwards (resp. rightwards) is

now the minimum between the distan
e to the 
losest

bond to its left (resp. right) and the distan
e to the


losest L

1

to its left (resp. right).

The measure � is 
hanged into a measure �

0

with �

0

=

(�

0

1

; �

0

2

; �

0

3

; �

4

; �

5

; �

0

6

; �

0

7

). Components 2, 4 and 5 are

not 
hanged as far as we 
onsider the new de�nitions for

oriented anti-bonds and �-distan
e.

� �

0

1

(x) = �

1

(x)+ number of letters L

1

in x.

� �

0

2

(x; �) is the sum of the weights of the bonds of x

indexed by �, with a bond 
oeÆ
ient 3 for L

2

.

� �

0

3

(x) 
ounts the number of two-letter strings of the

form

 �

DH ,

 �

D

 �

W , H

�!

D ,

�!

W

�!

D , HL

2

or

�!

WL

2

of x.

� �

0

6

(x;  ) the sum of the weights of all the anti-bonds

of x indexed by  . The anti-bond 
oeÆ
ient is 0 for

L

2

and 1 for L

1

.

� �

0

7

(x) is the sum of the WSD-
oeÆ
ients of all the

letters of x distin
t from H and L

1

. The WSD-


oeÆ
ient of L

2

is 0.

ut

Theorem 2 (progress property) then follows from Propo-

sition 3 and Theorem 3.

4.5 Expe
ted Time of Convergen
e

In traditional approa
hes (see e.g. [11℄) the time is mea-

sured in terms of rounds (intervals in whi
h ea
h pro
ess

has been s
heduled at least on
e). The time is never eval-

uated as a number of transitions.

With our approa
h, we do not make any assumption

on this round time. We evaluate the expe
ted time of


onvergen
e as a number of transitions. It turns out that,

for some \mali
ious" s
heduler su
h a time 
an be \very"

long.

Let us show on a example that the expe
ted time of


onvergen
e is at least exponential in the number N of

pro
esses for some \mali
ious" s
heduler. We exhibit a

s
heduler whi
h, starting from the uniform 
on�guration

x

0

=

�!

S

N

, goes to x

1

=

�!

S

N�2

 �

W

 �

S within a 
onstant

expe
ted time. Then, from x

1

, it 
an stay in the set of


on�gurations f

�!

S

i

 �

W

 �

S

j

ji+ j +1 = Ng [ f

�!

S

i

�!

W

 �

S

j

ji+

j + 1 = Ng during an expe
ted time exponential in N .

Consider x

0

=

�!

S

N

as a starting 
on�guration. Let us

�rst show that the s
heduler may rea
h the 
on�guration

x

1

=

�!

S

N�2

 �

W

 �

S in a �nite amount of time: It sele
ts a

�!

S

and applies R8.R10.R0 to obtain

�!

S

N�1

�!

W or

�!

S

N�1

 �

W .

In the �rst 
ase, it applies R3 and goes on. In the se
-

ond 
ase, it sele
ts the last

�!

S and applies R8.R10.R0

to obtain

�!

S

N�2

�!

W

 �

W or

�!

S

N�2

 �

W

 �

W . In the �rst 
ase, it

applies R3 to

�!

W and begins again. In the se
ond 
ase, it

applies R2 to the right

 �

W . The expe
ted time E of going

from x

0

to x

1

may be easily 
omputed: E = 15.

Now, we des
ribe two possible 
hoi
es of the s
hed-

uler on a 
on�guration of the form

�!

S

i

 �

W

 �

S

j

with i � 2

and i+j+1 = N . These two 
hoi
es are the appli
ation of
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four 
onse
utive rules, one of whi
h is a probabilisti
 one.

The three �rst rules are the same: sele
t the rightmost

�!

S and applies R8.R10.R0. This yields:

�!

S

i�1

 �

W

 �

W

 �

S

j

or

�!

S

i�1

�!

W

 �

W

 �

S

j

.

From

�!

S

i�1

 �

W

 �

W

 �

S

j

, apply R1 to the rightmost

 �

W to

get

�!

S

i�1

 �

W

 �

S

j+1

. From

�!

S

i�1

�!

W

 �

W

 �

S

j

, the s
heduler 
an


hoose

�!

W or

 �

W , whi
h leads to the two 
ases:

(A) The s
heduler applies R1 to

 �

W and yields

�!

S

i�1

�!

W

 �

S

j+1

,

(B) The s
heduler applies R3 to

�!

W and yields

�!

S

i

 �

W

 �

S

j

.

Symmetri
ally, using R6.R9.R0, on a 
on�guration

�!

S

i

�!

W

 �

S

j

(with j � 2 and i+j+1 = N), one goes to

�!

S

i

�!

W

 �

W

 �

S

j�1

or

�!

S

i

�!

W

�!

W

 �

S

j�1

.

From

�!

S

i

�!

W

�!

W

 �

S

j�1

, apply R3 to the leftmost

�!

W , to

get

�!

S

i+1

�!

W

 �

S

j�1

. From

�!

S

i

�!

W

 �

W

 �

S

j�1

, the s
heduler 
an


hoose

�!

W or

 �

W , whi
h leads to the two 
ases:

(A') The s
heduler applies R3 to

�!

W and yields

�!

S

i+1

 �

W

 �

S

j�1

.

(B') The s
heduler applies R1 to

 �

W and yields

�!

S

i

�!

W

 �

S

j

.

The s
heduler 
an iterate su
h an appli
ation of four


onse
utive rules until the system rea
hes an \end" 
on-

�guration, i.e, a 
on�guration of the form:

x

end

=

�!

S

N�2

�!

W

 �

S or y

end

=

�!

S

 �

W

 �

S

N�2

.

Let us 
onsider the following \mali
ious" s
heduler:

From

�!

S

i

 �

W

 �

S

j

(with i � 2 and i+j+1 = N), it 
hooses

(A) or (B) a

ording to the 
ompared values of i and j.

Pre
isely:

� it 
hooses (A) if j � i,

� it 
hooses (B) if j < i.

Symmetri
ally, from

�!

S

i

�!

W

 �

S

j

(with j � 2 and i+j+1 =

N):

� it 
hooses (A') if i � j,

� it 
hooses (B') if i < j.

For this s
heduler, let us now 
ompute the expe
ted

time for rea
hing x

end

or y

end

, starting from a 
on�gura-

tion

�!

S

i

�!

W

 �

S

j

(resp.

�!

S

i

 �

W

 �

S

j

), with j � 2 (resp. i � 2)

and i+ j +1 = N . Let us abbreviate this expe
ted time

as E[

�!

i ℄ (resp. E[

 �

i ℄). We have:

E[

�!

i ℄ = 4+1=2 E[

��!

i+ 1℄+1=2 E[

 ��

i+ 1℄, for 1 � i <

N � 2 and 2i � N � 1.

E[

�!

i ℄ = 4 + 1=2 E[

��!

i+ 1℄ + 1=2 E[

�!

i ℄, for 1 � i <

N � 2 and 2i < N � 1.

E[

 �

i ℄ = 4 + 1=2 E[

��!

i� 1℄ + 1=2 E[

 ��

i� 1℄, for 2 � i

and 2i � N � 1.

E[

 �

i ℄ = 4+1=2 E[

 ��

i� 1℄+1=2 E[

 �

i ℄, for 2 � i and

2i > N � 1.

E[

���!

N � 2℄ = 0.

E[

 �

1 ℄ = 0.

We then solve this linear system. The symmetry shows

that E[

�!

i ℄ = E[

 ������

N � 1� i℄, for all 1 � i < N � 1. Let m

be the integral part of N=2� 1. The result is:

E[

�!

i ℄ = 8(2

N�3�m

(2m�N+6)�i�2), for 1 � i � m.

E[

�!

i ℄ = 8((2m�N+6)(2

N�3�m

�2

i�m�1

)�N+i+2)

for m+ 1 � i < N � 1.

In parti
ular, the time to go from x

1

to x

end

(hen
e

x

0

to x

end

) is

E[

 ���

N � 2℄ = E[

�!

1 ℄ = 8(2

N�3�m

(2m�N+6)�3) � 2

N=2

.

This shows that we 
an stay out of L

0

an exponential

expe
ted number of steps, hen
e the upper bound for the

expe
ted time of 
onvergen
e for a general s
heduler is

at least exponential.

5 Final Remarks

We have shown in this paper that a modi�ed version of

Lehmann-Rabin's algorithm always 
onverges, whatever

the (possibly unfair) s
hedule is. We 
laim that our mod-

i�ed algorithm preserves the spirit of the original one.

With our approa
h, we are also able to evaluate the

expe
ted time of 
onvergen
e as a number of transitions.

Alternatively, this time 
an be understood as the number

of non-stuttering transitions of the original Lehmann-

Rabin's algorithm. We have shown that this time may

be exponential for some mali
ious s
hedule, a point that


ould not be seen when the expe
ted time was 
omputed

as a number of rounds.

We re
ently learned that Catus
ia Palamidessi and

Mihaela Heres
u have independently 
ome out with the

same variant of the dining philosophers without fairness,

and used it to prove the possibility of en
oding the �-


al
ulus with mixed 
hoi
e into the probabilisti
 asyn-


hronous �-
al
ulus [14,8℄. This 
on�rms our view that

the algorithm presented here is a natural and useful vari-

ant of Lehmann-Rabin's algorithm.

A
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Appendix A: Proof of Theorem 1

We say that a 
omputation C traverses L within m steps

if C is a 
omputation of the form

x

0

i

0

��!

R

i

0

� � �

i

j�1

���!

R

i

j�1

x

j

i

j

��!

R

i

j

� � � su
h that x

j

2 L for some

0 � j � m.

Given a 
entral s
hedule S, a starting 
on�guration

x

0

and m � 0, the event of being a 
omputation travers-

ing L within m steps has a well-de�ned probability:

Pr(f F j C = COM

R

(x

0

; S; F ) traverses L within m

steps g), abbreviated as Pr(x

0

S

�!

R

�m

L).

Let us now show that, when Prop holds,

lim

m!1

Pr(x

S

�!

R

�m

L) = 1 (hen
e Pr(x

S

�!

R

�

L) = 1).

Lemma 2. Consider a system �!

R

with no deadlo
k, a

measure � and an order � su
h that:

Prop: 8x =2 L 8i 2 E(x)

9y (x

i

�!

R

y ^ (y 2 L _�(y)� �(x))).

Then there exists an integer M > 0 and a probability

p > 0 su
h that, for any 
entral s
hedule S:

8x Pr(x

S

�!

R

�M

L) � p.

Proof. Let M be the number of elements of X (i.e.,

M = jX j = jQj

N

). Let q be the minimum probability

asso
iated with a probabilisti
 rule (for example, q =

1=2 for Beauquier-Gradinariu-Johnen's and Lehmann-

Rabin's algorithms). Given a 
entral s
hedule S and a

starting 
on�guration x

0

, 
onsider now a 
omputation

C under S of the form x

0

�!

R

x

1

�!

R

� � � su
h that: for

every k � 0, if C has not traversed L at step k (i.e., x

0

62

L; � � � ; x

k

62 L), then x

k+1

2 L or �(x

k+1

) � �(x

k

).
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Note that, sin
e we assume Prop, su
h a 
omputation

C always exists. By the pigeonhole prin
iple, among the

�rst M + 1 
on�gurations x

0

; � � � ; x

M

of C, there are

ne
essarily two elements x

i

and x

j

whi
h are identi
al.

Therefore C traverses L within M steps be
ause, other-

wise, one would have: �(x

i

)� �(x

i+1

)� � � � � �(x

j

),

whi
h is impossible sin
e x

i

= x

j

. On the other hand,

ea
h step of 
omputation has a probability greater than

or equal to q. Hen
e the probability of the �nite 
ompu-

tation 
onsisting of the �rstM steps of C is no less than

q

M

. It follows that the probability for all the 
omputa-

tions starting from x

0

under S to traverse L is no less

than p = q

M

. So for any S and x

0

, Pr(x

0

S

�!

R

�M

L) � p.

ut

Proof of Theorem 1:

Let us 
onsider a 
entral s
hedule S, arbitrary but given.

Sin
e the system �!

R

satis�es Prop by assumption, we

have, by Lemma 2: 8x 2 X; Pr(x

S

�!

R

�M

L) � p. So,

for any starting 
on�guration x

0

, the probability of not

traversing L from x

0

within M transitions is less than

1 � p. We 
an apply iteratively Prop and Lemma 2, to

show that the probability of not traversing L within 2M

transitions is less than (1 � p)

2

, and so on. The prob-

ability of not traversing L from x

0

under S after m

transitions tends to 0 as m tends to 1. Alternatively:

8x 2 X , lim

m!1

Pr(x

S

�!

R

�m

L) = 1. It follows that,

for any 
entral s
hedule S: 8x Pr(x

S

�!

R

�

L) = 1. ut

Appendi
e B: Convergen
e of Beauquier-Gradinariu-

Johnen's Algorithm

Let us 
onsider Beauquier-Gradinariu-Johnen's algorithm

presented as an example in se
tion 2.1, with a 
entral and

arbitrary s
heduling, and an odd number of pro
esses.

First observe that the system has no deadlo
k: as the

number of pro
esses is odd, there exists always at least

one deterministi
 (resp. probabilisti
) token in ea
h 
on-

�guration, and a pro
ess is enabled when it holds a de-

terministi
 token. We 
onsider the measure � that maps

any 
on�guration x to the triple (';D

p

; D

d

) where:

� ' is the number of probabilisti
 tokens of x

� D

p

is the minimal distan
e between two probabilisti


tokens of x

� D

d

is 
onstru
ted as follows. Let T = ft

1

; t

2

; :::; t

'

g

be the set of indi
es of pro
esses holding a probabilis-

ti
 token (i.e. p

t

k

= p

t

k

�1

for 1 � k � '). Let T

0

be

the set of indi
es in T su
h that the distan
e between

a probabilisti
 token of index t

k

and the 
losest prob-

abilisti
 token to its right (of index t

k+1

) is minimal

(t

k+1

�t

k

= D

p

modulo N). Then D

d

is the sum over

all indi
es i of deterministi
 tokens, of the distan
e

d

i

between this deterministi
 token, and the 
losest

index of T

0

to its right. Formally:

D

d

=

X

i= pro
ess i holds

a deterministi
 token

min

j2T

0

((j � i) modulo N)

These three 
omponents represent the important 
har-

a
teristi
s of a 
on�guration: �rst the number of proba-

bilisti
 tokens (if ' = 1 then the 
on�guration is legiti-

mate), then the minimal distan
e between probabilisti


tokens (if they are 
lose, they are more likely to 
ollide

and ' is more likely to de
rease), and last the distan
e

from deterministi
 tokens to probabilisti
 tokens that


an de
rease D

p

. For example, in the 
on�guration x =

(0; 0)(1; 0)(1; 1)(0; 1)(1; 0)(0; 0)(1; 1) with N = 7, there

is one deterministi
 token at position 3, and the set T of

indi
es of probabilisti
 tokens is f2; 4; 6g. This is easier

to see if we de
ompose the 
on�guration x into a deter-

ministi
 
on�guration 0110101 of its deterministi
 states

and a probabilisti
 
on�guration 0011001. The minimal

distan
e D

p

is 2 and T

0

= f2; 4g. As there is just one de-

terministi
 token at position 3, D

d

= min

j2f2;4g

((j � 3)

modulo N) = 1. Let us show that, for every x 62 L, i.e.

x with at least two probabilisti
 tokens, and every en-

abled position i of x, there exists y su
h that x

i

�! y with

�(y)� �(x), where � is the lexi
ographi
 order.

There are two 
ases:

� If p

i

= p

i�1

, there is no probabilisti
 token at position

i and we apply the �rst rule.

{ If there are two 
onse
utive deterministi
 tokens

at position i and i + 1 (for example the pattern

000) then they 
ollide (the pattern be
omes 010)

and both disappear. Then the two 
orresponding

distan
es are removed from the sum D

d

whi
h

de
reases.

{ If there are no 
onse
utive tokens at these posi-

tions then, as there is no probabilisti
 token at

position i ( p

i

= p

i�1

), we have d

i

� 1 and D

d

de
reases by 1.

� If p

i

= p

i�1

then there is a probabilisti
 token at po-

sition i and we 
hoose the output of the probabilisti


transition a

ording to the following rewriting poli
y:

{ If i belongs to T

0

, then we 
hange the state p

i

into

p

i

. The probabilisti
 token thus moves to its right

and either D

p

de
reases, or two tokens 
ollide ('

de
reases).

{ If i does not belong to T

0

, then d

i

� 1. We keep

the probabilisti
 state p

i

un
hanged and d

i

de-


reases by one (so does D

d

).
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 �

W

�!

W

 �

D

�

5

=3

 �

D

 �

D

�!

S

�

5

��!

 �

W

�!

WH

 �

D

�

5

=2

 �

D

�!

S

�

6

��!

 �

W

�!

W

�!

W

 �

D

�

5

=2

 �

D

�!

S

�

5

��!

 �

W

�!

W

�!

WH

 �

D

�

5

=1

�!

S

�

2

��!

 �

W

�!

W

�!

W HH

�

5

=0

�!

S

�

2

��!

 �

W

�!

W

�!

WH

 �

W

�

5

=0

�!

S

�

6

��!

 �

W

�!

W

�!

W

�!

W

 �

W

�

5

=0

�!

S

�

4

��!

 �

W

�!

W

�!

W

�!

S

 �

W

�

5

=3

�!

S

�

7

��!

 �

W

�!

W

�!

S

�!

S

 �

W

�

5

=3

�!

S

�

6

��!

 �

W

�!

W

�!

S

�!

D

 �

W

�

5

=3

�!

S

�

5

��!

 �

W

�!

W

�!

S H

�

5

=2

 �

W

�!

S

�

2

��!

 �

W

�!

S

�!

SH

�

5

=2

 �

W

�!

S

�

6

��!

 �

W

�!

S

�!

DH

�

5

=2

 �

W

�!

S

�

6

��!

 �

W

�!

S

�!

D

 �

W

�

5

=2

 �

W

�!

S

�

5

��!

 �

W

�!

SH

�

5

=1

 �

W

 �

W

�!

S

�

6

��!

 �

W

�!

S

 �

W

�

5

=1

 �

W

 �

W

�!

S

Fig. 3. A 
omputation: ea
h 
on�guration has a single anti-

bond, whi
h is underlined and labelled with the value of the

�

5

-distan
e; the bold letter is the letter to be 
hanged; the

arrow depi
ting ea
h transition is labelled with the �rst de-


reasing �-
omponent.

In all possible 
ases, distan
e � de
reases, thus state-

ment Prop of Theorem 1 holds. By Theorem 1, it follows

that, whatever the starting 
on�guration and the 
entral

s
hedule are, a 
on�guration of L (with a single proba-

bilisti
 token) will be rea
hed within a �nite time with

probability 1. Note that, on
e a 
on�guration of L has

been rea
hed, the subsequent 
on�gurations are all in L

be
ause L is 
losed under !.

Appendix C: An Example of Finite Computation

Let us re
all that, with our rewriting poli
y, on
e a bond

is 
reated, it never disappears (�

1

never in
reases) and

always stays in �xed position. On the example below,

there are two bonds, say B

1

and B

2

, whi
h 
orrespond

to the two leftmost and two rightmost letters of the 
on-

�gurations. Between B

1

and B

2

there lies an anti-bond

A. Let us explain the general evolution of A between B

1

and B

2

. At the beginning A is oriented rightwards and

moves towards B

2

until it overlaps with it. It then looses

its orientation and will be
ome reoriented later in the

other dire
tion. Su
h a U-turn requires the rewriting of

the left letter of B

2

. Antibond A thus goes forth and ba
k

between B

1

and B

2

. The rewriting of A is �nite be
ause

every U-turn leads to the rewriting of the bond on whi
h

it \boun
es", and a bond letter 
annot be rewritten more

than 3 times before be
oming E. An iterated rewriting

of A is illustrated in Figure 3. Ea
h transition is rep-

resented by an arrow labelled with the �rst de
reasing


omponent of �. �

1

and �

3

always stay 
onstant during

the 
omputation. The anti-bond of ea
h 
on�guration is

underlined and labelled with the value of �

5

: when A

is oriented, �

5


orresponds to its �-distan
e; otherwise,

�

5

is 0. In the last 
on�guration, the anti-bond

�!

S

 �

W


annot be rewritten without rea
hing L

0

.


