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Summary. We consider Lehmann-Rabin’s randomized
solution to the well-known problem of the dining philoso-
phers. Up to now, such an analysis has always required a
“fairness” assumption on the scheduling mechanism: if a
philosopher is continuously hungry then he must eventu-
ally be scheduled. In contrast, we modify here the algo-
rithm in order to get rid of the fairness assumption, and
we claim that the spirit of the original algorithm is pre-
served. We prove that, for any (possibly unfair) schedul-
ing, the modified algorithm converges: every computa-
tion reaches with probability 1 a configuration where
some philosopher eats. Furthermore, we are now able
to evaluate the expected time of convergence in terms
of the number of transitions. We show that, for some
“malicious” scheduling, this expected time is at least ex-
ponential in the number NV of philosophers.

1 Introduction

Recently, due to the rising risk of traffic congestion, there
has been an increasing interest in providing differenti-
ated Internet services, departing from the traditional no-
tion of fairness for bandwidth allocations [4,7]. This mo-
tivates reconsidering the need for fairness assumptions,
classical in resource-allocation algorithms (see, e.g., chap-
ter 11 of [11]). Here we consider Lehmann-Rabin’s ran-
domized solution to a special case of resource-allocation
problem: the dining philosophers.

N philosophers, Py, --- , Pnv_1 (where N is a parameter),
are seated around a table, and variously think or try to

* This paper is a revised and extended version of a commu-
nication given by the same authors, at 2nd IFIP Int. Conf.
on Theoretical Computer Science (TCS@2002).

eat by using some shared forks. The problem is to find a
distributed protocol guaranteeing that some philosopher
will eventually eat. A philosopher is only able to execute
a step provided he is selected by a general scheduling
mechanism. When a philosopher is scheduled, he exe-
cutes exactly one action (and nothing is done by the
others). Let £ be the set of configurations, called here
“legitimate” , where some philosopher eats. We show here
that the algorithm reaches £ within a finite time with
probability 1. In the following, we call this property con-
vergence. (We will also employ the term ‘progress’, which
is often used in the context of dining philosophers; see,
e.g., [11].) Up to now, such a property has always been
proved using a “fairness” assumption on the schedul-
ing: if a philosopher is continuously hungry (i.e., trying
to eat) then he must eventually be scheduled. Fairness
guarantees that there exist rounds, intervals in which
each philosopher has been scheduled at least once. It is
shown in [11-13,16] that within a constant number of
rounds, the probability of reaching L is greater than 0.
It follows that the algorithm converges towards a config-
uration in £ with probability 1.

In contrast, we consider here arbitrary schedulings,
without any fairness assumption (so we do not use the
notion of rounds). We modify the original Lehmann-
Rabin algorithm by removing self-looping actions. We
show that the new algorithm still converges towards £
with probability 1. This is done by constructing a mea-
sure A over configurations that decreases with positive
probability at each computation step (that does not reach
L). We thus propose a solution to the resource allocation
problem for dining philosophers under arbitrary schedul-
ing. We also show that the expected time of convergence,
in terms of individual actions, is at least exponential in
N, for some “malicious” scheduling.
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The plan of the paper is as follows. In Section 2 we
first present the kind of systems we consider and our
method for proving convergence when the scheduler is
arbitrary. Section 3 presents Lehmann and Rabin’s ran-
domized dining philosophers algorithm, and the changes
introduced in our variant. The convergence proof of our
variant without fairness, as well as a computation of ex-
pected time of convergence are given in section 4. We
conclude in Section 5.

2 Theoretical Framework
2.1 Randomized Uniform Ring Systems

The notions presented here are inspired from [9] and [17].
A randomized uniform ring system is a triple (N, ?, Q)
where NV is the number of processes in the system, = is
a state transition algorithm, and @ is the alphabet, i.e.
a finite set of process states. The N processes P, ..., Py
form a ring: there is an edge between two consecutive
processes, which means that P; can observe the states
q;—1 and ¢;31 of P;_; and P;y; respectively. Calcula-
tions on indices i of processes are done modulo N. Let
Q@ be the state set of P;. The system is uniform in the
sense that ? and @@ are common to all processes. A

configuration is an N-tuple of process states (or letters);
if the current state of process P; is ¢; € @, then the con-
figuration of the system is z = ¢1¢2 - - - ¢n. We denote by
X the set of all configurations, i.e., X = QV. The state
transition algorithm ? is given as a set R of rules, con-

sisting of deterministic or probabilistic rewrite rules'. A
deterministic rule is here of one the following forms:

cq—q
°qr—q'r,
e rq —rq

where ¢, ¢', r denote states of Q).
In this paper, we only consider probabilistic rules being
of of the form:

qf, with probability po
gy with probability 1 — pq.

where ¢, g}, ¢} denote states of Q. So, we associate to
every probabilistic rule a random flip with two possible
outcomes in {0, 1} and, accordingly, two output letters

0, 4 -

! Rewrite rules can be more general than those described
here (e.g., with three letters in each side). For the sake of
shortness, we just present the kind of rules needed for the
philosophers problem.

The left-hand side letter ¢ is the old letter of the
rule, the right-hand side letter ¢’ (with possible sub-
scripts) being its new letter of the rule. For readability,
the old and new letters will often be written in bold
within rules. A rewrite rule R of the left-hand side q is
applicable at position ¢ of a configuration z if the i-th
letter of x is ¢. Likewise, a rewrite rule R of left-hand
side qr (resp. rq) is applicable at position i if the i-th
letter of  is ¢ and the (i + 1)-th (resp. (i — 1)-th) letter
is r.

Given a configuration x, we say that process P; (or
position i) is enabled if at least one rewrite rule is applica-
ble to the i-th letter of . Let £(x) be the set of indices of
the enabled processes of . We suppose henceforth that
the system has no deadlock, i.e.: Vx € X E(z) # 0.

Given z and an enabled position i of x, a transition
leads from z to the configuration y obtained from z by
changing the i-th letter of x equal to the old letter of
some applicable rule, say R, into the new letter. Such a
transition is written x %) y (or more simply = AN y). The
probability associated to this transition is 1 if rule R is
deterministic, or py (resp. p1 = 1—pyp) if R is probabilistic,
the new letter being ¢f, (resp. ¢}).

Without loss of understanding, we will abbreviate
henceforth the randomized uniform ring system previ-
ously denoted (N, = Q) as = (or sometimes even more

simply as —). We now arbitrarily fix a configuration z
as the initial configuration.

A past behaviour up to step j of — is a sequence

.. 20 21 15—2 Tj—1
of transitions zg — z; — --- ——> Tj1 — X
R, Ri; Ri; o Ri;_4

starting from zq. (So iy, is the process selected at k+ 1-th
step, for all k£ > 0.)

A central schedule is a function that assigns to every

. ii—1 ..
past behaviour zg RZ—°> e R’—) z;, the enabled position
i i1

of z; at which a rule will be applied at step j + 1.2

For a given starting configuration zg, a given sched-
ule § and specific outcomes of the random flips F (F
is an infinite sequence of elements of the set {0,1}),
we get a particular computation of — under S, denoted
COMpz(xo,S, F), which is an infinite sequence of tran-

sitions of the form zo Rl—°> :;1> T; Ri> -+ where i;
ig i1 i

is the process selected by S at j+ 1-th step. We shall use

the term finite computation to denote a finite sequence

of transitions.

% As usual in the dining philosophers problem [17], we only
focus on central schedules (only one enabled position is se-

lected at each step), but see Remark of section 3.3.
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A computation C' is fair if, in C, the state of every
process P; (1 < i < N) is rewritten infinitely often. A
schedule S is fair if, for every sequence F' of outcomes
of the random flips and every starting configuration xg,
the computation COMg (zo,S, F) is fair.

An L-traversing computation C is a computation of

ij— ij
the form zg —> --- /= x; R—’> such that z; € £
ij 1

Rig Ri,
for some j > 0.

The function COMp associates with every schedule
S and every starting configuration xy a probability dis-

ij

tribution on the space of computations, the probability
Pr of a set G of computations being defined as the proba-
bility of the set of sequences of random flips F' such that
COMpz(x9,S, F) is in G. For a more formal definition
of the probabilistic space considered, based on particu-
lar computation sets called cones or basic cylinder sets,
and for a precise characterization of the measurable com-
putation sets (i.e. sets for which the probability is well
defined), see [18] (c.f. [10]).

As pointed out in [17], given a schedule S and a start-
ing configuration zg, the set of L-traversing computa-
tions has a well-defined probability:

Pr({ F | C =COMng(xo,S,F) is L-traversing }),
which will be abbreviated in the following as

Pr(zo %) *L).

Given a schedule S, we are interested in proving the
following progress (or convergence) property: no mat-
ter which initial configuration zy one starts from, the
probability for a computation via ? under S to be L-

traversing, is 1, i.e.: Pr(zo %*E) =1
A sufficient condition for ensuring such a progress
property is given in section 2.2.

Ezample: In [2], Beauquier, Gradinariu and Johnen present

a randomized token circulation algorithm which ensures
convergence towards the set of configurations with one
probabilistic token whatever the schedule is. We consider
the case where the number of processes is odd. The state
of a process is a couple (d,p) where d is a deterministic
state and p a probabilistic state, with d,p € {0,1}. In

the following, d (resp. p) denotes the complementary of
d (resp. p). The transition system — is defined by:

p) with probability 1/2
,P) with probability 1/2

Given a configuration z, let (d;, p;) denote the state
at position ¢ in x. We say that there is a deterministic

(resp. probabilistic) token at position i if d; = d;—1 (resp.
p; = pi—1). The enabled positions are those with a de-
terministic token. Let us consider the configuration x =
(0,1)(1,0)(1,0)(0,1)(1,1). The only enabled position is 3
(ds = dy = 1). Depending on the outcome of the random
flip, we have x — y; = (0,1)(1,0)(0,0)(0,1)(1,1) with
probability 1/2, and z — y» = (0,1)(1,0)(0,1)(0,1)(1,1)
with probability 1/2. The set £ of legitimate configura-
tions is defined as the set of configurations with a single
probabilistic token.

2.2 A Sufficient Condition for Progress

In [6], we gave a sufficient condition for ensuring progress,
whatever the central schedule is. This result is restated
here as follows:

Theorem 1. Given a ring system ? with no deadlock,

if there exist a measure A and an order < such that
Prop: Vz ¢ L Vie E(x)
W@ yAly e Ly AL < A@)),

then, for any central schedule S: Vx Pr(z %*E) =1.

For the sake of self containment, a proof of Theo-
rem 1 is given in Appendix A. The existential quantifi-
cation on y in Prop corresponds to a “rewriting policy”
for probabilistic transitions. Prop states that, whatever
the selected process is, we can choose the output of the
applicable probabilistic rule so that A decreases. Theo-
rem 1 can be seen as a restricted version of Theorem 3.5
of [3] (¢f. Theorem 1 of [1]). An example applying Theo-
rem 1 to Beauquier-Gradinariu-Johnen’s algorithm (see
example of section 2.1) is given in appendix B.

In section 4, we will apply a variant of Theorem 1
(viz., Theorem 3) in order to prove the progress prop-
erty for a variant of Lehmann-Rabin’s algorithm, for all
(central) schedules, even the unfair ones.

3 Randomized Dining Philosophers With and
Without Fairness

3.1 The Dining Philosophers Problem

The dining philosophers problem was introduced by Di-
jkstra [5], and has become a paradigm for a large class
of concurrency control problems. The idea is as follows:
there are N philosophers sitting around a table (N is a
parameter), with one fork between each pair of neigh-
bours. A philosopher can either think (having no inter-
action with his neighbours) or try to eat. To do so, a
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philosopher needs both his left fork and his right fork. As
both forks are each shared with a neighbour, a philoso-
pher can eat only if none of his neighbours holds any of
these forks. Each philosopher may address at most one
shared variable through a rule. Each rule is a ‘test and
set’ operation, in which a philosopher reads the current
value of the shared variable and assigns it a new value,
which is a function of the old value and the philosopher’s
current internal state. The problem is to find an individ-
ual algorithm (set of rules) common to all the philoso-
phers that guarantees the following progress property:
as soon as one philosopher is hungry, some philosopher
(not necessarily the same) will eat eventually, whatever
the schedule is.

Lehmann and Rabin have shown in [17] that this
problem has no deterministic, truly distributed (s.t. each
philosopher may address only its internal state and one
shared variable at a time) and symmetric (s.t. all philoso-
phers start in the same state) solution. This is because

there exists always a malicious schedule that selects philoso-

phers in a round-about manner so that symmetry is al-
ways met at the end of each round (which prevents some
philosopher to hold simultaneously two forks). There-
fore, they incorporate random choices into the individual
philosopher’s algorithm, ensuring that, with probability
one, the symmetry will be broken. Their solution, de-
scribed in section 3.2, however assumes that the schedul-
ing is fair.

3.2 Lehmann-Rabin’s Algorithm

We present Lehmann-Rabin’s probabilistic dining philoso-
phers algorithm [17] along the lines of [13].

The state set of each philosopher is
Q={T,H,W,W,S,3,D,D,E,Li,Ls}. The letter T
represents thinking, H that a philosopher is hungry,
(resp.
pick up the left (resp. right) fork next time he is sched-
uled, S (resp. S) that he is holding only the left (resp.
right) fork, D (resp. D) that he will put down the left
(resp. right) fork next time he is scheduled, E that he
eats, Ly that he will put down one fork (say, the right
one), and Ly the second one.

) that a philosopher waits in order to attempt to

The details relating to the shared forks are omitted
here. Thus, for example, if P; is in state S or P;_;
is in state .S, it means the variable representing the
shared fork (between P; and P;_;) has been set to a
value ‘taken’. Note that, because of the uniqueness of
the shared variable addressed by a rule, a philosopher

cannot go directly, e.g., from state to H without

passing by B: he must discover that the left fork is
held by his neighbour through a first operation before
putting down the right fork on the table. In this model-
ing, not all configurations of Q" are possible, as a fork
can be taken by at most one philosopher. More pre-
cisely, we say that a configuration is admissible iff it
does not contain any substring of the form o #, with
@e(3.D Fe(S D i
ae{S,D,E, L}, B €{S,D,E,Ly,L>}. It is easy
to see that the set of admissible configurations is closed
via application of any rule described below. Henceforth,
we will assume that the starting configuration, and hence
the subsequent ones, are admissible.

The set R of rewrite rules is:

Q0: T — T

Q1: T — H

RO: H - W with probability 1/2
or W with probability 1/2.

R1: —Jm W — —-fm g

R2: me—)me
R3: W —hold — S —hold
R4: W hold — W hold
R5:(§—lm—)E—|m
R6: S hold — D hold

R7: —hold S — —hold E
R8: Thold S — hold D

R9: S—)H
R10: B—)H
Ri1: E— 1L,
R12: L; — Loy
R13: L, —» T

where fm (resp. Wi) denotes any state of @ cor-
responding to a philosopher holding his right fork (resp.
left fork), i.e. ?E, B, E or Ly (resp. S, D, E, Ly or
L,), and —hold (resp. —hold) denotes any state of the
complementary set.

The rules describe the behaviour of a selected philoso-
pher as follows: initially he thinks “repeatedly” (Q0); he
becomes hungry (Q1); he decides randomly which fork
to pick up first (RO); next he persists with his decision
(R2 or R4) until he finally picks it up when available (R1
or R3), only putting it down later if he finds that his
other fork is already held by his neighbour (R6 followed
by R9, or R8 followed by R10); if he finds that his other
fork is not held, he takes it and eats (R5 or R7). After
that, he leaves the eating phase (R11), puts down the
left fork (R12), then the right fork (R13), going back to
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thinking phase. This behaviour is depicted on figure 1
(drawn from [15]).

The legitimate set £ is here the set of all (admissible)
configurations of Q* EQ*, i.e. the configurations in which
at least one philosopher is eating.

3.8 Our Variant: Removal of Stuttering Rules

Let us observe that rule QO (resp. R2, R4) is “stuttering”
in the sense that the old and new letters of the rule
coincide. When a selected philosopher is thinking (resp.
waiting for picking up a first fork held by a neighbour),
a transition that does not change the configuration may
occur. This is depicted by a self-loop on state T' (resp. W,
W}) in figure 1. We modify Lehmann-Rabin’s algorithm
mainly by removing stuttering rules QO0, R2 and R4:

e without QO, when a philosopher in state T is selected,
his state always becomes H via Q1. States T' and H
then play the same role and will be merged together
in the following;

e without R2 (resp. R4), when a philosopher waits for a
first fork that is held by a neighbour, i.e., is in state

(resp. W) and his left (resp. right) neighbour in
state hold (resp. hold), he is no longer enabled: no
rule applies to him. In such a situation, the philoso-
pher cannot be selected anymore. Note that this dif-
fers from Lehmann-Rabin’s original algorithm where
every process can always be selected.

Since the state T is merged with H, the new state
set @ is @ — {T} and rule R13: Ly — T becomes
R13’: Ly — H. The rewrite system R is transformed
into R’ = R U {R13’} — {Q0,Q1,R2,R4,R13}. The be-
haviour of a selected philosopher under R’ is depicted
on figure 2. Accordingly, the new legitimate set L' is
(the set of admissible configurations in) Q™ EQ'*.

Discussion.

In Lehmann-Rabin’s algorithm, a non-eating philosopher
either thinks (state T') or tries to eat (states {H, W, S, D}).
In our version of the algorithm, as the state T" has been
merged with H, this philosopher can only try to eat. This
feature may be seen as a limitation. Actually, since we
have no fairness assumption on the scheduling, a philoso-
pher can be indefinitely ignored, thus behaving in state
H as he used to do originally in state T' (i.e., not trying
to pick up a fork). We thus claim that our modified al-
gorithm is similar in spirit to the original one.

The original progress property of Lehmann-Rabin’s al-
gorithm can be stated as follows:

for every fair (central) schedule S and every config-
uration z € Q*{H, W, S, D}Q*, Pr(z %*L) = 1.

Surprisingly, as shown in section 4, for our modified ver-
sion R' of R, the progress property holds with no fairness
assumption, i.e.:

Theorem 2. For any arbitrary central schedule S and
every € Q'
Pr(z %)*E’) =1.

Theorem 2 will be proven in section 4 using a variant
of Theorem 1, by exhibiting an appropriate measure A.

Remark:
The observation done in [17] (p.340) for relaxing the as-
sumption of central scheduling is independent of their
assumption of fairness, hence applies also in our context:

“No two rules take place at exactly the same time;
this restriction could be easily lifted to allow rules on
different processes, as long as they do not address the
same shared variable, to take place exactly at the same
time.”

4 Proof of Progress Without Fairness

We are going to exhibit a measure A on configurations
that will characterize in some sense the “distance” of the
current configuration z to £'. We will show that, with
an appropriate rewriting policy, A decreases at each step
of computation. More precisely, we will show that, for a
certain choice of the output of probabilistic rule RO (i.e.,

either W or W, depending on the context of H in x):

e the application of RO makes A decrease,
e the application of any other (deterministic) rule makes
A decrease or leads to L'.

Symbol W denotes a letter of {W, W} Likewise, S (resp.

. —
D) denotes a letter 0_f>{5,?} (resp. {ﬁ, B}) Let Q(_’:
{_I—)I, W, g, B} and Q' = {H, I?/, ?, B} (Note that Q'N
Q"' ={H})

4.1 Ideas behind the Proof

In order to define A, we exploit the fact that, after a
finite time, any non-legitimate configuration can be de-
composed into:

. . . F%
e “bonds”, i.e. strings of two letters in Q'Q’.
e “anti-bonds”, that are, roughly speaking, strings of
two letters in Q'Q’.
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Fig. 1. Illustration of Lehmann and Rabin’s algorithm.

Fig. 2. Illustration of our variant algorithm.

o letters belonging to neither a bond nor an anti-bond.
(These letters are in {W, S, D}*, since every H be-
longs to a bond or an anti-bond; see Proposition 2
below.)

If at some point the configuration has no bond, for ex-
ample W then, the first time an H is produced, a
bond appears. Our rewriting policy aims at preservin
the bonds and their position, i.e., replacing via R0: H
into Wﬁ, and WH into WW. With this rewriting pol-
icy, a bond never disappears once it has been created.
A bond corresponds to the situation described in [17],
in which some philosopher’s last random flip is left while
his right neighbour’s last random flip is right. We know
that in this case, after a finite number of rewritings of
the bond, one of the two philosophers will eat (Lemma
3, p.342,in [17]). In Lehmann-Rabin’s context, the proof
of progress is then almost done because, by fairness as-
sumption on the scheduling, every bond is guaranteed to
be infinitely rewritten along any (infinite) computation.
Still in our context, we have to show that no infinite
rewriting can occur outside bonds (i.e., at anti-bond po-
sitions or between bonds and anti-bonds). We shall use

the fact that, after a bond has been initially created,
every configuration is a repeated sequence of the form:
55 Q7T Q&b or_ Bl b,

In the first case, an anti-bond 7 ¢ lies between two con-
secutive bonds; in the second case, the two consecutive
bonds are adjacent. We shall also use a measure A, de-
fined as a 7-uple (Aq,---, A7). Each component A; is,
roughly speaking, a function from Q" in N, which makes
A decrease lexicographically at each step of rewriting
(unless L' is reached). This is shown by a tedious case
analysis (see section 4.4), the main cases of which are
summarized below.

First consider the case where rewriting occurs at a
bond position. As already noticed, thanks to our rewrit-
ing policy, A; is preserved. On the other hand, rewrit-
ing of D into H, H into W, or W into S decreases A,
(because A2(D) > Ay(H) > Ay(W) > Ay(S)) while
rewriting of S into E yields a configuration of £'. There-
fore the rewriting of a bond always decreases A or yields
a legitimate configuration.

Let us now sketch out why A also decreases when
anti-bonds are rewritten. Our rewriting policy for anti-
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bonds aims at keeping them at the same position. For
example, an anti-bond of the form H§ will be written
into W(g, and 7H into 7W Besides, anti-bonds are
of two kinds:

- unoriented (i.e. of the form HW, WV or WH), or

- leftward oriented (i.e. of the form {?,B}?) or

rightward oriented (i.e. of the form 7{?, B})
An unoriented anti-bond cannot be rewritten twice with-
out becoming oriented (thus decreasing the opposite num-
ber A4 of oriented anti-bonds). Furthermore, an oriented
anti-bond of the form, say {?, } ¢, when rewritten,
can either:

e stay at the same position with the same orientation,
which decreases Ag (the sum of the coefficients of anti-
bond letters),

e stay at the same position but loosing its orienta-
tion, which decreases Az (accounting for the number of
(H,W)}D and D{H,}), or

e move one position left with the same orientation,
which decreases As (accounting for the distance between
oriented anti-bonds and their closest bonds).

For example, the rewriting of W into BW de-
creases Ag (because Ag(S) > Ag(D)). On the other
hand, the rewriting of A W into )\HW decreases Az or
Ay depending on the letter A to the left of the anti-bond:
if \is W, then WBW rewrites to WHf/I_/, the anti-bond
becomes unoriented and Az decreases (because an occur-
D disappears); if A is 3'), then §>_D>f/l_/ rewrites
to ?H , the anti-bond becomes ?H, one position to

rence of

the left, and Ay decreases. In any case, the rewriting of
an anti-bond decreases A.

Suppose finally that rewriting occurs between bonds
and anti-bonds. Recall that letters between bonds and
anti-bonds are only of the form 3, , <§ or symmet-
rically (see Proposition 2). Rewriting of D into H cre-
ates a new bond (thus decreasing A;); rewriting of W
into S, or S into D decreases A; (because A7 (W) >
A7(S) > A7(D)) while rewriting of S into E yields a le-
gitimate configuration. In any case, rewriting decreases
A or yields a configuration of £'.

Therefore, at any position, every step of rewriting de-
creases A unless £ is reached. This ends our informal
explanation of why A always decreases.

A typical example of computation, with the associ-
ated evolution of A, is given in Appendix A. Note that
every H of a given configuration z can belong a priori
to two “overlapping” bonds of x (see section 4.2). In or-
der to solve such ambiguities, every configuration = will
be coupled with two lists: a bond list 7 defined from =z,
and an anti-bond list ) defined from z and 7. A will be

defined for every triple (x,m,). In order to prove the
progress property, we will use a version of Theorem 1
reformulated as follows:

Theorem 3. Given a ring system ? with no deadlock
, if there exist a measure A and an order < such that
Prop’: V(z,m,v¢) with z ¢ L',Vi € E(z) (', 7,9
(x %) 2 A el v A, 7)) < Az, 7, ),
then, for any central schedule S:
Ve Pr(z %)*L”) =1

Sections 4.2 to 4.4 are devoted to the formal proof of
statement Prop’ (see Proposition 3). The configurations
will be implicitly non-legitimate (i.e, belong to (Q' —
{E})*). For the sake of simplicity, we will also focus on
configurations which do not contain any letter L, or Lo
(obtained when a philosopher, after eating, puts down
his forks, one after another). This is not a restriction
as long as no philosopher has eaten yet. We explain at
the end of section 4.4 how this proof can be modified to
consider also states L; and L.

4.2 Bonds and Ay, As, Az

A bond in a configuration 2 is a substring of £ made of
two consecutive letters in Q'Q’.

The indez of a bond &
. Note that, due to letter H, two bonds may overlap:

is the position of its first letter

for example, in expression WH S there are two over-
H and H? In the following, given a
configuration x, we focus on a sequence 7 of indices of

lapping bonds

disjoint bonds of z, i.e., such that i + 2 < j, for all con-
secutive indices 7 and j of m. We suppose also that  is
mazimal, i.e., such that between two consecutive indices
i,j € w there is no bond of index k withi+2 < k < j—2.
A maximal sequence 7 of indices of disjoint bonds of x is
called a bond list of x. Note that such a list is not unique.
Bond(r) is defined as the set of letters of = at position
£ such that £ =i or £ =i+ 1 for some i € .

(_
Ezample: For the configuration {/I_/W S WH B, there are
two possible Eg)nd lists m = {1,4} and m = {1,5}.
Bonds are {/I_/W and WH for m, and Wﬁ} and HB for
2.

Henceforth, every non-legitimate configuration x will
be provided with a bond list 7. The bond list 7 of the
initial configuration zq is arbitrary. Given a configura-
tion z, a bond list 7 of z, and a rewriting of z into z’
via some rule of R', the bond list 7' associated with z’
is constructed from 7 as follows:
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e If the rewriting changes a H € Bond(w) via proba-
bilistic rule RO, we apply the following rewriting pol-
icy:

e if H is the first letter of a bond of 7, then H
is changed into {/I_/,

e if H is the second letter of a bond of m, then
H is changed into W)
Bonds of 7 are thus preserved, and we let: ' = 7.

e If the rewriting creates a new bond of index k disjoint
from every bond of 7, then 7' is 7 U {k}.

e In all other cases, we let 7’ = 7.

We now define Ay, Ay, Az as follows:

Aq: Let Aj(z,7) be N minus the number of elements
of 7.
The bond coefficient is 3 for D, 2 for H, 1 for W
and 0 for S. The weight of a bond o)
the bond coefficients of & and
weight of bond HH is 4.

Ay: We define Ay(z, ) as the sum of the weights of all
the bonds of z indexed by 7.

is the sum of
: for example, the

As: The component Ag(z) is defined as the number of
two-letter strings of the form ﬁH, BW, HB or WB

of x.

Example: In the configuration WW?WHB of the pre-
vious example, we have A; =4, Ay =5 for m; = {1,4},
and Ay = 4, Ay = 7 for 1o = {1,5}. In both cases,
Az =1.

4.8 Anti-bonds and Ay, As, Ag

Given a configuration z and a bond list 7 of x, an anti-

bond is a substring of tlvo letters of z ¥ 6 € Q'Q’ such

that 7 ¢ Bond(r) or 6 ¢ Bond(r). The last condition
T .

means that 7 and § do not belong simultaneously to

bonds of .

The index of an anti-bond of x is the position of its
first letter (7 in this description).

Consider two bonds Eﬁ and &' ﬁ’ indexed by con-
secutive index 7 and i’ of w. Then either:

Eﬁ and E’ﬁ’ are contiguous (i.e: i’ = i + 2)

o
and there is no anti-bond in between (i.e: no anti-bond
indexed by j with i +1 < j <i' —1), or

(—? L]

e v/ and « >
In the latter case, it is easy to see that, between (E? and
(E’?’, there is no substring of the form --- % ---
with § € Q" and 0 € Q'. (Otherwise, there would be

a disjoint bond between o

" are not contiguous (i.e: i' > i+ 3).

and &' 4, and 7 would
not be maximal.) Hence the substring between @ f and

E’?’ is of the form a’*&* with either no H (case (HO))
or just one H (case (H1)). More precisely, the substring
delimited by the two bonds is of the form:

e (HO): E???E'?', or

eHl): GWATHT® T,
with 7 € {W, 5,0} and T € {I7,5, D) Let X
(3£1d % be the last letter of F? and the first letter of
T’ respectively. Between the two bonds, there is:

e (HO): a single anti-bond, viz: Xz, or N
e (H1): two overlapping anti-bonds, viz: A H and
HY%.

Given 7, we construct a so-called anti-bond list ¢ of x as
a set, of indices obtained by putting, for every couple of
non-contiguous corgecutive bonds indexed by 7:

o the index of X % in case (HO0),

o the index of either X H or HS% in case (H1).

Given a configuration z and a bond list 7 of z, an
anti-bond list ¢ of z, is thus a maximal set of indices j
of anti-bonds of (z, 7). More precisely:

Proposition 1. Given a configuration x and a bond list
w of x, an anti-bond list ¢ of x, is such that, for any
couple of consecutive indices i,i' € m, either:

e the bonds indezed by i and i’ are contiguous (i’ =
i+2), in which case no anti-bond of 1 lies between them
(i.e., no j € such thati +1<j<i' —1), or

e they are not contiguous (i’ > i+ 3), in which case
exactly one anti-bond indexed by j € 1) lies between them
(e, Njep: i+1<j<i'—1).

Note that, in any case, the occurrence of H (if any)
and &'

indexed by an element of ¢. Formally:

between & " always belongs to an anti-bond

Proposition 2. For a given configuration z & L', a bond
list m of x and an anti-bond list ¢, every H of x belongs
to a bond of ™ or an anti-bond of 1.

Example: For the configuration WH?BWW%, we

have one bond list # = {3,7} and two possible anti-

bond lists v, = {1,5} ang 2 = {2,5}. Anti-bonds are
H and for ¢, HS and for ).

Henceforth, every configuration x coupled with a bond
list 7, will be provided with an anti-bond list ¢». The anti-
bond list ¥ associated with the initial couple (zq, 7o) is
arbitrary. Given a couple (z,7) and an associated anti-
bond list v, the rewriting of x into 2’ via probabilistic
rule RO preserves m when a bond is rewritten, using the
rewriting policy described in section 4.2. Rewriting via
RO also preserves 1 using the following rewriting policy:

e if H is the 1st letter of an anti-bond of v, then H
is changed into W;
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e if H is the 2nd letter of an anti-bond of ¢, then H
is changed into W

It is easy to see that this rewriting policy is compati-
ble with the one for bonds: if H is shared by a bond of 7
and an anti-bond of ¥, both rewriting policies agree for
rewriting H either into W or W. For example, if H is in
S H(g, the expression rewrites to ‘§v_v“§ The rewriting
of z into x' via the other rules transforms 7 into 7’ as ex-
plained in the previous paragraph, and ¢ into )’ where
1! = 1) except in some cases where D is replaced by H
via R9 or R10. (These cases are made explicit in the case

analysis of the proof of Proposition 3 in section 4.4.)

We say that an anti-bond is oriented leftwards (resp.

oriented rightwards) if it is of the form {?, HWwW,H}
%
(resp. {W,H}{'S, D).

Given a bond list 7 and an anti-bond A of index k
oriented leftwards (resp. rightwards), the w-distance of
Ais k —1i (resp. i — k) where ¢ is the index of the closest
bond of 7 to the left (resp. right) of A.

We now define Ay, As, Ag as follows:

Ay Let Ag(x,9) be N minus the number of oriented
anti-bonds of z indexed by .

As: Let As(x,m, 1) be the sum of 7-distances of all the
oriented anti-bonds of .

The anti-bond coefficient is 3 for H, 2 for W, 1 for S
and 0 for D. The weight of an anti-bond 3% is the sum
of the anti-bond coefficients of @ and : for example,
the weight of HW is 5.

Ag: Let Ag(z,1) be the sum of the weights of all the
anti-bonds of z indexed by .

Ezample: In the configuration WH?BW{/I_/E of the
previous example, we have Ay = 7(= N), A5 =0, Ag =
9 for ’¢Jl = {1,5}, and A4 = 6, A5 = 1, AG = 8 for
Py = {2,5}.(£n 11 no anti-bond is oriented. In 15, the
anti—bgld H S is oriented rightwards. Its w-distance with
bond D is 1.

4.4 Measure A and Progress Proof

The WS D-coefficient is 2 for W, 1 for S and 0 for D.

Aq: Let Az(z) be the sum of the W.SD-coefficients of
all the letters of z distinct from H.

Example: In the configuration WH?BWW%, as there
are one S and three W, we have A; = 7.

Let us now define A:

A: Given a configuration z ¢ £’, a bond list 7 and an
anti-bond list ¢, measure A is defined as a 7-tuple
(Ala AQ: A37 A4a AS) Aﬁa A7)

To prove that the measure A decreases at each step
for our rewriting policy, we will use the following lemma:

Lemma 1. Consider a configuration v ¢ L', a bond list
m of x, and a configuration x'such that x — z' for the
bond list ™' of ' constructed as described before. If Aq
and Ao stay constant for this transition, then As(z') <

Ag(l‘)

Proof. By contraposition. Given =z ¢ L', a bond list 7
and a configuration z’ such that z — 2’ with Az(z') >
As(z), let us show that there exists a bond list 7’ of 2’
such that A (2',7') < Ay (z,7) or As(2',7') < Ay(z, 7).
Since Az(z') > As(z) by assumption, a pattern of
the form {é, H}B or g{{/l_/, H} must have appeared in
z' after rewriting of z. By symmetry, we can consider
,H}D ---. It implies that x =
-+ A+ where A, u € Q' are such that Ay rewrites to
{W, H}B Hence, either:
o\ = {W,H} and p is changed into B, or
e ) is changed into

only the case ' =---{

and py= D, or
e )\ is changed into H and = D.

The 1st case is impossible, because it would mean p=

,and arule \S — AD can be applied only if A € hold,
which is not true here.
In the 2nd case, the rule applied is RO and A\ = H then
A =H
assumption.
Let us consider the 3rd case: Au = /\B changed into HB
This means that A is of the form D. We have to consider
two subcases: A € Bond(w) or A € Bond(w). If X €
Bond(w), then we set ' = 7 and we have Ay (2',7') <
Ay(z, 7). If X\ € Bond(r), then p = ¢ Bond(w) (as
it cannot be the first letter of a bond).The letter A must
D. (Otherwise Ay =
would be a bond of z, disjoint from Bond(7) since it does
not contain a H.) So Ay = is changed into HD. A
new bond HD (disjoint from =) is thus created at index,
say k. We have 7’ = mU{k}, hence Ay (2, 7") < Ay (x, 7).

In every case, we showed that: if Asz(z') > Asz(z)

then Ay (2, 7") < Ay(z, 7)) V Ay(2',7") < As(z, 7). O

and Az(z') = Asz(x) , which contradicts our

be oriented rightwards: A =

By Proposition 2, any configuration can be decom-
posed into bonds, anti-bonds and W, S, D-letters. Using
this fact, it can be shown by case analysis that, under
our rewriting policy, for all (z,7,v), A decreases when
x rewrites to 2’ and lists 7' and ¢', associated to z', are
constructed from 7 and v as described in sections 4.2
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and 4.3. Formally, let < be the lexicographic extension
of <. We have:

Proposition 3. For every ¢ € L', every bond list m and
anti-bond list ¢ of x, and every position i in E(x), there
exist a configuration z', a bond list ©' and an anti-bond
list ' of x' such that:

T %) A el VvV Al 7)) < Az, 7,1)).

Proof. Consider a non-legitimate configuration z, a list
7 of z, and an anti-bond list 1. Suppose that z %} z' by
applying the rewriting policy described in the previous
subsections used for probabilistic rule RO. To prove the
theorem, we need to consider only z' ¢ £’ (so rules R5
and R7 are not used), and z ¢ £’ (so rule R11 is not
used). In a first time, we assume that x does not contain
any Ly or Ly (so rules R12 and R13’ are not used). We
are going to show that, for any rule of the form S — D
(i.e.:R6,R8), D — H (i.e.. R9,R10), H — W (i.e.: RO) or
W — S (i.e.: R1,R3), we have A(z', 7', ¢") <« A(z,m, ).
The proof is done by a case analysis depending on the
location of the letter changed by rewriting: inside a bond,
inside an anti-bond (but not a bond), or anywhere else.

In the following, when we say that a component A;
(2 < i < 7) of A decreases, we implicitly mean that
the previous components (A; for j < i) stay constant.
When changes in 7 or 3 are not specified, then ©’ = 7
and ¢’ = . If the rewriting occurs:

1. In a bond E? of r:

e rewriting via probabilistic rule H — W (RO) pre-
serves Ay thanks to our rewriting policy, and de-
creases As.

e rewriting via D — H or W — S decreases As.

e rewriting of % via R6: (§ — D is impossible since
the right neighbour B) cannot be Wl. Symmetri-
cally, rewriting of § viaR8: S — D is impossible
because the left neighbour % cannot be hold.

2. In an anti-bond A of v, indexed by i:

(a) If Ais a m-disjoint anti-bond 7 6 (7 € {W, E, B}

and & € {H,f/l_/}, or ¥ € {H,W} and 0 €
{W, (§, B}), then A; and A, stay constant, and
from lemma 1, A3 cannot increase. We have sev-
eral subcases.
o A= HW and H is rewritten: with our rewrit-
ing policy we obtain and Ag decreases.
e A=HW and W is rewritten: we obtain H<§
and A, decreases.
e A= W: we obtain ?W or W?, and Ay
decreases.
o A= : since W cannot be rewritten, we
obtain BW and Ag decreases.

e A = Hmi and H is rewritten: with our
rewriting policy we obtain Wf@, and Ag
decreases.

< <~ . .

e A=HS and S is rewritten: Ag decreases.

e A = HB and ﬁ is rewritten: a new dis-
joint bond HH is created with index i. We
let 7' = 7w U {i}, thus decreasing A;. ¢’ is an
anti-bond list associated with (z', "), chosen
arbitrarily.

e A= : A is an anti-bond oriented left-
wards. Since W cannot be rewritten, A is
rewritten via - H igto }_Ij/l_/' The left
neighbour of A is aletter A € Q'. (Otherwise

would belong to a bond, and A would not
be 7r—di_s>joint.) There are two possibilities:

- If_/\) € &W}, then Ag dg:reases._)

— X = hold, the substring X A = hold D1V
rewrites to holdHW . There are now two
overlapping anti-bonds mH and H {/I_/
at position i—1 and i. Let us select MH
for the new anti-bond list, i.e. let ¢’ =
¢—{iMi—1} and 7’ = 7. The new anti-
bond holdH is still oriented leftwards, but
its distance to the closest bond of 7 = 7’
to the left, is smaller than the distance of
A= W So A, stays constant and Ag
decreases_b)y 1._) - -

o Cases A = WH,WS,WD,SH and DH
are symmetrical to cases previously treated,
hence omitted.

(b) If A is not 7-disjoint, then it is of the form 7 %
with & € Bond(r), or § 8 with f € Bond(r).
Suppose A = 7(5 (The other case is symmet-
rical and omitted.) Since the rewriting of % has
already been studied in case 1, we only consider
the rewriting of 7 For the same reasons as in
case 2(b), as long as we do not change 7 and 1,
A; and A, stay constant. We have several sub-
cases.

) 7 = H: with our rewriting policy, it rewrites
to W Thus A = H%W becomes A’ = W((Y
Let 7' = m and ¢’ = 4. If A is non-oriented,
then so is A’. If A is oriented of distance d,
then A’ is oriented in the same direction with
same distance d. So A4 and Ay stay constant
while Ag decreases.

° 7 = W}: the rewriting is possible only if
o is in {H,W} Thus A = W& becomes
A = ?H. Unlike A, A’ is oriented, hence
Ay, decreases.
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. 7 = ?: the anti-bond becomes B(E and Ag
decreases.
« ¥ = B: then the case is similar to the rewrit-
ing D — H considered for the 7-disjoint anti-
bond (case 2(a)):
— If the left neighbour X of Aisin {H, T?/},
the_n> As ﬂreases.
— If X\ = hold, then we can change 1 into
1" so that Ay decreases.
3. Outside bonds and anti-bonds:
in this case, either a bond is created (A; decreases)
or Ay, Ay, Ay, As and Ag stay constant while Az or
A7 decreases (by Lemma, 1, Az cannot increase when
Ay and A, stay constant).
More precisely, let A be the changed letter and i its
position. By proposition 2, A belongs to {W,S, D}.
We have the following subcases.
o \= — ? decreases either Az
if the right neighbour of X is
o\ =
o )\ =
m nor an anti-bond of 1, its right neighbour p

: rewriting via
, or A7 otherwise.
: rewriting via S — D decreases Ar.

: since A belongs to neither a bond of

must belong to @'. (Otherwise, Au would be of
the form (ﬁ, i.e. an anti-bond of ¢.) Rewriting
A via B — H thus yields Hpy with y € Cj)’ This is
a new disjoint bond of index 7. We let 7' = wU{i},
thus decreasing A;. ¢’ is an anti-bond list asso-
ciated with (2’,7"), chosen arbitrarily.

° )\ = ,<§ or
the previous ones.

: these cases are symmetrical to

This ends the proof under the assumption that configu-
ration z did not contain any letter L; or L. The proof
can easily be extended to take into account letters L,
and Lo, as follows:

e The set Cj)’ is augmented with the letter Ly, which
corresponds to a philosopher about to put down the
right fork. Definitions of bond and anti—b(gd are pre-
served as far as we consider the new set (Q'.

e The definition of oriente((i anti-bond now includes
substrings of the form Ly § .

e As a letter L; corresponds to a philosopher holding
both forks, an anti-bond can now lie between two
letters L; or between one letter L; and a bond. It
can also overlap with a letter L;. The w-distance of
an anti-bond oriented leftwards (resp. rightwards) is
now the minimum between the distance to the closest
bond to its left (resp. right) and the distance to the
closest Ly to its left (resp. right).

The measure A is changed into a measure A’ with A’ =
(A, AL, AL Ay, As, A, AL). Components 2, 4 and 5 are

not changed as far as we consider the new definitions for
oriented anti-bonds and 7-distance.

o Al(z) = Ay(x)+ number of letters L; in x.

o Al(x,m) is the sum of the weights of the bonds of =
indexed by m, with a bond coefficient 3 for L.

e Al (x) counts the number of two-letter strings of the
form DH, DIV, HD, WD, HL, or WLy of z.

o Af(z,1) the sum of the weights of all the anti-bonds
of z indexed by . The anti-bond coefficient is 0 for
L2 and 1 for Ll.

o A’(x) is the sum of the WS D-coefficients of all the
letters of z distinct from H and L;. The WSD-
coefficient of Ls is 0.

O

Theorem 2 (progress property) then follows from Propo-
sition 3 and Theorem 3.

4.5 Expected Time of Convergence

In traditional approaches (see e.g. [11]) the time is mea-
sured in terms of rounds (intervals in which each process
has been scheduled at least once). The time is never eval-
uated as a number of transitions.

With our approach, we do not make any assumption
on this round time. We evaluate the expected time of
convergence as a number of transitions. It turns out that,
for some “malicious” scheduler such a time can be “very”
long.

Let us show on a example that the expected time of
convergence is at least exponential in the number N of
processes for some “malicious” scheduler. We exhibit a
scheduler which, starting from the uniform configuration
zo = SN, goes to z; = SN2y
expected time. Then, from z;, it can stay in the set of
configurations {?’l(/l_/(gfh +j+1=N}U {?’W(gfh +
j+ 1= N} during an expected time exponential in N.

S within a constant

Consider g = ?N as a starting configuration. Let us
first show that the scheduler may reach the configuration

— SN-2{7%S in a finite amount of time: Tt selects a

"“ rfp.

and applies R8.R10.RO to obtain SN or
In the first case, it applies R3 and goes on. In the sec-
ond case, it selects the last and applies R8.R10.RO
to obtain S N2V or SN-2{FIV. In the first case, it
applies R3 to W and begins again. In the second case, it
applies R2 to the right W. The expected time E of going

from x( to x1 may be easily computed: £ = 15.

Now, we describe two possible choices;)f the sched-
iWSjmmizz
and i+j+1 = N. These two choices are the application of

uler on a configuration of the form
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four consecutive rules, one of which is a probabilistic one.

The three first rules are the same: select the rightmost
and applies R8.R10.R0. This yields: SIS or
WS,

From ?i_ll(/l_/l(/l_/(gj, apply R1 to the rightmost 7 to

get Si-1{7 'S+ From § i <§j, the scheduler can

choose W or {/I_/, which leads to the two cases:

(A) The scheduler applies R1 to 7 and yields ?i_lﬁ/}gﬁl,

(B) The scheduler applies R3 to W and yields S,

g
Symmetrically, using R6.R9.RO, on a configuration ?’W S

. .
(with j > 2andi+j+1 = N), one goes to ?lW}WSFl
, Phing
or §°* St
: <
From ?’W}E_} S7=1, apply R3 to the leftmost W, to
get SIS~ From S S5 7=1 the scheduler can

choose W or f/I_/, which leads to the two cases:

(A’) The scheduler applies R3 to W and yields Sy,

(B’) The scheduler applies R1 to 7 and yields S,

The scheduler can iterate such an application of four
consecutive rules until the system reaches an “end” con-
figuration, i.e, a configuration of the form:

Tend = ?N72W<§ O~ Yend = ?W§N72.

Let us consider the following “malicious” scheduler:
From S 1V 5 (withi > 2 and i4+j+1 = N), it chooses
(A) or (B) according to the compared values of 7 and j.
Precisely:

e it chooses (A) if j > i,
e it chooses (B) if j < i.

Y
Symmetrically, from ?’W S7 (with j >2andi+j+1=
N):

e it chooses (A’) if 1 > j,
e it chooses (B’) if i < j.

For this scheduler, let us now compute the expected
time for reaching xc,q Or Yend, starting from a configura-
tion S S (resp. S'W S7), with j > 2 (resp. i > 2)
and i+ j+ 1 = N. Let us abbreviate this expected time
as E[?] (resp. E[?]) We have:

E[7]=4+1)2 Ei + 1)+ 1/2 B[l + 1}, for1<i<
N —2and 2i > N —1.

E[1]=4+1/2 Bi+1]+1/2 B[], for1<i<
N-2and 2i < N — 1.

Bli)=4+1/2 Eli —1]+1/2 B[i 1], for2<i
and 2 < N — 1.

B[] =4+1/2 Bi —1)+1/2 E[7], for2<iand
2 >N -1,

E[N 3] =o0.

E[T]=o0.

We tgen solve this linear system. The symmetry shows
thatE[i]zE[N—1—i],foralll§i<N—1. Let m
be the integral part of N/2 — 1. The result is:

E[7]=82N 3 ™2m—N+6)—i—2),for 1 <i < m.

E[7] = 8((2m—N+6)(2N—38-m _gi=m=1) _ N 1 12)
form+1<i<N-—1.

In particular, the time to go from z; to z.nq (hence
Zo tO Tend) 1S
EIN—2] = E[T] =82V 3 ™2m—N+6)—3) > 2V/>.
This shows that we can stay out of £ an exponential
expected number of steps, hence the upper bound for the
expected time of convergence for a general scheduler is
at least exponential.

5 Final Remarks

We have shown in this paper that a modified version of
Lehmann-Rabin’s algorithm always converges, whatever
the (possibly unfair) schedule is. We claim that our mod-
ified algorithm preserves the spirit of the original one.

With our approach, we are also able to evaluate the
expected time of convergence as a number of transitions.
Alternatively, this time can be understood as the number
of non-stuttering transitions of the original Lehmann-
Rabin’s algorithm. We have shown that this time may
be exponential for some malicious schedule, a point that
could not be seen when the expected time was computed
as a number of rounds.

We recently learned that Catuscia Palamidessi and
Mihaela Herescu have independently come out with the
same variant of the dining philosophers without fairness,
and used it to prove the possibility of encoding the -
calculus with mixed choice into the probabilistic asyn-
chronous m-calculus [14,8]. This confirms our view that
the algorithm presented here is a natural and useful vari-
ant of Lehmann-Rabin’s algorithm.
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Appendix A: Proof of Theorem 1

We say that a computation C traverses L within m steps
if C' is a computation of the form
Zo L)“;l)xj A
io ij_1 Ri;
0<j<m.
Given a central schedule S, a starting configuration

such that z; € £ for some

xo and m > 0, the event of being a computation travers-

ing £ within m steps has a well-defined probability:
Pr({ F | C = COMg(x0,S, F) traverses £ within m

steps }), abbreviated as Pr(xq %) smp).

Let us now show that, when Prop holds,

limp— o0 Pr(z %Smﬁ) =1 (hence Pr(z %)*E) =1).

Lemma 2. Consider a system ? with no deadlock, a
measure A and an order < such that:
Prop: Vo ¢ L Vi€ E(x)
y (¢ 2y Ay €LV A®Y) < A)).
Then there exists an integer M > 0 and a probability

p > 0 such that, for any central schedule S:
Vz Pr(z %)SME) > p.

Proof. Let M be the number of elements of X (i.e.,
M = |X| = |Q|Y). Let ¢ be the minimum probability
associated with a probabilistic rule (for example, ¢ =
1/2 for Beauquier-Gradinariu-Johnen’s and Lehmann-
Rabin’s algorithms). Given a central schedule S and a
starting configuration g, consider now a computation
C under S of the form xz ? T1 ? -+ such that: for

every k > 0, if C' has not traversed £ at step k (i.e., zo &
L.,z € L), then x4 € L or A(zpi1) € Azg).
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Note that, since we assume Prop, such a computation
C always exists. By the pigeonhole principle, among the
first M + 1 configurations zq,--- ,zp of C, there are
necessarily two elements x; and z; which are identical.
Therefore C' traverses £ within M steps because, other-
wise, one would have: A(z;) € A(ziy1) € -+ <€ A(z;),
which is impossible since z; = z;. On the other hand,
each step of computation has a probability greater than
or equal to ¢q. Hence the probability of the finite compu-
tation consisting of the first M steps of C' is no less than
g™ . It follows that the probability for all the computa-
tions starting from xg under S to traverse £ is no less
than p = ¢™. So for any S and g, Pr(z %SME) > p.
O

Proof of Theorem 1:
Let us consider a central schedule S, arbitrary but given.
Since the system ? satisfies Prop by assumption, we

have, by Lemma 2: Vz € X, Pr(z %) <Mz)y > p. So,
for any starting configuration xg, the probability of not
traversing £ from xo within M transitions is less than
1 — p. We can apply iteratively Prop and Lemma 2, to
show that the probability of not traversing £ within 2M
transitions is less than (1 — p)2, and so on. The prob-
ability of not traversing £ from xy under S after m
transitions tends to 0 as m tends to oo. Alternatively:
Vo € X, limm_oo Pr(z % <mpy = 1. Tt follows that,

for any central schedule S:  Vz Pr(z %*L) =1. O

Appendice B: Convergence of Beauquier-Gradinariu-

Johnen’s Algorithm

Let us consider Beauquier-Gradinariu-Johnen’s algorithm
presented as an example in section 2.1, with a central and
arbitrary scheduling, and an odd number of processes.
First observe that the system has no deadlock: as the
number of processes is odd, there exists always at least
one deterministic (resp. probabilistic) token in each con-
figuration, and a process is enabled when it holds a de-
terministic token. We consider the measure A that maps
any configuration z to the triple (p, D,, Dg) where:

e (o is the number of probabilistic tokens of x
e D, is the minimal distance between two probabilistic
tokens of z

e D, is constructed as follows. Let T' = {t1,t,...,t,}
be the set of indices of processes holding a probabilis-
tic token (i.e. pt, = pt,—1 for 1 < k < ). Let T' be
the set of indices in T such that the distance between
a probabilistic token of index #; and the closest prob-

abilistic token to its right (of index tg41) is minimal

(tg+1 —tr = Dp modulo N). Then D, is the sum over
all indices ¢ of deterministic tokens, of the distance
d; between this deterministic token, and the closest
index of T" to its right. Formally:

Dy = >

i/ process ¢ holds
a deterministic token

.
min((j - ) modulo N)

These three components represent the important char-
acteristics of a configuration: first the number of proba-
bilistic tokens (if ¢ = 1 then the configuration is legiti-
mate), then the minimal distance between probabilistic
tokens (if they are close, they are more likely to collide
and ¢ is more likely to decrease), and last the distance
from deterministic tokens to probabilistic tokens that
can decrease D). For example, in the configuration 2 =
(0,0)(1,0)(1,1)(0,1)(1,0)(0,0)(1,1) with N = 7, there
is one deterministic token at position 3, and the set T of
indices of probabilistic tokens is {2,4,6}. This is easier
to see if we decompose the configuration x into a deter-
ministic configuration 0110101 of its deterministic states
and a probabilistic configuration 0011001. The minimal
distance D, is 2 and T" = {2,4}. As there is just one de-
terministic token at position 3, Dg = minjcs43((j — 3)
modulo N) = 1. Let us show that, for every x & L, i.e.
r with at least two probabilistic tokens, and every en-
abled position i of z, there exists y such that z = y with
A(y) < A(z), where < is the lexicographic order.
There are two cases:

e If p; = p;—1, there is no probabilistic token at position
1 and we apply the first rule.

— If there are two consecutive deterministic tokens
at position ¢ and ¢ + 1 (for example the pattern
000) then they collide (the pattern becomes 010)
and both disappear. Then the two corresponding
distances are removed from the sum Dy which
decreases.

— If there are no consecutive tokens at these posi-
tions then, as there is no probabilistic token at
position i ( p; = Pi—1), we have d; > 1 and D,
decreases by 1.

e If p; = p;_1 then there is a probabilistic token at po-
sition i and we choose the output of the probabilistic
transition according to the following rewriting policy:

— If i belongs to T", then we change the state p; into
Pi- The probabilistic token thus moves to its right
and either D, decreases, or two tokens collide (¢
decreases).

— If i does not belong to T", then d; > 1. We keep
the probabilistic state p; unchanged and d; de-
creases by one (so does D).



Marie Duflot et al.:

WWDhDDS 2 WWHDDS 2% WWiwDDs
25 WWWHHS 2% W WEZ?-i>W WIS
ﬂ+WW?§§? WW?E% WW?HW?

%T
wl

i

5
=
wnl
‘m
o
=t
wnl
%T

?B

Fig. 3. A computation: each configuration has a single anti-
bond, which is underlined and labelled with the value of the
As-distance; the bold letter is the letter to be changed; the
arrow depicting each transition is labelled with the first de-

creasing A-component.

In all possible cases, distance A decreases, thus state-
ment Prop of Theorem 1 holds. By Theorem 1, it follows
that, whatever the starting configuration and the central
schedule are, a configuration of £ (with a single proba-
bilistic token) will be reached within a finite time with
probability 1. Note that, once a configuration of £ has
been reached, the subsequent configurations are all in £
because L is closed under —.

Appendix C: An Example of Finite Computation

Let us recall that, with our rewriting policy, once a bond
is created, it never disappears (A; never increases) and
always stays in fixed position. On the example below,
there are two bonds, say B; and By, which correspond
to the two leftmost and two rightmost letters of the con-
figurations. Between B; and B there lies an anti-bond
A. Let us explain the general evolution of A between B
and Bs. At the beginning A is oriented rightwards and
moves towards Bs until it overlaps with it. It then looses
its orientation and will become reoriented later in the
other direction. Such a U-turn requires the rewriting of
the left letter of Bs. Antibond A thus goes forth and back
between B; and Bs. The rewriting of A is finite because
every U-turn leads to the rewriting of the bond on which
it “bounces”, and a bond letter cannot be rewritten more
than 3 times before becoming E. An iterated rewriting
of A is illustrated in Figure 3. Each transition is rep-
resented by an arrow labelled with the first decreasing
component of A. A; and Az always stay constant during
the computation. The anti-bond of each configuration is
underlined and labelled with the value of As: when A
is oriented, A5 corresponds to its w-distance; otherwise,
As is 0. In the last configuration, the anti-bond
cannot be rewritten without reaching £'.
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