
Distributed Computing manusript No.

(will be inserted by the editor)

Randomized Dining Philosophers Without Fairness Assumption

?

Marie Duot, Laurent Fribourg, Claudine Piaronny

LSV, CNRS & ENS de Cahan,

61 av. du Pr�es. Wilson,

94235 Cahan edex, Frane

e-mail: fduflot,fribourg,piarog�lsv.ens-ahan.fr

The date of reeipt and aeptane will be inserted by the editor

Summary. We onsider Lehmann-Rabin's randomized

solution to the well-known problem of the dining philoso-

phers. Up to now, suh an analysis has always required a

\fairness" assumption on the sheduling mehanism: if a

philosopher is ontinuously hungry then he must eventu-

ally be sheduled. In ontrast, we modify here the algo-

rithm in order to get rid of the fairness assumption, and

we laim that the spirit of the original algorithm is pre-

served. We prove that, for any (possibly unfair) shedul-

ing, the modi�ed algorithm onverges: every omputa-

tion reahes with probability 1 a on�guration where

some philosopher eats. Furthermore, we are now able

to evaluate the expeted time of onvergene in terms

of the number of transitions. We show that, for some

\maliious" sheduling, this expeted time is at least ex-

ponential in the number N of philosophers.

1 Introdution

Reently, due to the rising risk of traÆ ongestion, there

has been an inreasing interest in providing di�erenti-

ated Internet servies, departing from the traditional no-

tion of fairness for bandwidth alloations [4,7℄. This mo-

tivates reonsidering the need for fairness assumptions,

lassial in resoure-alloation algorithms (see, e.g., hap-

ter 11 of [11℄). Here we onsider Lehmann-Rabin's ran-

domized solution to a speial ase of resoure-alloation

problem: the dining philosophers.

N philosophers, P

0

; � � � ; P

N�1

(where N is a parameter),

are seated around a table, and variously think or try to

?

This paper is a revised and extended version of a ommu-

niation given by the same authors, at 2nd IFIP Int. Conf.

on Theoretial Computer Siene (TCS�2002).

eat by using some shared forks. The problem is to �nd a

distributed protool guaranteeing that some philosopher

will eventually eat. A philosopher is only able to exeute

a step provided he is seleted by a general sheduling

mehanism. When a philosopher is sheduled, he exe-

utes exatly one ation (and nothing is done by the

others). Let L be the set of on�gurations, alled here

\legitimate", where some philosopher eats. We show here

that the algorithm reahes L within a �nite time with

probability 1. In the following, we all this property on-

vergene. (We will also employ the term `progress', whih

is often used in the ontext of dining philosophers; see,

e.g., [11℄.) Up to now, suh a property has always been

proved using a \fairness" assumption on the shedul-

ing: if a philosopher is ontinuously hungry (i.e., trying

to eat) then he must eventually be sheduled. Fairness

guarantees that there exist rounds, intervals in whih

eah philosopher has been sheduled at least one. It is

shown in [11{13,16℄ that within a onstant number of

rounds, the probability of reahing L is greater than 0.

It follows that the algorithm onverges towards a on�g-

uration in L with probability 1.

In ontrast, we onsider here arbitrary shedulings,

without any fairness assumption (so we do not use the

notion of rounds). We modify the original Lehmann-

Rabin algorithm by removing self-looping ations. We

show that the new algorithm still onverges towards L

with probability 1. This is done by onstruting a mea-

sure � over on�gurations that dereases with positive

probability at eah omputation step (that does not reah

L). We thus propose a solution to the resoure alloation

problem for dining philosophers under arbitrary shedul-

ing. We also show that the expeted time of onvergene,

in terms of individual ations, is at least exponential in

N , for some \maliious" sheduling.

2 Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption

The plan of the paper is as follows. In Setion 2 we

�rst present the kind of systems we onsider and our

method for proving onvergene when the sheduler is

arbitrary. Setion 3 presents Lehmann and Rabin's ran-

domized dining philosophers algorithm, and the hanges

introdued in our variant. The onvergene proof of our

variant without fairness, as well as a omputation of ex-

peted time of onvergene are given in setion 4. We

onlude in Setion 5.

2 Theoretial Framework

2.1 Randomized Uniform Ring Systems

The notions presented here are inspired from [9℄ and [17℄.

A randomized uniform ring system is a triple (N;�!

R

; Q)

where N is the number of proesses in the system, �!

R

is

a state transition algorithm, and Q is the alphabet, i.e.

a �nite set of proess states. The N proesses P

1

; :::; P

N

form a ring: there is an edge between two onseutive

proesses, whih means that P

i

an observe the states

q

i�1

and q

i+1

of P

i�1

and P

i+1

respetively. Calula-

tions on indies i of proesses are done modulo N . Let

Q be the state set of P

i

. The system is uniform in the

sense that �!

R

and Q are ommon to all proesses. A

on�guration is an N -tuple of proess states (or letters);

if the urrent state of proess P

i

is q

i

2 Q, then the on-

�guration of the system is x = q

1

q

2

� � � q

N

. We denote by

X the set of all on�gurations, i.e., X = Q

N

. The state

transition algorithm �!

R

is given as a set R of rules, on-

sisting of deterministi or probabilisti rewrite rules

1

. A

deterministi rule is here of one the following forms:

� q ! q

0

� qr ! q

0

r,

� rq ! rq

0

where q; q

0

, r denote states of Q.

In this paper, we only onsider probabilisti rules being

of of the form:

q !

(

q

0

0

with probability p

0

q

0

1

with probability 1� p

0

:

where q; q

0

0

; q

0

1

denote states of Q. So, we assoiate to

every probabilisti rule a random ip with two possible

outomes in f0; 1g and, aordingly, two output letters

q

0

0

; q

0

1

.

1

Rewrite rules an be more general than those desribed

here (e.g., with three letters in eah side). For the sake of

shortness, we just present the kind of rules needed for the

philosophers problem.

The left-hand side letter q is the old letter of the

rule, the right-hand side letter q

0

(with possible sub-

sripts) being its new letter of the rule. For readability,

the old and new letters will often be written in bold

within rules. A rewrite rule R of the left-hand side q is

appliable at position i of a on�guration x if the i-th

letter of x is q. Likewise, a rewrite rule R of left-hand

side qr (resp. rq) is appliable at position i if the i-th

letter of x is q and the (i+1)-th (resp. (i� 1)-th) letter

is r.

Given a on�guration x, we say that proess P

i

(or

position i) is enabled if at least one rewrite rule is applia-

ble to the i-th letter of x. Let E(x) be the set of indies of

the enabled proesses of x. We suppose heneforth that

the system has no deadlok, i.e.: 8x 2 X E(x) 6= ;.

Given x and an enabled position i of x, a transition

leads from x to the on�guration y obtained from x by

hanging the i-th letter of x equal to the old letter of

some appliable rule, say R, into the new letter. Suh a

transition is written x

i

�!

R

y (or more simply x

i

�! y). The

probability assoiated to this transition is 1 if rule R is

deterministi, or p

0

(resp. p

1

= 1�p

0

) if R is probabilisti,

the new letter being q

0

0

(resp. q

0

1

).

Without loss of understanding, we will abbreviate

heneforth the randomized uniform ring system previ-

ously denoted (N;�!

R

; Q) as�!

R

(or sometimes even more

simply as !). We now arbitrarily �x a on�guration x

0

as the initial on�guration.

A past behaviour up to step j of ! is a sequene

of transitions x

0

i

0

��!

R

i

0

x

1

i

1

��!

R

i

1

� � �

i

j�2

���!

R

i

j�2

x

j�1

i

j�1

���!

R

i

j�1

x

j

starting from x

0

. (So i

k

is the proess seleted at k+1-th

step, for all k � 0.)

A entral shedule is a funtion that assigns to every

past behaviour x

0

i

0

��!

R

i

0

� � �

i

j�1

���!

R

i

j�1

x

j

, the enabled position

of x

j

at whih a rule will be applied at step j + 1.

2

For a given starting on�guration x

0

, a given shed-

ule S and spei� outomes of the random ips F (F

is an in�nite sequene of elements of the set f0; 1g),

we get a partiular omputation of ! under S, denoted

COM

R

(x

0

;S; F), whih is an in�nite sequene of tran-

sitions of the form x

0

i

0

��!

R

i

0

� � �

i

j�1

���!

R

i

j�1

x

j

i

j

��!

R

i

j

� � � where i

j

is the proess seleted by S at j+1-th step. We shall use

the term �nite omputation to denote a �nite sequene

of transitions.

2

As usual in the dining philosophers problem [17℄, we only

fous on entral shedules (only one enabled position is se-

leted at eah step), but see Remark of setion 3.3.

Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption 3

A omputation C is fair if, in C, the state of every

proess P

i

(1 � i � N) is rewritten in�nitely often. A

shedule S is fair if, for every sequene F of outomes

of the random ips and every starting on�guration x

0

,

the omputation COM

R

(x

0

;S; F) is fair.

An L-traversing omputation C is a omputation of

the form x

0

i

0

��!

R

i

0

� � �

i

j�1

���!

R

i

j�1

x

j

i

j

��!

R

i

j

� � � suh that x

j

2 L

for some j � 0.

The funtion COM

R

assoiates with every shedule

S and every starting on�guration x

0

a probability dis-

tribution on the spae of omputations, the probability

Pr of a set G of omputations being de�ned as the proba-

bility of the set of sequenes of random ips F suh that

COM

R

(x

0

;S; F) is in G. For a more formal de�nition

of the probabilisti spae onsidered, based on partiu-

lar omputation sets alled ones or basi ylinder sets,

and for a preise haraterization of the measurable om-

putation sets (i.e. sets for whih the probability is well

de�ned), see [18℄ (.f. [10℄).

As pointed out in [17℄, given a shedule S and a start-

ing on�guration x

0

, the set of L-traversing omputa-

tions has a well-de�ned probability:

Pr(f F j C = COM

R

(x

0

; S; F) is L-traversing g),

whih will be abbreviated in the following as

Pr(x

0

S

�!

R

�

L).

Given a shedule S, we are interested in proving the

following progress (or onvergene) property: no mat-

ter whih initial on�guration x

0

one starts from, the

probability for a omputation via �!

R

under S to be L-

traversing, is 1, i.e.: Pr(x

0

S

�!

R

�

L) = 1.

A suÆient ondition for ensuring suh a progress

property is given in setion 2.2.

Example: In [2℄, Beauquier, Gradinariu and Johnen present

a randomized token irulation algorithm whih ensures

onvergene towards the set of on�gurations with one

probabilisti token whatever the shedule is. We onsider

the ase where the number of proesses is odd. The state

of a proess is a ouple (d; p) where d is a deterministi

state and p a probabilisti state, with d; p 2 f0; 1g. In

the following, d (resp. p) denotes the omplementary of

d (resp. p). The transition system ! is de�ned by:

(d; p)(d;p) ! (d; p)(d;p)

(d; p)(d;p) !

(

(d; p)(d;p) with probability 1=2

(d; p)(d;p) with probability 1=2

Given a on�guration x, let (d

i

; p

i

) denote the state

at position i in x. We say that there is a deterministi

(resp. probabilisti) token at position i if d

i

= d

i�1

(resp.

p

i

= p

i�1

). The enabled positions are those with a de-

terministi token. Let us onsider the on�guration x =

(0; 1)(1; 0)(1; 0)(0; 1)(1; 1). The only enabled position is 3

(d

3

= d

2

= 1). Depending on the outome of the random

ip, we have x ! y

1

= (0; 1)(1; 0)(0; 0)(0; 1)(1; 1) with

probability 1=2, and x! y

2

= (0; 1)(1; 0)(0; 1)(0; 1)(1; 1)

with probability 1=2. The set L of legitimate on�gura-

tions is de�ned as the set of on�gurations with a single

probabilisti token.

2.2 A SuÆient Condition for Progress

In [6℄, we gave a suÆient ondition for ensuring progress,

whatever the entral shedule is. This result is restated

here as follows:

Theorem 1. Given a ring system �!

R

with no deadlok,

if there exist a measure � and an order � suh that

Prop: 8x =2 L 8i 2 E(x)

9y (x

i

�!

R

y ^ (y 2 L _�(y)� �(x))),

then, for any entral shedule S: 8x Pr(x

S

�!

R

�

L) = 1.

For the sake of self ontainment, a proof of Theo-

rem 1 is given in Appendix A. The existential quanti�-

ation on y in Prop orresponds to a \rewriting poliy"

for probabilisti transitions. Prop states that, whatever

the seleted proess is, we an hoose the output of the

appliable probabilisti rule so that � dereases. Theo-

rem 1 an be seen as a restrited version of Theorem 3.5

of [3℄ (f. Theorem 1 of [1℄). An example applying Theo-

rem 1 to Beauquier-Gradinariu-Johnen's algorithm (see

example of setion 2.1) is given in appendix B.

In setion 4, we will apply a variant of Theorem 1

(viz., Theorem 3) in order to prove the progress prop-

erty for a variant of Lehmann-Rabin's algorithm, for all

(entral) shedules, even the unfair ones.

3 Randomized Dining Philosophers With and

Without Fairness

3.1 The Dining Philosophers Problem

The dining philosophers problem was introdued by Di-

jkstra [5℄, and has beome a paradigm for a large lass

of onurreny ontrol problems. The idea is as follows:

there are N philosophers sitting around a table (N is a

parameter), with one fork between eah pair of neigh-

bours. A philosopher an either think (having no inter-

ation with his neighbours) or try to eat. To do so, a

4 Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption

philosopher needs both his left fork and his right fork. As

both forks are eah shared with a neighbour, a philoso-

pher an eat only if none of his neighbours holds any of

these forks. Eah philosopher may address at most one

shared variable through a rule. Eah rule is a `test and

set' operation, in whih a philosopher reads the urrent

value of the shared variable and assigns it a new value,

whih is a funtion of the old value and the philosopher's

urrent internal state. The problem is to �nd an individ-

ual algorithm (set of rules) ommon to all the philoso-

phers that guarantees the following progress property:

as soon as one philosopher is hungry, some philosopher

(not neessarily the same) will eat eventually, whatever

the shedule is.

Lehmann and Rabin have shown in [17℄ that this

problem has no deterministi, truly distributed (s.t. eah

philosopher may address only its internal state and one

shared variable at a time) and symmetri (s.t. all philoso-

phers start in the same state) solution. This is beause

there exists always a maliious shedule that selets philoso-

phers in a round-about manner so that symmetry is al-

ways met at the end of eah round (whih prevents some

philosopher to hold simultaneously two forks). There-

fore, they inorporate random hoies into the individual

philosopher's algorithm, ensuring that, with probability

one, the symmetry will be broken. Their solution, de-

sribed in setion 3.2, however assumes that the shedul-

ing is fair.

3.2 Lehmann-Rabin's Algorithm

We present Lehmann-Rabin's probabilisti dining philoso-

phers algorithm [17℄ along the lines of [13℄.

The state set of eah philosopher is

Q = fT;H;

 �

W;

�!

W;

 �

S ;

�!

S ;

 �

D;

�!

D;E;L

1

; L

2

g. The letter T

represents thinking, H that a philosopher is hungry,

 �

W

(resp.

�!

W) that a philosopher waits in order to attempt to

pik up the left (resp. right) fork next time he is shed-

uled,

 �

S (resp.

�!

S) that he is holding only the left (resp.

right) fork,

 �

D (resp.

�!

D) that he will put down the left

(resp. right) fork next time he is sheduled, E that he

eats, L

1

that he will put down one fork (say, the right

one), and L

2

the seond one.

The details relating to the shared forks are omitted

here. Thus, for example, if P

i

is in state

 �

S or P

i�1

is in state

�!

S , it means the variable representing the

shared fork (between P

i

and P

i�1

) has been set to a

value `taken'. Note that, beause of the uniqueness of

the shared variable addressed by a rule, a philosopher

annot go diretly, e.g., from state

�!

S to H without

passing by

�!

D : he must disover that the left fork is

held by his neighbour through a �rst operation before

putting down the right fork on the table. In this model-

ing, not all on�gurations of Q

N

are possible, as a fork

an be taken by at most one philosopher. More pre-

isely, we say that a on�guration is admissible i� it

does not ontain any substring of the form

�!

�

 �

� , with

�!

� 2 f

�!

S ;

�!

D;E;L

1

g;

 �

� 2 f

 �

S ;

 �

D;E;L

1

; L

2

g. It is easy

to see that the set of admissible on�gurations is losed

via appliation of any rule desribed below. Heneforth,

we will assume that the starting on�guration, and hene

the subsequent ones, are admissible.

The set R of rewrite rules is:

Q0: T ! T

Q1: T ! H

R0: H !

 �

W with probability 1=2

or

�!

W with probability 1=2.

R1: :

��!

hold

 �

W ! :

��!

hold

 �

S

R2:

��!

hold

 �

W !

��!

hold

 �

W

R3:

�!

W :

 ��

hold !

�!

S :

 ��

hold

R4:

�!

W

 ��

hold !

�!

W

 ��

hold

R5:

 �

S :

 ��

hold ! E :

 ��

hold

R6:

 �

S

 ��

hold !

 �

D

 ��

hold

R7: :

��!

hold

�!

S ! :

��!

hold E

R8:

��!

hold

�!

S !

��!

hold

�!

D

R9:

 �

D ! H

R10:

�!

D ! H

R11: E! L

1

R12: L

1

! L

2

R13: L

2

! T

where

��!

hold (resp.

 ��

hold) denotes any state of Q or-

responding to a philosopher holding his right fork (resp.

left fork), i.e.

�!

S ,

�!

D , E or L

1

(resp.

 �

S ,

 �

D , E, L

1

or

L

2

), and :

��!

hold (resp. :

 ��

hold) denotes any state of the

omplementary set.

The rules desribe the behaviour of a seleted philoso-

pher as follows: initially he thinks \repeatedly" (Q0); he

beomes hungry (Q1); he deides randomly whih fork

to pik up �rst (R0); next he persists with his deision

(R2 or R4) until he �nally piks it up when available (R1

or R3), only putting it down later if he �nds that his

other fork is already held by his neighbour (R6 followed

by R9, or R8 followed by R10); if he �nds that his other

fork is not held, he takes it and eats (R5 or R7). After

that, he leaves the eating phase (R11), puts down the

left fork (R12), then the right fork (R13), going bak to

Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption 5

thinking phase. This behaviour is depited on �gure 1

(drawn from [15℄).

The legitimate set L is here the set of all (admissible)

on�gurations of Q

�

EQ

�

, i.e. the on�gurations in whih

at least one philosopher is eating.

3.3 Our Variant: Removal of Stuttering Rules

Let us observe that rule Q0 (resp. R2, R4) is \stuttering"

in the sense that the old and new letters of the rule

oinide. When a seleted philosopher is thinking (resp.

waiting for piking up a �rst fork held by a neighbour),

a transition that does not hange the on�guration may

our. This is depited by a self-loop on state T (resp.

 �

W ,

�!

W) in �gure 1. We modify Lehmann-Rabin's algorithm

mainly by removing stuttering rules Q0, R2 and R4:

� without Q0, when a philosopher in state T is seleted,

his state always beomes H via Q1. States T and H

then play the same role and will be merged together

in the following;

� without R2 (resp. R4), when a philosopher waits for a

�rst fork that is held by a neighbour, i.e., is in state

 �

W (resp.

�!

W) and his left (resp. right) neighbour in

state

��!

hold (resp.

 ��

hold), he is no longer enabled: no

rule applies to him. In suh a situation, the philoso-

pher annot be seleted anymore. Note that this dif-

fers from Lehmann-Rabin's original algorithm where

every proess an always be seleted.

Sine the state T is merged with H , the new state

set Q

0

is Q � fTg and rule R13: L

2

! T beomes

R13': L

2

! H . The rewrite system R is transformed

into R

0

= R [fR13'g � fQ0; Q1; R2; R4; R13g. The be-

haviour of a seleted philosopher under R

0

is depited

on �gure 2. Aordingly, the new legitimate set L

0

is

(the set of admissible on�gurations in) Q

0�

EQ

0�

.

Disussion.

In Lehmann-Rabin's algorithm, a non-eating philosopher

either thinks (state T) or tries to eat (states fH;W;S;Dg).

In our version of the algorithm, as the state T has been

merged withH , this philosopher an only try to eat. This

feature may be seen as a limitation. Atually, sine we

have no fairness assumption on the sheduling, a philoso-

pher an be inde�nitely ignored, thus behaving in state

H as he used to do originally in state T (i.e., not trying

to pik up a fork). We thus laim that our modi�ed al-

gorithm is similar in spirit to the original one.

The original progress property of Lehmann-Rabin's al-

gorithm an be stated as follows:

for every fair (entral) shedule S and every on�g-

uration x 2 Q

�

fH;W;S;DgQ

�

; P r(x

S

�!

R

�

L) = 1.

Surprisingly, as shown in setion 4, for our modi�ed ver-

sionR

0

ofR, the progress property holds with no fairness

assumption, i.e.:

Theorem 2. For any arbitrary entral shedule S and

every x 2 Q

0�

,

Pr(x

S

��!

R

0

�

L

0

) = 1.

Theorem 2 will be proven in setion 4 using a variant

of Theorem 1, by exhibiting an appropriate measure �.

Remark:

The observation done in [17℄ (p.340) for relaxing the as-

sumption of entral sheduling is independent of their

assumption of fairness, hene applies also in our ontext:

\No two rules take plae at exatly the same time;

this restrition ould be easily lifted to allow rules on

di�erent proesses, as long as they do not address the

same shared variable, to take plae exatly at the same

time."

4 Proof of Progress Without Fairness

We are going to exhibit a measure � on on�gurations

that will haraterize in some sense the \distane" of the

urrent on�guration x to L

0

. We will show that, with

an appropriate rewriting poliy, � dereases at eah step

of omputation. More preisely, we will show that, for a

ertain hoie of the output of probabilisti rule R0 (i.e.,

either

 �

W or

�!

W , depending on the ontext of H in x):

� the appliation of R0 makes � derease,

� the appliation of any other (deterministi) rule makes

� derease or leads to L

0

.

SymbolW denotes a letter of f

 �

W;

�!

Wg. Likewise, S (resp.

D) denotes a letter of f

 �

S ;

�!

S g (resp. f

 �

D;

�!

Dg). Let

 �

Q

0

=

fH;

 �

W;

 �

S ;

 �

Dg and

�!

Q

0

= fH;

�!

W;

�!

S ;

�!

Dg. (Note that

 �

Q

0

\

�!

Q

0

= fHg.)

4.1 Ideas behind the Proof

In order to de�ne �, we exploit the fat that, after a

�nite time, any non-legitimate on�guration an be de-

omposed into:

� \bonds", i.e. strings of two letters in

 �

Q

0

�!

Q

0

.

� \anti-bonds", that are, roughly speaking, strings of

two letters in

�!

Q

0

 �

Q

0

.

6 Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption

E

 �

D

�!

D

 �

S

�!

S

 �

W

�!

W

HT

L

1

L

2

Q0

R2

R4

Q1

R3

R1

R0

R6

R8

R5

R7

R9

R10

R11R13

R12

Fig. 1. Illustration of Lehmann and Rabin's algorithm.

E

 �

D

�!

D

 �

S

�!

S

 �

W

�!

W

H

L

1

L

2

R3

R1

R0

R6

R8

R5

R7

R9

R10

R11

R13'

R12

Fig. 2. Illustration of our variant algorithm.

� letters belonging to neither a bond nor an anti-bond.

(These letters are in fW;S;Dg

�

, sine every H be-

longs to a bond or an anti-bond; see Proposition 2

below.)

If at some point the on�guration has no bond, for ex-

ample

 �

W

N

, then, the �rst time an H is produed, a

bond appears. Our rewriting poliy aims at preserving

the bonds and their position, i.e., replaing via R0: H

�!

�

into

 �

W

�!

� , and

 �

�H into

 �

�

�!

W. With this rewriting pol-

iy, a bond never disappears one it has been reated.

A bond orresponds to the situation desribed in [17℄,

in whih some philosopher's last random ip is left while

his right neighbour's last random ip is right. We know

that in this ase, after a �nite number of rewritings of

the bond, one of the two philosophers will eat (Lemma

3, p.342, in [17℄). In Lehmann-Rabin's ontext, the proof

of progress is then almost done beause, by fairness as-

sumption on the sheduling, every bond is guaranteed to

be in�nitely rewritten along any (in�nite) omputation.

Still in our ontext, we have to show that no in�nite

rewriting an our outside bonds (i.e., at anti-bond po-

sitions or between bonds and anti-bonds). We shall use

the fat that, after a bond has been initially reated,

every on�guration is a repeated sequene of the form:

 �

�

1

�!

�

1

�!

Q

0�

�!

 �

Æ

 �

Q

0�

 �

�

2

�!

�

2

or

 �

�

1

�!

�

1

 �

�

2

�!

�

2

.

In the �rst ase, an anti-bond

�!

 �

Æ lies between two on-

seutive bonds; in the seond ase, the two onseutive

bonds are adjaent. We shall also use a measure �, de-

�ned as a 7-uple (�

1

; � � � ; �

7

). Eah omponent �

i

is,

roughly speaking, a funtion from Q

N

in N, whih makes

� derease lexiographially at eah step of rewriting

(unless L

0

is reahed). This is shown by a tedious ase

analysis (see setion 4.4), the main ases of whih are

summarized below.

First onsider the ase where rewriting ours at a

bond position. As already notied, thanks to our rewrit-

ing poliy, �

1

is preserved. On the other hand, rewrit-

ing of D into H , H into W , or W into S dereases �

2

(beause �

2

(D) > �

2

(H) > �

2

(W) > �

2

(S)) while

rewriting of S into E yields a on�guration of L

0

. There-

fore the rewriting of a bond always dereases � or yields

a legitimate on�guration.

Let us now sketh out why � also dereases when

anti-bonds are rewritten. Our rewriting poliy for anti-

Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption 7

bonds aims at keeping them at the same position. For

example, an anti-bond of the form H

 �

Æ will be written

into

�!

W

 �

Æ , and

�!

H into

�!

 �

W. Besides, anti-bonds are

of two kinds:

- unoriented (i.e. of the form H

 �

W ,

�!

W

 �

W or

�!

WH), or

- leftward oriented (i.e. of the form f

�!

S ;

�!

Dg

 �

Æ) or

rightward oriented (i.e. of the form

�!

 f

 �

S ;

 �

Dg).

An unoriented anti-bond annot be rewritten twie with-

out beoming oriented (thus dereasing the opposite num-

ber�

4

of oriented anti-bonds). Furthermore, an oriented

anti-bond of the form, say f

�!

S ;

�!

Dg

 �

Æ , when rewritten,

an either:

� stay at the same position with the same orientation,

whih dereases �

6

(the sum of the oeÆients of anti-

bond letters),

� stay at the same position but loosing its orienta-

tion, whih dereases �

3

(aounting for the number of

fH;

�!

Wg

�!

D and

 �

DfH;

 �

Wg), or

� move one position left with the same orientation,

whih dereases�

5

(aounting for the distane between

oriented anti-bonds and their losest bonds).

For example, the rewriting of

�!

S

 �

W into

�!

D

 �

W de-

reases �

6

(beause �

6

(S) > �

6

(D)). On the other

hand, the rewriting of �

�!

D

 �

W into �H

 �

W dereases �

3

or

�

5

depending on the letter � to the left of the anti-bond:

if � is

�!

W , then

�!

W

�!

D

 �

W rewrites to

�!

WH

 �

W , the anti-bond

beomes unoriented and�

3

dereases (beause an our-

rene of

�!

W

�!

D disappears); if � is

�!

S , then

�!

S

�!

D

 �

W rewrites

to

�!

SH

 �

W , the anti-bond beomes

�!

SH, one position to

the left, and �

5

dereases. In any ase, the rewriting of

an anti-bond dereases �.

Suppose �nally that rewriting ours between bonds

and anti-bonds. Reall that letters between bonds and

anti-bonds are only of the form

 �

D ,

 �

W ,

 �

S or symmet-

rially (see Proposition 2). Rewriting of D into H re-

ates a new bond (thus dereasing �

1

); rewriting of W

into S, or S into D dereases �

7

(beause �

7

(W) >

�

7

(S) > �

7

(D)) while rewriting of S into E yields a le-

gitimate on�guration. In any ase, rewriting dereases

� or yields a on�guration of L

0

.

Therefore, at any position, every step of rewriting de-

reases � unless L

0

is reahed. This ends our informal

explanation of why � always dereases.

A typial example of omputation, with the assoi-

ated evolution of �, is given in Appendix A. Note that

every H of a given on�guration x an belong a priori

to two \overlapping" bonds of x (see setion 4.2). In or-

der to solve suh ambiguities, every on�guration x will

be oupled with two lists: a bond list � de�ned from x,

and an anti-bond list de�ned from x and �. � will be

de�ned for every triple (x; �;). In order to prove the

progress property, we will use a version of Theorem 1

reformulated as follows:

Theorem 3. Given a ring system ��!

R

0

with no deadlok

, if there exist a measure � and an order � suh that

Prop': 8(x; �;) with x =2 L

0

;8i 2 E(x) 9(x

0

; �

0

;

0

)

(x

i

��!

R

0

x

0

^ (x

0

2 L

0

_ �(x

0

; �

0

;

0

)� �(x; �;)));

then, for any entral shedule S:

8x Pr(x

S

��!

R

0

�

L

0

) = 1.

Setions 4.2 to 4.4 are devoted to the formal proof of

statement Prop' (see Proposition 3). The on�gurations

will be impliitly non-legitimate (i.e, belong to (Q

0

�

fEg)

�

). For the sake of simpliity, we will also fous on

on�gurations whih do not ontain any letter L

1

or L

2

(obtained when a philosopher, after eating, puts down

his forks, one after another). This is not a restrition

as long as no philosopher has eaten yet. We explain at

the end of setion 4.4 how this proof an be modi�ed to

onsider also states L

1

and L

2

.

4.2 Bonds and �

1

, �

2

, �

3

A bond in a on�guration x is a substring of x made of

two onseutive letters in

 �

Q

0

�!

Q

0

.

The index of a bond

 �

�

�!

� is the position of its �rst letter

 �

� . Note that, due to letter H , two bonds may overlap:

for example, in expression

 �

WH

�!

S there are two over-

lapping bonds

 �

WH and H

�!

S . In the following, given a

on�guration x, we fous on a sequene � of indies of

disjoint bonds of x, i.e., suh that i+ 2 � j, for all on-

seutive indies i and j of �. We suppose also that � is

maximal, i.e., suh that between two onseutive indies

i; j 2 � there is no bond of index k with i+2 � k � j�2.

A maximal sequene � of indies of disjoint bonds of x is

alled a bond list of x. Note that suh a list is not unique.

Bond(�) is de�ned as the set of letters of x at position

` suh that ` = i or ` = i+ 1 for some i 2 �.

Example: For the on�guration

 �

W

�!

W

 �

S

 �

WH

�!

D , there are

two possible bond lists �

1

= f1; 4g and �

2

= f1; 5g.

Bonds are

 �

W

�!

W and

 �

WH for �

1

, and

 �

W

�!

W and H

�!

D for

�

2

.

Heneforth, every non-legitimate on�guration x will

be provided with a bond list �. The bond list �

0

of the

initial on�guration x

0

is arbitrary. Given a on�gura-

tion x, a bond list � of x, and a rewriting of x into x

0

via some rule of R

0

, the bond list �

0

assoiated with x

0

is onstruted from � as follows:

8 Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption

� If the rewriting hanges a H 2 Bond(�) via proba-

bilisti rule R0, we apply the following rewriting pol-

iy:

� if H is the �rst letter of a bond of �, then H

is hanged into

 �

W ,

� if H is the seond letter of a bond of �, then

H is hanged into

�!

W .

Bonds of � are thus preserved, and we let: �

0

= �.

� If the rewriting reates a new bond of index k disjoint

from every bond of �, then �

0

is � [fkg.

� In all other ases, we let �

0

= �.

We now de�ne �

1

, �

2

, �

3

as follows:

�

1

: Let �

1

(x; �) be N minus the number of elements

of �.

The bond oeÆient is 3 for D, 2 for H , 1 for W

and 0 for S. The weight of a bond

 �

�

�!

� is the sum of

the bond oeÆients of

 �

� and

�!

� : for example, the

weight of bond HH is 4.

�

2

: We de�ne �

2

(x; �) as the sum of the weights of all

the bonds of x indexed by �.

�

3

: The omponent �

3

(x) is de�ned as the number of

two-letter strings of the form

 �

DH ,

 �

D

 �

W ,H

�!

D or

�!

W

�!

D

of x.

Example: In the on�guration

 �

W

�!

W

 �

S

 �

WH

�!

D of the pre-

vious example, we have �

1

= 4, �

2

= 5 for �

1

= f1; 4g,

and �

1

= 4, �

2

= 7 for �

2

= f1; 5g. In both ases,

�

3

= 1.

4.3 Anti-bonds and �

4

, �

5

, �

6

Given a on�guration x and a bond list � of x, an anti-

bond is a substring of two letters of x

�!

 �

Æ 2

�!

Q

0

 �

Q

0

suh

that

�!

 62 Bond(�) or

 �

Æ 62 Bond(�). The last ondition

means that

�!

 and

 �

Æ do not belong simultaneously to

bonds of �.

The index of an anti-bond of x is the position of its

�rst letter (

�!

 in this desription).

Consider two bonds

 �

�

�!

� and

 �

�

0

�!

�

0

indexed by on-

seutive index i and i

0

of �. Then either:

�

 �

�

�!

� and

 �

�

0

�!

�

0

are ontiguous (i.e: i

0

= i + 2)

and there is no anti-bond in between (i.e: no anti-bond

indexed by j with i+ 1 � j � i

0

� 1), or

�

 �

�

�!

� and

 �

�

0

�!

�

0

are not ontiguous (i.e: i

0

� i+3).

In the latter ase, it is easy to see that, between

 �

�

�!

� and

 �

�

0

�!

�

0

, there is no substring of the form � � �

 �

 � � �

�!

Æ � � �

with

 �

 2

 �

Q

0

and

�!

Æ 2

�!

Q

0

. (Otherwise, there would be

a disjoint bond between

 �

�

�!

� and

 �

�

0

�!

�

0

, and � would

not be maximal.) Hene the substring between

 �

�

�!

� and

 �

�

0

�!

�

0

is of the form

�!

Q

0�

 �

Q

0�

with either no H (ase (H0))

or just one H (ase (H1)). More preisely, the substring

delimited by the two bonds is of the form:

� (H0):

 �

�

�!

�

�!

I

 �

I

 �

�

0

�!

�

0

, or

� (H1):

 �

�

�!

�

�!

I H

 �

I

 �

�

0

�!

�

0

,

with

�!

I 2 f

�!

W;

�!

S ;

�!

Dg

�

and

 �

I 2 f

 �

W;

 �

S ;

 �

Dg

�

. Let

�!

�

and

 �

� be the last letter of

�!

�

�!

I and the �rst letter of

 �

I

 �

�

0

respetively. Between the two bonds, there is:

� (H0): a single anti-bond, viz:

�!

�

 �

� , or

� (H1): two overlapping anti-bonds, viz:

�!

� H and

H

 �

� .

Given �, we onstrut a so-alled anti-bond list of x as

a set of indies obtained by putting, for every ouple of

non-ontiguous onseutive bonds indexed by �:

� the index of

�!

�

 �

� in ase (H0),

� the index of either

�!

� H or H

 �

� in ase (H1).

Given a on�guration x and a bond list � of x, an

anti-bond list of x, is thus a maximal set of indies j

of anti-bonds of (x; �). More preisely:

Proposition 1. Given a on�guration x and a bond list

� of x, an anti-bond list of x, is suh that, for any

ouple of onseutive indies i; i

0

2 �, either:

� the bonds indexed by i and i

0

are ontiguous (i

0

=

i+2), in whih ase no anti-bond of lies between them

(i.e., no j 2 suh that i+ 1 � j � i

0

� 1), or

� they are not ontiguous (i

0

� i+ 3), in whih ase

exatly one anti-bond indexed by j 2 lies between them

(i.e., 9! j 2 : i+ 1 � j � i

0

� 1).

Note that, in any ase, the ourrene of H (if any)

between

 �

�

�!

� and

 �

�

0

�!

�

0

always belongs to an anti-bond

indexed by an element of . Formally:

Proposition 2. For a given on�guration x 62 L

0

, a bond

list � of x and an anti-bond list , every H of x belongs

to a bond of � or an anti-bond of .

Example: For the on�guration

�!

WH

 �

S

�!

D

�!

W

 �

W

 �

D , we

have one bond list � = f3; 7g and two possible anti-

bond lists

1

= f1; 5g and

2

= f2; 5g. Anti-bonds are

�!

WH and

�!

W

 �

W for

1

, H

 �

S and

�!

W

 �

W for

2

.

Heneforth, every on�guration x oupled with a bond

list �, will be provided with an anti-bond list . The anti-

bond list

0

assoiated with the initial ouple (x

0

; �

0

) is

arbitrary. Given a ouple (x; �) and an assoiated anti-

bond list , the rewriting of x into x

0

via probabilisti

rule R0 preserves � when a bond is rewritten, using the

rewriting poliy desribed in setion 4.2. Rewriting via

R0 also preserves using the following rewriting poliy:

� if H is the 1st letter of an anti-bond of , then H

is hanged into

�!

W ;

Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption 9

� if H is the 2nd letter of an anti-bond of , then H

is hanged into

 �

W .

It is easy to see that this rewriting poliy is ompati-

ble with the one for bonds: if H is shared by a bond of �

and an anti-bond of , both rewriting poliies agree for

rewriting H either into

 �

W or

�!

W . For example, if H is in

 �

SH

 �

S , the expression rewrites to

 �

S

�!

W

 �

S . The rewriting

of x into x

0

via the other rules transforms � into �

0

as ex-

plained in the previous paragraph, and into

0

where

0

= exept in some ases where D is replaed by H

via R9 or R10. (These ases are made expliit in the ase

analysis of the proof of Proposition 3 in setion 4.4.)

We say that an anti-bond is oriented leftwards (resp.

oriented rightwards) if it is of the form f

�!

S ;

�!

Dgf

 �

W;Hg

(resp. f

�!

W;Hgf

 �

S ;

 �

Dg).

Given a bond list � and an anti-bond A of index k

oriented leftwards (resp. rightwards), the �-distane of

A is k� i (resp. i� k) where i is the index of the losest

bond of � to the left (resp. right) of A.

We now de�ne �

4

; �

5

; �

6

as follows:

�

4

: Let �

4

(x;) be N minus the number of oriented

anti-bonds of x indexed by .

�

5

: Let �

5

(x; �;) be the sum of �-distanes of all the

oriented anti-bonds of .

The anti-bond oeÆient is 3 for H , 2 for W , 1 for S

and 0 for D. The weight of an anti-bond

�!

�

 �

� is the sum

of the anti-bond oeÆients of

�!

� and

 �

� : for example,

the weight of H

 �

W is 5.

�

6

: Let �

6

(x;) be the sum of the weights of all the

anti-bonds of x indexed by .

Example: In the on�guration

�!

WH

 �

S

�!

D

�!

W

 �

W

 �

D of the

previous example, we have �

4

= 7(= N), �

5

= 0, �

6

=

9 for

1

= f1; 5g, and �

4

= 6, �

5

= 1, �

6

= 8 for

2

= f2; 5g. In

1

no anti-bond is oriented. In

2

, the

anti-bondH

 �

S is oriented rightwards. Its �-distane with

bond

 �

S

�!

D is 1.

4.4 Measure � and Progress Proof

The WSD-oeÆient is 2 for W , 1 for S and 0 for D.

�

7

: Let �

7

(x) be the sum of the WSD-oeÆients of

all the letters of x distint from H .

Example: In the on�guration

�!

WH

 �

S

�!

D

�!

W

 �

W

 �

D , as there

are one S and three W , we have �

7

= 7.

Let us now de�ne �:

�: Given a on�guration x 62 L

0

, a bond list � and an

anti-bond list , measure � is de�ned as a 7-tuple

(�

1

; �

2

; �

3

; �

4

; �

5

; �

6

; �

7

).

To prove that the measure � dereases at eah step

for our rewriting poliy, we will use the following lemma:

Lemma 1. Consider a on�guration x 62 L

0

, a bond list

� of x, and a on�guration x

0

suh that x ! x

0

for the

bond list �

0

of x

0

onstruted as desribed before. If �

1

and �

2

stay onstant for this transition, then �

3

(x

0

) �

�

3

(x).

Proof. By ontraposition. Given x 62 L

0

, a bond list �

and a on�guration x

0

suh that x ! x

0

with �

3

(x

0

) >

�

3

(x), let us show that there exists a bond list �

0

of x

0

suh that�

1

(x

0

; �

0

) < �

1

(x; �) or�

2

(x

0

; �

0

) < �

2

(x; �).

Sine �

3

(x

0

) > �

3

(x) by assumption, a pattern of

the form f

�!

W;Hg

�!

D or

 �

Df

 �

W;Hg must have appeared in

x

0

after rewriting of x. By symmetry, we an onsider

only the ase x

0

= � � � f

�!

W;Hg

�!

D � � � . It implies that x =

� � ��� � � � where �; � 2 Q

0

are suh that �� rewrites to

f

�!

W;Hg

�!

D . Hene, either:

� � = f

�!

W;Hg and � is hanged into

�!

D , or

� � is hanged into

�!

W and � =

�!

D , or

� � is hanged into H and � =

�!

D .

The 1st ase is impossible, beause it would mean � =

�!

S , and a rule �

�!

S ! �

�!

D an be applied only if � 2

��!

hold,

whih is not true here.

In the 2nd ase, the rule applied is R0 and � = H then

�� = H

�!

D and �

3

(x

0

) = �

3

(x) , whih ontradits our

assumption.

Let us onsider the 3rd ase: �� = �

�!

D hanged intoH

�!

D .

This means that � is of the form D. We have to onsider

two subases: � 2 Bond(�) or � 62 Bond(�). If � 2

Bond(�), then we set �

0

= � and we have �

2

(x

0

; �

0

) <

�

2

(x; �). If � 62 Bond(�), then � =

�!

D 62 Bond(�) (as

it annot be the �rst letter of a bond).The letter � must

be oriented rightwards: � =

�!

D . (Otherwise �� =

 �

D

�!

D

would be a bond of x, disjoint from Bond(�) sine it does

not ontain a H .) So �� =

�!

D

�!

D is hanged into H

�!

D . A

new bond H

�!

D (disjoint from �) is thus reated at index,

say k. We have �

0

= �[fkg, hene�

1

(x

0

; �

0

) < �

1

(x; �).

In every ase, we showed that: if �

3

(x

0

) > �

3

(x)

then �

1

(x

0

; �

0

) < �

1

(x; �) _�

2

(x

0

; �

0

) < �

2

(x; �). ut

By Proposition 2, any on�guration an be deom-

posed into bonds, anti-bonds and W;S;D-letters. Using

this fat, it an be shown by ase analysis that, under

our rewriting poliy, for all (x; �;), � dereases when

x rewrites to x

0

and lists �

0

and

0

, assoiated to x

0

, are

onstruted from � and as desribed in setions 4.2

10 Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption

and 4.3. Formally, let � be the lexiographi extension

of <. We have:

Proposition 3. For every x 62 L

0

, every bond list � and

anti-bond list of x, and every position i in E(x), there

exist a on�guration x

0

, a bond list �

0

and an anti-bond

list

0

of x

0

suh that:

x

i

��!

R

0

x

0

^ (x

0

2 L

0

_ �(x

0

; �

0

;

0

)� �(x; �;)).

Proof. Consider a non-legitimate on�guration x, a list

� of x, and an anti-bond list . Suppose that x

i

��!

R

0

x

0

by

applying the rewriting poliy desribed in the previous

subsetions used for probabilisti rule R0. To prove the

theorem, we need to onsider only x

0

62 L

0

(so rules R5

and R7 are not used), and x 62 L

0

(so rule R11 is not

used). In a �rst time, we assume that x does not ontain

any L

1

or L

2

(so rules R12 and R13' are not used). We

are going to show that, for any rule of the form S ! D

(i.e.: R6, R8), D ! H (i.e.: R9, R10), H !W (i.e.: R0) or

W ! S (i.e.: R1, R3), we have �(x

0

; �

0

;

0

)� �(x; �;).

The proof is done by a ase analysis depending on the

loation of the letter hanged by rewriting: inside a bond,

inside an anti-bond (but not a bond), or anywhere else.

In the following, when we say that a omponent �

i

(2 � i � 7) of � dereases, we impliitly mean that

the previous omponents (�

j

for j < i) stay onstant.

When hanges in � or are not spei�ed, then �

0

= �

and

0

= . If the rewriting ours:

1. In a bond

 �

�

�!

� of �:

� rewriting via probabilisti rule H !W (R0) pre-

serves �

1

thanks to our rewriting poliy, and de-

reases �

2

.

� rewriting via D ! H or W ! S dereases �

2

.

� rewriting of

 �

� via R6:

 �

S !

 �

D is impossible sine

the right neighbour

�!

� annot be

 ��

hold. Symmetri-

ally, rewriting of

�!

� via R8:

�!

S !

�!

D is impossible

beause the left neighbour

 �

� annot be

��!

hold.

2. In an anti-bond A of , indexed by i:

(a) If A is a �-disjoint anti-bond

�!

 �

Æ (

�!

 2 f

�!

W;

�!

S ;

�!

Dg

and

 �

Æ 2 fH;

 �

Wg, or

�!

 2 fH;

�!

Wg and

 �

Æ 2

f

 �

W;

 �

S ;

 �

Dg), then �

1

and �

2

stay onstant, and

from lemma 1, �

3

annot inrease. We have sev-

eral subases.

� A = H

 �

W andH is rewritten: with our rewrit-

ing poliy we obtain

�!

W

 �

W and �

6

dereases.

� A = H

 �

W and

 �

W is rewritten: we obtain H

 �

S

and �

4

dereases.

� A =

�!

W

 �

W : we obtain

�!

S

 �

W or

�!

W

 �

S , and �

4

dereases.

� A =

�!

S

 �

W : sine

 �

W annot be rewritten, we

obtain

�!

D

 �

W and �

6

dereases.

� A = H

 ��

hold and H is rewritten: with our

rewriting poliy we obtain

�!

W

 ��

hold, and �

6

dereases.

� A = H

 �

S and

 �

S is rewritten: �

6

dereases.

� A = H

 �

D and

 �

D is rewritten: a new dis-

joint bond HH is reated with index i. We

let �

0

= � [fig, thus dereasing �

1

.

0

is an

anti-bond list assoiated with (x

0

; �

0

), hosen

arbitrarily.

� A =

�!

D

 �

W : A is an anti-bond oriented left-

wards. Sine

 �

W annot be rewritten, A is

rewritten via

�!

D ! H into H

 �

W . The left

neighbour of A is a letter

�!

� 2

�!

Q

0

. (Otherwise

�!

D would belong to a bond, and A would not

be �-disjoint.) There are two possibilities:

{ If

�!

� 2 fH;

�!

Wg, then �

3

dereases.

{ If

�!

� =

��!

hold, the substring

�!

� A =

��!

hold

�!

D

 �

W

rewrites to

��!

holdH

 �

W . There are now two

overlapping anti-bonds

��!

holdH and H

 �

W

at position i�1 and i. Let us selet

��!

holdH

for the new anti-bond list, i.e. let

0

=

 �fig[fi�1g and �

0

= �. The new anti-

bond

��!

holdH is still oriented leftwards, but

its distane to the losest bond of � = �

0

to the left, is smaller than the distane of

A =

�!

D

 �

W . So �

4

stays onstant and �

5

dereases by 1.

� Cases A =

�!

WH;

�!

W

 �

S ;

�!

W

 �

D;

�!

S H and

�!

DH

are symmetrial to ases previously treated,

hene omitted.

(b) If A is not �-disjoint, then it is of the form

�!

 �

�

with

 �

� 2 Bond(�), or

�!

�

 �

Æ with

�!

� 2 Bond(�).

Suppose A =

�!

 �

� . (The other ase is symmet-

rial and omitted.) Sine the rewriting of

 �

� has

already been studied in ase 1, we only onsider

the rewriting of

�!

 . For the same reasons as in

ase 2(b), as long as we do not hange � and ,

�

1

and �

2

stay onstant. We have several sub-

ases.

�

�!

 = H : with our rewriting poliy, it rewrites

to

�!

W . Thus A = H

 �

� beomes A

0

=

�!

W

 �

� .

Let �

0

= � and

0

= . If A is non-oriented,

then so is A

0

. If A is oriented of distane d,

then A

0

is oriented in the same diretion with

same distane d. So �

4

and �

5

stay onstant

while �

6

dereases.

�

�!

 =

�!

W : the rewriting is possible only if

 �

� is in fH;

 �

Wg. Thus A =

�!

W

 �

� beomes

A

0

=

�!

S

 �

� . Unlike A, A

0

is oriented, hene

�

4

dereases.

Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption 11

�

�!

 =

�!

S : the anti-bond beomes

�!

D

 �

� and �

6

dereases.

�

�!

 =

�!

D : then the ase is similar to the rewrit-

ing

�!

D ! H onsidered for the �-disjoint anti-

bond (ase 2(a)):

{ If the left neighbour

�!

� of A is in fH;

�!

Wg,

then �

3

dereases.

{ If

�!

� =

��!

hold, then we an hange into

0

so that �

5

dereases.

3. Outside bonds and anti-bonds:

in this ase, either a bond is reated (�

1

dereases)

or �

1

; �

2

; �

4

; �

5

and �

6

stay onstant while �

3

or

�

7

dereases (by Lemma 1, �

3

annot inrease when

�

1

and �

2

stay onstant).

More preisely, let � be the hanged letter and i its

position. By proposition 2, � belongs to fW;S;Dg.

We have the following subases.

� � =

�!

W : rewriting via

�!

W !

�!

S dereases either�

3

if the right neighbour of � is

�!

D , or �

7

otherwise.

� � =

�!

S : rewriting via

�!

S !

�!

D dereases �

7

.

� � =

�!

D : sine � belongs to neither a bond of

� nor an anti-bond of , its right neighbour �

must belong to

�!

Q

0

. (Otherwise, �� would be of

the form

�!

D

 �

� , i.e. an anti-bond of .) Rewriting

� via

�!

D ! H thus yields H� with � 2

�!

Q

0

. This is

a new disjoint bond of index i. We let �

0

= �[fig,

thus dereasing �

1

.

0

is an anti-bond list asso-

iated with (x

0

; �

0

), hosen arbitrarily.

� � =

 �

W;

 �

S or

 �

D : these ases are symmetrial to

the previous ones.

This ends the proof under the assumption that on�gu-

ration x did not ontain any letter L

1

or L

2

. The proof

an easily be extended to take into aount letters L

1

and L

2

, as follows:

� The set

�!

Q

0

is augmented with the letter L

2

, whih

orresponds to a philosopher about to put down the

right fork. De�nitions of bond and anti-bond are pre-

served as far as we onsider the new set

�!

Q

0

.

� The de�nition of oriented anti-bond now inludes

substrings of the form L

2

 �

Æ .

� As a letter L

1

orresponds to a philosopher holding

both forks, an anti-bond an now lie between two

letters L

1

or between one letter L

1

and a bond. It

an also overlap with a letter L

1

. The �-distane of

an anti-bond oriented leftwards (resp. rightwards) is

now the minimum between the distane to the losest

bond to its left (resp. right) and the distane to the

losest L

1

to its left (resp. right).

The measure � is hanged into a measure �

0

with �

0

=

(�

0

1

; �

0

2

; �

0

3

; �

4

; �

5

; �

0

6

; �

0

7

). Components 2, 4 and 5 are

not hanged as far as we onsider the new de�nitions for

oriented anti-bonds and �-distane.

� �

0

1

(x) = �

1

(x)+ number of letters L

1

in x.

� �

0

2

(x; �) is the sum of the weights of the bonds of x

indexed by �, with a bond oeÆient 3 for L

2

.

� �

0

3

(x) ounts the number of two-letter strings of the

form

 �

DH ,

 �

D

 �

W , H

�!

D ,

�!

W

�!

D , HL

2

or

�!

WL

2

of x.

� �

0

6

(x;) the sum of the weights of all the anti-bonds

of x indexed by . The anti-bond oeÆient is 0 for

L

2

and 1 for L

1

.

� �

0

7

(x) is the sum of the WSD-oeÆients of all the

letters of x distint from H and L

1

. The WSD-

oeÆient of L

2

is 0.

ut

Theorem 2 (progress property) then follows from Propo-

sition 3 and Theorem 3.

4.5 Expeted Time of Convergene

In traditional approahes (see e.g. [11℄) the time is mea-

sured in terms of rounds (intervals in whih eah proess

has been sheduled at least one). The time is never eval-

uated as a number of transitions.

With our approah, we do not make any assumption

on this round time. We evaluate the expeted time of

onvergene as a number of transitions. It turns out that,

for some \maliious" sheduler suh a time an be \very"

long.

Let us show on a example that the expeted time of

onvergene is at least exponential in the number N of

proesses for some \maliious" sheduler. We exhibit a

sheduler whih, starting from the uniform on�guration

x

0

=

�!

S

N

, goes to x

1

=

�!

S

N�2

 �

W

 �

S within a onstant

expeted time. Then, from x

1

, it an stay in the set of

on�gurations f

�!

S

i

 �

W

 �

S

j

ji+ j +1 = Ng [f

�!

S

i

�!

W

 �

S

j

ji+

j + 1 = Ng during an expeted time exponential in N .

Consider x

0

=

�!

S

N

as a starting on�guration. Let us

�rst show that the sheduler may reah the on�guration

x

1

=

�!

S

N�2

 �

W

 �

S in a �nite amount of time: It selets a

�!

S

and applies R8.R10.R0 to obtain

�!

S

N�1

�!

W or

�!

S

N�1

 �

W .

In the �rst ase, it applies R3 and goes on. In the se-

ond ase, it selets the last

�!

S and applies R8.R10.R0

to obtain

�!

S

N�2

�!

W

 �

W or

�!

S

N�2

 �

W

 �

W . In the �rst ase, it

applies R3 to

�!

W and begins again. In the seond ase, it

applies R2 to the right

 �

W . The expeted time E of going

from x

0

to x

1

may be easily omputed: E = 15.

Now, we desribe two possible hoies of the shed-

uler on a on�guration of the form

�!

S

i

 �

W

 �

S

j

with i � 2

and i+j+1 = N . These two hoies are the appliation of

12 Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption

four onseutive rules, one of whih is a probabilisti one.

The three �rst rules are the same: selet the rightmost

�!

S and applies R8.R10.R0. This yields:

�!

S

i�1

 �

W

 �

W

 �

S

j

or

�!

S

i�1

�!

W

 �

W

 �

S

j

.

From

�!

S

i�1

 �

W

 �

W

 �

S

j

, apply R1 to the rightmost

 �

W to

get

�!

S

i�1

 �

W

 �

S

j+1

. From

�!

S

i�1

�!

W

 �

W

 �

S

j

, the sheduler an

hoose

�!

W or

 �

W , whih leads to the two ases:

(A) The sheduler applies R1 to

 �

W and yields

�!

S

i�1

�!

W

 �

S

j+1

,

(B) The sheduler applies R3 to

�!

W and yields

�!

S

i

 �

W

 �

S

j

.

Symmetrially, using R6.R9.R0, on a on�guration

�!

S

i

�!

W

 �

S

j

(with j � 2 and i+j+1 = N), one goes to

�!

S

i

�!

W

 �

W

 �

S

j�1

or

�!

S

i

�!

W

�!

W

 �

S

j�1

.

From

�!

S

i

�!

W

�!

W

 �

S

j�1

, apply R3 to the leftmost

�!

W , to

get

�!

S

i+1

�!

W

 �

S

j�1

. From

�!

S

i

�!

W

 �

W

 �

S

j�1

, the sheduler an

hoose

�!

W or

 �

W , whih leads to the two ases:

(A') The sheduler applies R3 to

�!

W and yields

�!

S

i+1

 �

W

 �

S

j�1

.

(B') The sheduler applies R1 to

 �

W and yields

�!

S

i

�!

W

 �

S

j

.

The sheduler an iterate suh an appliation of four

onseutive rules until the system reahes an \end" on-

�guration, i.e, a on�guration of the form:

x

end

=

�!

S

N�2

�!

W

 �

S or y

end

=

�!

S

 �

W

 �

S

N�2

.

Let us onsider the following \maliious" sheduler:

From

�!

S

i

 �

W

 �

S

j

(with i � 2 and i+j+1 = N), it hooses

(A) or (B) aording to the ompared values of i and j.

Preisely:

� it hooses (A) if j � i,

� it hooses (B) if j < i.

Symmetrially, from

�!

S

i

�!

W

 �

S

j

(with j � 2 and i+j+1 =

N):

� it hooses (A') if i � j,

� it hooses (B') if i < j.

For this sheduler, let us now ompute the expeted

time for reahing x

end

or y

end

, starting from a on�gura-

tion

�!

S

i

�!

W

 �

S

j

(resp.

�!

S

i

 �

W

 �

S

j

), with j � 2 (resp. i � 2)

and i+ j +1 = N . Let us abbreviate this expeted time

as E[

�!

i ℄ (resp. E[

 �

i ℄). We have:

E[

�!

i ℄ = 4+1=2 E[

��!

i+ 1℄+1=2 E[

 ��

i+ 1℄, for 1 � i <

N � 2 and 2i � N � 1.

E[

�!

i ℄ = 4 + 1=2 E[

��!

i+ 1℄ + 1=2 E[

�!

i ℄, for 1 � i <

N � 2 and 2i < N � 1.

E[

 �

i ℄ = 4 + 1=2 E[

��!

i� 1℄ + 1=2 E[

 ��

i� 1℄, for 2 � i

and 2i � N � 1.

E[

 �

i ℄ = 4+1=2 E[

 ��

i� 1℄+1=2 E[

 �

i ℄, for 2 � i and

2i > N � 1.

E[

���!

N � 2℄ = 0.

E[

 �

1 ℄ = 0.

We then solve this linear system. The symmetry shows

that E[

�!

i ℄ = E[

 ������

N � 1� i℄, for all 1 � i < N � 1. Let m

be the integral part of N=2� 1. The result is:

E[

�!

i ℄ = 8(2

N�3�m

(2m�N+6)�i�2), for 1 � i � m.

E[

�!

i ℄ = 8((2m�N+6)(2

N�3�m

�2

i�m�1

)�N+i+2)

for m+ 1 � i < N � 1.

In partiular, the time to go from x

1

to x

end

(hene

x

0

to x

end

) is

E[

 ���

N � 2℄ = E[

�!

1 ℄ = 8(2

N�3�m

(2m�N+6)�3) � 2

N=2

.

This shows that we an stay out of L

0

an exponential

expeted number of steps, hene the upper bound for the

expeted time of onvergene for a general sheduler is

at least exponential.

5 Final Remarks

We have shown in this paper that a modi�ed version of

Lehmann-Rabin's algorithm always onverges, whatever

the (possibly unfair) shedule is. We laim that our mod-

i�ed algorithm preserves the spirit of the original one.

With our approah, we are also able to evaluate the

expeted time of onvergene as a number of transitions.

Alternatively, this time an be understood as the number

of non-stuttering transitions of the original Lehmann-

Rabin's algorithm. We have shown that this time may

be exponential for some maliious shedule, a point that

ould not be seen when the expeted time was omputed

as a number of rounds.

We reently learned that Catusia Palamidessi and

Mihaela Heresu have independently ome out with the

same variant of the dining philosophers without fairness,

and used it to prove the possibility of enoding the �-

alulus with mixed hoie into the probabilisti asyn-

hronous �-alulus [14,8℄. This on�rms our view that

the algorithm presented here is a natural and useful vari-

ant of Lehmann-Rabin's algorithm.

Aknowledgements.

We are most grateful to Catusia Palamidessi and

anonymous referees for their helpful omments.

Referenes

1. J. Beauquier, J. Durand-Lose, M. Gradinariu, and

C. Johnen. Token based self-stabilizing uniform algo-

rithms. Journal of Parallel and Distributed Computing,

62(5):899{921, 2002.

Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption 13

2. J. Beauquier, M. Gradinariu, and C. Johnen. Memory

spae requirements for self-stabilizing leader eletion pro-

tools. In Pro. 18th Annual ACM Symposium on Prin-

iples of Distributed Computing (PODC'99), pages 199{

208. ACM Press, 1999.

3. J. Beauquier, M. Gradinariu, and C. Johnen. Random-

ized self-stabilizing and spae optimal leader eletion un-

der arbitrary sheduler on rings. Tehnial Report 1225,

L.R.I., Orsay, Frane, Sept. 1999.

4. T. Bonald and L. Massouli�e. Impat of fairness on inter-

net performane. In Pro. of Joint Int. Conf. on Measure-

ments and Modeling of Computer Systems (SIGMET-

RICS/Performane 2001), pages 82{91, 2001.

5. E. W. Dijkstra. Hierarhial ordering of sequential pro-

esses. In Operating Systems Tehniques, pages 72{93.

Aademi Press, 1972.

6. M. Duot, L. Fribourg, and C. Piaronny. Ran-

domized �nite-state distributed algorithms as Markov

hains. In Pro. 15th Int. Conf. on Distributed Com-

puting (DISC'01), volume 2180 of LNCS, pages 240{254.

Springer, 2001.

7. P. Gevros, F. Risso, and P. Kirstein. Analysis of a method

for di�erential TCP servie. In Pro. 4th Symposium on

Global Internet (GLOBECOM'99), 1999.

8. O. M. Heresu. The probabilisti asynhronous Pi-

alulus. PhD thesis, Department of Computer Siene

and Engineering, Pennsylvania State university, De.

2002.

9. H. Kakugawa and M. Yamashita. Uniform and self-

stabilizing token rings allowing unfair daemon. IEEE

Trans. Parallel and Distributed Systems, 8(2):154{163,

1997.

10. J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumer-

able Markov Chains. D. van Nostrand Co., 1966.

11. N. A. Lynh. Distributed Algorithms. Morgan Kaufmann

Publishers, 1996.

12. N. A. Lynh, I. Saias, and R. Segala. Proving time

bounds for randomized distributed algorithms. In Pro.

13th Annual ACM Symposium on Priniples of Dis-

tributed Computing (PODC'94), pages 314{323. ACM

Press, 1994.

13. A. K. MIver. Quantitative program logi and eÆ-

ieny in probabilisti distributed algorithms. Tehnial

report, Computing Laboratory, Oxford University, UK,

1998. (Extended version of \Quantitative program logi

and performane in probabilisti distributed algorithms",

Pro. of 5th Int AMAST Workshop, ARTS '99).

14. C. Palamidessi and O. M. Heresu. A randomized dis-

tributed enoding of the pi-alulus with mixed hoie.

In Pro. 2nd IFIP Int. Conf. on Theoretial Computer

Siene (TCS�02), volume 223 of IFIP Conferene Pro-

eedings, pages 537{549. Kluwer Aademi, 2002.

15. A. Pnueli and L. D. Zuk. Veri�ation of multiproess

probabilisti protools. Distributed Computing, 1(1):53{

72, 1986.

16. A. Pogosyants and R. Segala. Formal veri�ation of

timed properties for randomized distributed algorithms.

In Pro. 14th Annual ACM Symposium on Priniples

of Distributed Computing (PODC'95), pages 174{183.

ACM Press, 1995.

17. M. O. Rabin and D. J. Lehmann. The advantages of free

hoie : a symetri and fully distributed solution for the

dining philosophers problem. In "A Classial Mind: Es-

says in Honour of C.A.R. Hoare", hapter 20, pages 333{

352. Prentie Hall, 1994. An extended abstrat appeared

in the Pro. 8th Annual ACM Symposium on Priniples

of Programming Languages(POPL'81), p133{138.

18. R. Segala and N. A. Lynh. Probabilisti simulations for

probabilisti proesses. Nordi Journal of Computing,

2(2):250{273, 1995.

Appendix A: Proof of Theorem 1

We say that a omputation C traverses L within m steps

if C is a omputation of the form

x

0

i

0

��!

R

i

0

� � �

i

j�1

���!

R

i

j�1

x

j

i

j

��!

R

i

j

� � � suh that x

j

2 L for some

0 � j � m.

Given a entral shedule S, a starting on�guration

x

0

and m � 0, the event of being a omputation travers-

ing L within m steps has a well-de�ned probability:

Pr(f F j C = COM

R

(x

0

; S; F) traverses L within m

steps g), abbreviated as Pr(x

0

S

�!

R

�m

L).

Let us now show that, when Prop holds,

lim

m!1

Pr(x

S

�!

R

�m

L) = 1 (hene Pr(x

S

�!

R

�

L) = 1).

Lemma 2. Consider a system �!

R

with no deadlok, a

measure � and an order � suh that:

Prop: 8x =2 L 8i 2 E(x)

9y (x

i

�!

R

y ^ (y 2 L _�(y)� �(x))).

Then there exists an integer M > 0 and a probability

p > 0 suh that, for any entral shedule S:

8x Pr(x

S

�!

R

�M

L) � p.

Proof. Let M be the number of elements of X (i.e.,

M = jX j = jQj

N

). Let q be the minimum probability

assoiated with a probabilisti rule (for example, q =

1=2 for Beauquier-Gradinariu-Johnen's and Lehmann-

Rabin's algorithms). Given a entral shedule S and a

starting on�guration x

0

, onsider now a omputation

C under S of the form x

0

�!

R

x

1

�!

R

� � � suh that: for

every k � 0, if C has not traversed L at step k (i.e., x

0

62

L; � � � ; x

k

62 L), then x

k+1

2 L or �(x

k+1

) � �(x

k

).

14 Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption

Note that, sine we assume Prop, suh a omputation

C always exists. By the pigeonhole priniple, among the

�rst M + 1 on�gurations x

0

; � � � ; x

M

of C, there are

neessarily two elements x

i

and x

j

whih are idential.

Therefore C traverses L within M steps beause, other-

wise, one would have: �(x

i

)� �(x

i+1

)� � � � � �(x

j

),

whih is impossible sine x

i

= x

j

. On the other hand,

eah step of omputation has a probability greater than

or equal to q. Hene the probability of the �nite ompu-

tation onsisting of the �rstM steps of C is no less than

q

M

. It follows that the probability for all the omputa-

tions starting from x

0

under S to traverse L is no less

than p = q

M

. So for any S and x

0

, Pr(x

0

S

�!

R

�M

L) � p.

ut

Proof of Theorem 1:

Let us onsider a entral shedule S, arbitrary but given.

Sine the system �!

R

satis�es Prop by assumption, we

have, by Lemma 2: 8x 2 X; Pr(x

S

�!

R

�M

L) � p. So,

for any starting on�guration x

0

, the probability of not

traversing L from x

0

within M transitions is less than

1 � p. We an apply iteratively Prop and Lemma 2, to

show that the probability of not traversing L within 2M

transitions is less than (1 � p)

2

, and so on. The prob-

ability of not traversing L from x

0

under S after m

transitions tends to 0 as m tends to 1. Alternatively:

8x 2 X , lim

m!1

Pr(x

S

�!

R

�m

L) = 1. It follows that,

for any entral shedule S: 8x Pr(x

S

�!

R

�

L) = 1. ut

Appendie B: Convergene of Beauquier-Gradinariu-

Johnen's Algorithm

Let us onsider Beauquier-Gradinariu-Johnen's algorithm

presented as an example in setion 2.1, with a entral and

arbitrary sheduling, and an odd number of proesses.

First observe that the system has no deadlok: as the

number of proesses is odd, there exists always at least

one deterministi (resp. probabilisti) token in eah on-

�guration, and a proess is enabled when it holds a de-

terministi token. We onsider the measure � that maps

any on�guration x to the triple (';D

p

; D

d

) where:

� ' is the number of probabilisti tokens of x

� D

p

is the minimal distane between two probabilisti

tokens of x

� D

d

is onstruted as follows. Let T = ft

1

; t

2

; :::; t

'

g

be the set of indies of proesses holding a probabilis-

ti token (i.e. p

t

k

= p

t

k

�1

for 1 � k � '). Let T

0

be

the set of indies in T suh that the distane between

a probabilisti token of index t

k

and the losest prob-

abilisti token to its right (of index t

k+1

) is minimal

(t

k+1

�t

k

= D

p

modulo N). Then D

d

is the sum over

all indies i of deterministi tokens, of the distane

d

i

between this deterministi token, and the losest

index of T

0

to its right. Formally:

D

d

=

X

i= proess i holds

a deterministi token

min

j2T

0

((j � i) modulo N)

These three omponents represent the important har-

ateristis of a on�guration: �rst the number of proba-

bilisti tokens (if ' = 1 then the on�guration is legiti-

mate), then the minimal distane between probabilisti

tokens (if they are lose, they are more likely to ollide

and ' is more likely to derease), and last the distane

from deterministi tokens to probabilisti tokens that

an derease D

p

. For example, in the on�guration x =

(0; 0)(1; 0)(1; 1)(0; 1)(1; 0)(0; 0)(1; 1) with N = 7, there

is one deterministi token at position 3, and the set T of

indies of probabilisti tokens is f2; 4; 6g. This is easier

to see if we deompose the on�guration x into a deter-

ministi on�guration 0110101 of its deterministi states

and a probabilisti on�guration 0011001. The minimal

distane D

p

is 2 and T

0

= f2; 4g. As there is just one de-

terministi token at position 3, D

d

= min

j2f2;4g

((j � 3)

modulo N) = 1. Let us show that, for every x 62 L, i.e.

x with at least two probabilisti tokens, and every en-

abled position i of x, there exists y suh that x

i

�! y with

�(y)� �(x), where � is the lexiographi order.

There are two ases:

� If p

i

= p

i�1

, there is no probabilisti token at position

i and we apply the �rst rule.

{ If there are two onseutive deterministi tokens

at position i and i + 1 (for example the pattern

000) then they ollide (the pattern beomes 010)

and both disappear. Then the two orresponding

distanes are removed from the sum D

d

whih

dereases.

{ If there are no onseutive tokens at these posi-

tions then, as there is no probabilisti token at

position i (p

i

= p

i�1

), we have d

i

� 1 and D

d

dereases by 1.

� If p

i

= p

i�1

then there is a probabilisti token at po-

sition i and we hoose the output of the probabilisti

transition aording to the following rewriting poliy:

{ If i belongs to T

0

, then we hange the state p

i

into

p

i

. The probabilisti token thus moves to its right

and either D

p

dereases, or two tokens ollide ('

dereases).

{ If i does not belong to T

0

, then d

i

� 1. We keep

the probabilisti state p

i

unhanged and d

i

de-

reases by one (so does D

d

).

Marie Duot et al.: Randomized Dining Philosophers Without Fairness Assumption 15

 �

W

�!

W

 �

D

�

5

=3

 �

D

 �

D

�!

S

�

5

��!

 �

W

�!

WH

 �

D

�

5

=2

 �

D

�!

S

�

6

��!

 �

W

�!

W

�!

W

 �

D

�

5

=2

 �

D

�!

S

�

5

��!

 �

W

�!

W

�!

WH

 �

D

�

5

=1

�!

S

�

2

��!

 �

W

�!

W

�!

W HH

�

5

=0

�!

S

�

2

��!

 �

W

�!

W

�!

WH

 �

W

�

5

=0

�!

S

�

6

��!

 �

W

�!

W

�!

W

�!

W

 �

W

�

5

=0

�!

S

�

4

��!

 �

W

�!

W

�!

W

�!

S

 �

W

�

5

=3

�!

S

�

7

��!

 �

W

�!

W

�!

S

�!

S

 �

W

�

5

=3

�!

S

�

6

��!

 �

W

�!

W

�!

S

�!

D

 �

W

�

5

=3

�!

S

�

5

��!

 �

W

�!

W

�!

S H

�

5

=2

 �

W

�!

S

�

2

��!

 �

W

�!

S

�!

SH

�

5

=2

 �

W

�!

S

�

6

��!

 �

W

�!

S

�!

DH

�

5

=2

 �

W

�!

S

�

6

��!

 �

W

�!

S

�!

D

 �

W

�

5

=2

 �

W

�!

S

�

5

��!

 �

W

�!

SH

�

5

=1

 �

W

 �

W

�!

S

�

6

��!

 �

W

�!

S

 �

W

�

5

=1

 �

W

 �

W

�!

S

Fig. 3. A omputation: eah on�guration has a single anti-

bond, whih is underlined and labelled with the value of the

�

5

-distane; the bold letter is the letter to be hanged; the

arrow depiting eah transition is labelled with the �rst de-

reasing �-omponent.

In all possible ases, distane � dereases, thus state-

ment Prop of Theorem 1 holds. By Theorem 1, it follows

that, whatever the starting on�guration and the entral

shedule are, a on�guration of L (with a single proba-

bilisti token) will be reahed within a �nite time with

probability 1. Note that, one a on�guration of L has

been reahed, the subsequent on�gurations are all in L

beause L is losed under !.

Appendix C: An Example of Finite Computation

Let us reall that, with our rewriting poliy, one a bond

is reated, it never disappears (�

1

never inreases) and

always stays in �xed position. On the example below,

there are two bonds, say B

1

and B

2

, whih orrespond

to the two leftmost and two rightmost letters of the on-

�gurations. Between B

1

and B

2

there lies an anti-bond

A. Let us explain the general evolution of A between B

1

and B

2

. At the beginning A is oriented rightwards and

moves towards B

2

until it overlaps with it. It then looses

its orientation and will beome reoriented later in the

other diretion. Suh a U-turn requires the rewriting of

the left letter of B

2

. Antibond A thus goes forth and bak

between B

1

and B

2

. The rewriting of A is �nite beause

every U-turn leads to the rewriting of the bond on whih

it \bounes", and a bond letter annot be rewritten more

than 3 times before beoming E. An iterated rewriting

of A is illustrated in Figure 3. Eah transition is rep-

resented by an arrow labelled with the �rst dereasing

omponent of �. �

1

and �

3

always stay onstant during

the omputation. The anti-bond of eah on�guration is

underlined and labelled with the value of �

5

: when A

is oriented, �

5

orresponds to its �-distane; otherwise,

�

5

is 0. In the last on�guration, the anti-bond

�!

S

 �

W

annot be rewritten without reahing L

0

.

