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A Formal Analysis of Bluetooth Device Discovery

Abstract This paper presents a formal analysis of the de-
vice discovery phase of the Bluetooth wireless communica-
tion protocol. The performance of this process is the result
of a complex interaction between several devices, some of
which exhibit random behaviour. We use probabilistic model
checking and, in particular, the tool PRISM to compute the
best- and worst-case performance of device discovery: the
expected time for the process to complete and the expected
power consumption. We illustrate the utility of performing
an exhaustive, low-level analysis to produce exact results in
contrast to simulation techniques, where additional proba-
bilistic assumptions must be made. We demonstrate an ex-
ample of how seemingly innocuous assumptions can lead to
incorrect performance estimations. We also analyse the ef-
fectiveness of improvements made between versions 1.1 and
1.2 of the Bluetooth specification.

Keywords Bluetooth· Formal verification· Probabilistic
model checking

1 Introduction

The use of formal methods for the verification and analysis
of real-life systems is becoming increasingly prevalent in in-
dustry. With the developments made in recent years, formal
verification techniques can now be employed, not just to as-
certain the correctness of a system, but also to analyse quan-
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Phone: +33 (0)1 45 17 66 00
Fax: +33 (0)1 45 17 66 01
E-mail: duflot@univ-paris12.fr

titative properties such as performance and reliability. In this
paper, we demonstrate the applicability of an automated for-
mal verification technique called probabilistic model check-
ing to an analysis of the performance of the Bluetooth pro-
tocol.

Bluetooth is a wireless telecommunication technology,
aimed in particular at low-power devices which communi-
cate over short distances. It is becoming increasingly promi-
nent in devices such as mobile phones, PDAs and laptop
computers. To cope with interference, Bluetooth is based
on frequency-hopping technology. This means that, before
any communication can take place, an initialisation proce-
dure must be carried out, comprising discovery of devices in
the vicinity and then exchange of information to synchronise
hopping sequences. From a user’s point of view, this process
affects both the waiting-time and the power usage. Hence,
our analysis focuses on this aspect of the protocol.

As will be demonstrated shortly, the time required for
completion of the Bluetooth initialisation process is the re-
sult of a non-trivial interaction between two devices, mo-
tivating the need for a formal, automated analysis. Further-
more, it includes a randomised back-off procedure to resolve
contention between devices, and an effective analysis thus
needs to be able to reason about the stochastic nature of the
system. We use probabilistic model checking and, in par-
ticular, the tool PRISM. This process involves construction
of a formal probabilistic model from a high-level descrip-
tion of the system, followed by calculation of one or more
probabilistic properties, formally expressed in probabilistic
temporal logic.

In contrast to approaches based on discrete-event simu-
lation, for which analyses of Bluetooth have already been
attempted, formal approaches such as probabilistic model
checking involve anexhaustiveanalysis. We construct a com-
plete model of the system under study and use it to com-
puteactual performance values, rather than derive estima-
tions from a large number of simulations. As we will show
later, this means we can accurately identify worst-case be-
haviour, as opposed to generating average performance mea-
sures which rely on additional probabilistic assumptions. Fur-
thermore, we can establish precisely the situations that lead
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to these worst-case scenarios. We will also give an exam-
ple of a situation where making additional probabilistic as-
sumptions results in inaccuracies in the performance results
obtained.

2 Probabilistic Model Checking and PRISM

Probabilistic model checking is an automated technique for
the formal verification of systems that exhibit stochastic be-
haviour. It is based on the construction and analysis of a
mathematical model of the system, usually from a specifi-
cation in some high-level description language. This model
generally comprises a set of states, representing all the pos-
sible configurations of the system, the transitions that can
occur between these states, and information about when and
with what probability each transition will occur.

In this paper, the modelling formalism we use is discrete-
time Markov chains (DTMCs), where time is modelled as
discrete steps and the probability of making each transition
is given by a discrete probability distribution. Other model
types commonly used are continuous-time Markov chains
(CTMCs), Markov decision processes (MDPs), and proba-
bilistic timed automata (PTAs); see [25] for more detailed in-
formation about these. We use the probabilistic model check-
ing tool PRISM [12,23]. This allows construction of models
via specification in a high-level description language, based
on the parallel composition of several modules described in
a guarded command notation. We will illustrate the work-
ings of this language in more detail later in the paper.

Models constructed in PRISM are analysed by formally
specifying formulas in temporal logic. This allows a precise,
unambiguous description of a wide range of properties, such
as “the probability of shutdown occurring within 24 hours”
or “the long-run probability that the system is stable”. In
addition, by assigning real-valued costs (or, conversely, re-
wards) to states and transitions of the model, we can also rea-
son about, for example, “expected time” or “expected power
consumption”.

PRISM automatically ascertains values for such proper-
ties by performing probabilistic model checking, which in-
cludes both graph-based analysis and numerical computa-
tion. For the case of DTMCs, the latter usually constitutes
solving a linear equation system of size equal to the number
of states in the model. For this, PRISM uses iterative numer-
ical solution techniques such as the Gauss-Seidel method,
which are well suited to large problems of this type.

Furthermore, a significant amount of work has gone into
the development of efficient,symbolicimplementation tech-
niques for numerical computation in PRISM. These use data
structures such as binary decision diagrams (BDDs) [5] and
their extensions, e.g. multi-terminal BDDs (MTBDDs) [6,
1], to allow compact storage and manipulation of extremely
large models. We rely heavily on this efficiency for the case
study presented in this paper.

The PRISM tool has already been successfully used to
perform analysis of, and identify interesting behaviour, in a

wide range of case studies. This includes the study of “qual-
ity of service” properties for components of real-time prob-
abilistic communication protocols, e.g. IEEE 1394 FireWire
[7,16], IEEE 802.3 CSMA/CD [17,8], Zeroconf [13] and
IEEE 802.11 wireless LANs [15,24]. It has also been used to
verify randomised distributed algorithms for leader election,
consensus [14], Byzantine agreement [10], self-stabilisation
and mutual exclusion, and probabilistic security protocols
for anonymity [27], fair exchange and contract signing [20].
Finally, PRISM has been applied to analysing the perfor-
mance and reliability of many different types of applica-
tions: dynamic power management schemes [19], NAND
multiplexing for nanotechnology [18], computer networks,
queueing systems, manufacturing processes and embedded
systems [11]. The reader is invited to consult the PRISM
web site [23] for detailed information and corresponding
publications about all of these.

3 Device Discovery in Bluetooth

Bluetooth is a short-range, low-power, open standard for im-
plementing wireless personal area networks. Since it uses
the unlicensed 2.4GHz Industry Scientific and Medical band
(a set of frequencies almost globally available), there is a po-
tential problem of interference from other devices using this
band. To resolve this, Bluetooth uses a frequency hopping
scheme, where devices alternate rapidly among the 79 avail-
able frequencies in a pseudo-random fashion.

In order to communicate, Bluetooth devices organise them-
selves into small networks calledpiconets, comprising one
masterand up to 7slavedevices, in which the frequency
hopping sequences are synchronised and controlled by the
master. In this paper, we focus on the issue of piconet cre-
ation, the performance of which is crucial because no com-
munication between devices can occur until it is complete. It
also has considerably higher power consumption than other
parts of the protocol [9], prevents existing device connec-
tions from operating and may cause interference to other
nearby piconets.

Piconet formation has two steps: firstly, theinquiry pro-
cess, where a master device discovers neighbouring slave
devices; and secondly, thepageprocess, where connections
between them are established. During the first step, informa-
tion about slave clock times is exchanged for the purposes
of synchronisation. This can be used during the second step,
which is hence much faster. We therefore concentrate on the
inquiry process. We now describe in more detail the proce-
dure executed by aninquiring device(a master trying to dis-
cover slaves) and ascanning device(a potential slave device
who wants to be discovered).

3.1 The Inquiring Device

An inquiring device attempts to detect potential slaves in the
proximity by broadcasting inquiry packets on a previously
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Fig. 1 Timing of the inquiring device’s behaviour

agreed sequence of 32 of the 79 available frequencies and
scanning for replies. This process continues until some spec-
ified bound on the number of replies received or the total
time is exceeded.

Like all Bluetooth devices, the inquiring device has a 28
bit free-running clock, which ticks every 312.5µs. On two
consecutive 312.5µs time slots, it sends on two sequential
frequencies. During the next two time slots, the device scans
for a reply on these same two frequencies, i.e. each scan
occurs 625µs after the corresponding send (in fact, a 10µs
margin is added to the start and end of the scan in case re-
plying devices are not completely synchronised). The device
now proceeds to send and scan on the next pair of frequen-
cies in the same fashion. This procedure is illustrated in Fig-
ure 1.

The 32 frequencies used for the inquiry procedure are
split into two trains, A and B, of 16 frequencies each. The
sequence in which the inquiring device sends and scans on
these frequencies is determined by its 28 bit clock, denoted
CLK, according to the following formula:

freq = [CLK16−12+off +(CLK4−2,0−CLK16−12) mod 16] mod 32

whereCLKi− j denotes bitsi, . . . , j of CLK, andoff is an off-
set to select whether train A or B is used. The inquiring de-
vice swaps between train A and B every 2.56 seconds (the
time to send and scan on 16 frequencies is 10ms and each
train is repeated 256 times). Furthermore, every 1.28 sec-
onds (every time the 12th bit ofCLK changes), a frequency
is swapped between train A and B. The whole list of fre-
quencies is shown in Figure 2. Each line of this table is re-
peated 128 times, taking 1.28 seconds. To simplify the pre-
sentation, we have assumedoff = 1 for train A andoff = 17
for train B, i.e. initially trains A and B comprise frequencies
1, . . . ,16 and 17, . . . ,32, respectively. Note that the formula
given above also incorporates the alternation of sending and
scanning on pairs of frequencies, as illustrated previously in
Figure 1 (hence the omission of bit 1 inCLK4−2,0).

3.2 The Scanning Device

Bluetooth devices that want to be discovered enter thein-
quiry scansubstate and periodically scan for inquiry pack-
ets on the same 32 frequencies that the inquiring device is
transmitting on. To ensure that the frequencies used even-
tually coincide and that messages are successfully received,
the hopping rate of scanning devices is much slower than
that of the inquiring device. The frequency of each scanning
device, known as itsphase, cycles through the 32 frequen-
cies in order, according to the value of its clock and changes
every 1.28s.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 2 3 20 21 22 23 24 25 26 27 28 29 30 31 32
17 18 19 20 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 23 24 25 26 27 28 29 30 31 32
1 2 3 4 5 6 7 24 25 26 27 28 29 30 31 32
17 18 19 20 21 22 23 24 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 27 28 29 30 31 32
1 2 3 4 5 6 7 8 9 10 11 28 29 30 31 32
17 18 19 20 21 22 23 24 25 26 27 28 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 31 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 21 22 23 24 25 26 27 28 29 30 31 32
1 2 3 4 5 22 23 24 25 26 27 28 29 30 31 32
17 18 19 20 21 22 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 25 26 27 28 29 30 31 32
1 2 3 4 5 6 7 8 9 26 27 28 29 30 31 32
17 18 19 20 21 22 23 24 25 26 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 29 30 31 32
1 2 3 4 5 6 7 8 9 10 11 12 13 30 31 32
17 18 19 20 21 22 23 24 25 26 27 28 29 30 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 16

Fig. 2 Frequency sequences for the inquiring device

The scanning device listens continuously on its current
frequency during aninquiry scan windowof 11.25ms, long
enough for the inquiring device to transmit on an entire train
of 16 frequencies. The scanning device then sleeps, before
scanning again. This process is repeated periodically. There
is some flexibility in the specification [4] as to the length
of this period. For our purposes, we have chosen the value
0.64s.

If the scanning device successfully hears a message, by
listening on the right frequency at the right time (when the
inquiring device is transmitting a packet), it will switch to
the inquiry responsesubstate, in which it waits 2 time slots
(i.e. 625µs) and then sends a reply on the same frequency. A
contention problem arises when two devices in inquiry scan
try to reply to the same inquiry packet. In this case, the two
replies collide and are both lost. To avoid repetition of such
a problem, after sending a reply, a device draws a random
numberN ∈ [0, . . . ,127] and waits for 2·N time slots before
going back to its alternation between sleep and scan states.
Note that the maximum random wait is sometimes higher
than 127 but, according to the specification [4], this is an ap-
propriate value for our scan period of 0.64s. After each suc-
cessfully received message, the scanning device also adds
one to its phase. Figure 3 summarises the steps of the over-
all process and the time spent in each.
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Fig. 3 Timing of the scanning device’s behaviour

4 Modelling in PRISM

From the description in the previous section, it should be
clear that the performance of the Bluetooth inquiry process,
i.e. the time required for messages to be successfully sent
and received, is the result of the interaction between two
non-trivial sequences of events. This motivates the need for
the construction and analysis of a formal model. We now de-
scribe how this can be achieved using the tool PRISM and
its high-level model description language.

We consider a single inquiring device and a single scan-
ning device, which in this section we refer to as thesender
and receiver, respectively. This restricted scenario has, of
course, some limitations. For example, it is not possible for
contention to occur between multiple receivers replying to
a sender simultaneously. It is worth noting though that, re-
gardless of whether such message collisions actually occur,
the randomised back-off procedure must be executed in the
case of a single receiver device anyway and it is interesting
to study the effect that this has on its performance.

The clocks of both devices are digital, whose time is in-
cremented in discrete steps, corresponding to 312.5µsslots,
and whose drift can be assumed to be negligible during the
relative short inquiry process. This is consistent with the
constraints imposed upon possible clock drift in the Blue-
tooth specification. During the device discovery phase, there
is of course no guarantee that the clock ticks of each device
are precisely synchronised. However, the timing with which
messages are sent and scanned for ensures that the ticks of
the two devices can be considered to be aligned and, with the
assumption that no drift occurs, that this alignment remains
consistent during device discovery.

Since the behaviour of the receiver is probabilistic, the
model we construct is a discrete-time Markov chain (DTMC).
Note that, as we will discuss later, the model contains no
nondeterminism and we can thus avoid using a Markov de-
cision process (MDP), for which analysis is more involved.

4.1 Modelling the Sender (Inquiring Device)

The behaviour of the sender was described in Section 3.1
and illustrated in Figures 1 and 2. The corresponding PRISM
code is shown in Figure 4. In the PRISM language, a model’s
description comprises a number ofmodules, each correspond-
ing to a component of the system being modelled. We spec-
ify the sender with a single module.

const int mrep; // maximum number of replies
const int mrec=128; // number of repetitions of each frequency sequence
formula hear reply= (freq=f+16∗o); // true when the sender hears a reply
formula c odd=(c=1,3,5,7,9,11,13,15);
formula f odd=(f=1,3,5,7,9,11,13,15);

module sender

s : [1..2]; // local state (1 = sending, 2 = listening)
f : [1..16]; // current frequency modulo 16
o : [0..1]; // calculates current frequency (actual frequency = f+o∗16)
c : [1..16]; // used to work out frequency sequences
rep : [1..mrec]; // number of repetitions of current sequence
rec : [0..mrep]; // number of replies received

// sending
[time] s=1∧ f odd → (f ′=f+1)∧(o′=(f=c)?1−o : o);
[time] s=1∧¬f odd → (s′=2)∧(f ′=f−1)∧(o′=(f=c−1)?1−o : o);
// receiving
[time] s=2∧ f odd → (f ′=f+1)∧(o′=(f=c)?1−o : o);
[time] s=2∧¬f odd → (s′=1)∧(f ′=f+1)∧(o′=(f=c)?1−o : o);
[time] s=2∧ f=16∧ rep<mrep →

(s′=1)∧(f ′=1)∧(o′=(f=c)?o : 1−o)∧(rep′=rep+1);
[time] s=2∧ f=16∧ rep=mrep →

(s′=1)∧(f ′=1)∧(rep′=1)∧(o′=(c odd)?o : 1−o)∧(c′=(c=16)?1 :c+1);
[reply] s=2∧hear reply∧ rec<mrec → (rec′=rec+1);
[reply] s=2∧ !hear reply → (rec′=rec);

endmodule

Fig. 4 PRISM module representing the sender

The initial part of a module definition lists a set of finite-
ranging variables which determine the possible states that
the module can be in. The first variable of thesendermod-
ule iss, which keeps track of which step of the protocol the
sender is on: whens=1, it sends two sequential messages
on a pair of odd/even frequencies; whens=2, it scans for a
reply on the same two frequencies. The four variablesf , c,
o andrep keep track of which frequency is currently being
used and the position in the frequency sequence of Figure 2.
Their exact meaning can be inferred from the comments in
Figure 4. The last variablerec counts the number of replies
received.

The behaviour of a module is described by a set of guarded
commands of the following form:

[action] guard → update;

The guard is a predicate over the module’s variables (and
in fact the variables of all other modules). When the guard
is satisfied, the behaviour of the module is determined by
the update, given in terms of how the values of the mod-
ule’s variable should change. The first guarded command of
the sendermodule, for instance, states that ifs=1 andf is
odd thenf is incremented by 1 and, iff=c, the value ofo
is reversed (we use the C-style question mark operator for
conditional evaluation). This corresponds to the sender fin-
ishing transmission on an odd frequency and changing to the
subsequent even frequency.

In the square brackets at the start of each guarded com-
mand is an (optional)action label. This is used to synchro-
nise with other modules in the PRISM model. More pre-
cisely, in a state of the entire model (which is a parallel
composition of all modules), transitions of modules corre-
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const int sleep=2012;// duration (slots) of receiver sleep (628.75ms)
const int scan=36; // duration (slots) of receiver scan (11.25ms)
formula hear= (s=1)∧(freq=f+16∗o); // receiver hears a message

module receiver

r : [0..3]; // local state (0 = sleep, 1 = scan, 2 = reply, 3 = random delay)
freq : [0..32]; // frequency scanning on (0 = not scanning)
y : [0..sleep]; // local clock

// sleep
[time] r=0∧y>0 → (y′=y−1); // let time pass
[] r=0∧y=0 → (r ′=1)∧(freq′=phase)∧(y′=scan); // move to scan
// scan
[] r=1∧hear → (r ′=2)∧(y′=2); // hear a message (move to reply)
[time] r=1∧y>0∧¬hear → (y′=y−1); // let time pass
[] r=1∧y=0∧¬hear → (r ′=0)∧(freq′=0)∧(y′=sleep); // finished (sleep)
// reply
[time] r=2∧y>0 → (y′=y−1); // let time pass
[reply] r=2∧y=0 → 1/128 :(r ′=3)∧(freq′=0)∧(y′=0) // reply and select

+1/128 :(r ′=3)∧(freq′=0)∧(y′=2) // random delay
.
.
.

+1/128 :(r ′=3)∧(freq′=0)∧(y′=254);
// wait random time
[time] r=3∧y>0 → (y′=y−1); // let time pass
[] r=3∧y=0 → (r ′=1)∧(freq′=phase)∧(y′=scan); // finished (scan)

endmodule

Fig. 5 PRISM modules representing the receiver

sponding to guards labelled with identical actions will occur
simultaneously in a single global transition. One example is
the timeaction, which labels many of the commands. Since
we can assume that Bluetooth devices all operate at the same
clock-speed, we model time elapsing in a synchronous fash-
ion. For each 312.5µs time slot which passes, all modules
synchronise on atime action, with the transition of each
module reflecting the changes that occur in that time slot.
All other commands (some of which are synchronous, see
e.g. thereply action used in Figure 4, and some of which
are asynchronous) are assumed to correspond to an instanta-
neous change in state.

The code also illustrates other features of PRISM such as
the use ofconstants(e.g.mrep), which allow definitions of
fixed values to be kept separate (and possibly left undefined
until run-time), andformulas(e.g.hear reply), which allow
complex expressions to be defined once and then reused.

4.2 Modelling the Receiver (Scanning Device)

The behaviour of a receiver was previously summarised in
Figure 3. For convenience, the corresponding PRISM model
comprises two modules:receiver(Figure 5), the main part of
the receiver’s behaviour; andreceiverfrequency(Figure 6)
which keeps track of the frequency that the receiver will use
next time it starts a scan (determined by the device’s clock).

The format of the guarded command notation used has
already been explained in the previous section. One new fea-
ture is the method for specifying probabilistic choice. This
can be seen in Figure 5 in the command labelled with the

// time slots until frequency changes (1.28 seconds)
const int z max=4096;

module receiverfrequency

phase: [0..32]; // phase (next frequency for receiver)
z : [1..z max]; // clock for phase

// update frequency: one time slot elapses
[time] z<z max → (z′=z+1);
[time] z=z max → (z′=1)∧(phase′=(phase<32)?phase+1 : 1);
// update frequency: something is sent by the receiver
[reply] true → (phase′=(phase<32)?phase+1 : 1)

endmodule

Fig. 6 PRISM module that computes the phase of the receiver

guard “r=2∧y=0”. Several possible updates are given, each
with an associated probability. Here, this represents the re-
ceiver drawing the random numberN (see Section 3.2).

Note that these two modules again have commands la-
belled with thetimeandreplyactions, which causes all three
modules to make these transitions synchronously. Note also
that some commands in thereceivermodule have no action
label. This means that they occur independently from the
other modules. However, the fact that this is the only mod-
ule with such commands, combined with the fact that the
behaviour of each individual module is always determinis-
tic (i.e. all of its guards are disjoint), means that the overall
model contains no nondeterminism, and is hence suitable for
representation as a DTMC.

4.3 Reducing Model Complexity

The PRISM code in Figures 4–6 is intended to provide a
clear description of our model. In fact, we have made a num-
ber of subsequent optimisations, which we describe in this
section. The final version of the code can be found in the
case studies section of the PRISM website [23]. The changes
made provide an extremely useful increase in efficiency. For
example, in one of the experiments performed, our optimi-
sations reduce the state space from 941,022 million states to
3,394 million, the model construction time from 1 hour to 1
minute, and the model checking time from over 15 hours to
2 seconds.

We observe here that a simple, and commonly used, ap-
proach to the abstraction of models with large constants,
such as those found in this case study, is to scale downall
constants by the same factor, giving an abstraction of the
original model. However, for the model of Bluetooth device
discovery, such a simplification is not feasible. This is due
to the fact that the process includes complicated sequences
of events, including both actions that take a large number of
time-slots and those performed in a single slot.

Another good candidate for reducing model size would
be to apply probabilistic bisimulation techniques. Unfortu-
nately, in this case the size of the unreduced models renders
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the available bisimulation algorithms infeasible. We have
thus had to resort to alternative, model-specific techniques
to reduce model complexity. These are described in the fol-
lowing sections.

Aggregation of sleep transitions.The first and most effec-
tive optimisation is based on the fact that, when there is only
one receiver, as in our model, the behaviour of the protocol
when this receiver is in its sleep state is completely deter-
ministic. The time that the receiver will spend sleeping is
exactly 2012 time slots (corresponding to 628.75ms, the dif-
ference between the 0.64s cycle between sleep/scan states
and the 11.25ms inquiry scan window). During this fixed-
length period, the corresponding shift of the sender along
its sequence of frequencies and the change in phase of the
receiver are both relatively easy to compute.

We can thus compact the sequence of 2012 individual
transitions which occur during this time into a single transi-
tion. This decreases both the number of states and transitions
in the model. Furthermore, it allows the maximum value of
the clocky to be reduced from 2012 to 254 (the maximum
random delay), giving an additional decrease in model com-
plexity. Since we are simply replacing a deterministic path
of transitions through the model with a single step, the be-
haviour remains unchanged. As will be explained later, tim-
ing characteristics of the model are captured by assigning
costs to transitions which correspond to time elapsing. We
will hence assign a cost of 2012 to such transitions.

Prediction of scan success.In fact, we can extend the pre-
vious optimisation. At the point where the receiver begins a
period of scanning, we can determine, from the global state
of the model (i.e. the position of the sender in its sequence
of frequencies and the phase of the receiver), whether a mes-
sage will be successfully heard during the forthcoming scan.
In cases where it will not, we can skip the scan and incor-
porate the 36 time slots which would have been spent into
the subsequent 2012-slot sleep transition. By making this
change, the total jump becomes 2048 slots which, being a
multiple of the train length, simplifies the computation of
the sender’s next frequency over this period.

To incorporate this latter optimisation into our model,
we add a formulasuccesswhich is true if and only if the
receiver will hear a message during its next scan. Then, just
before the receiver enters its scan state, we check the value
of successand, when the formula is true, we let the receiver
scan until hearing a message (whichsuccessguarantees will
occur withinscantime slots). Otherwise, we let the receiver
synchronise with all other components of the model to per-
form a transition where all variables are updated to reflect
2048 time-slots elapsing. This simplification also means that
there is no need to explicitly track the amount of time that re-
ceiver spends scanning (using variabley in modulereceiver)
since, when it does begin to scan, it is guaranteed to hear a
message within 36 time slots. For the precise details of these
changes to the model source code, see the section on this
case study on the PRISM website [23].

Frequency of replies.Finally we note that, by the design of
the protocol itself, the frequency upon which the receiver
sends a reply to the sender will always be equal to the fre-
quency on which the sender is currently listening. Recall,
from Figure 1, how the sender transmits on each frequency
and then listens on it exactly two time-slots later. Observe
also, from Figure 3, how the receiver waits exactly 2 time-
slots (0.625ms) before sending a reply using the frequency
on which it has just received a message. Thus, the reply from
the receiver will always be successfully heard by the sender.
At the model level, this means that the formulahear reply
can be removed from the second last guarded command in
Figure 4, and that the the last guarded command can be re-
moved entirely.

5 Experimental Results

Our primary concern is the performance of the Bluetooth
inquiry process, i.e. the time required for a master device
to successfully receive replies from listening slave devices.
This is affected by the number of times the receiver sleeps
before successfully scanning on the right frequency at the
right time, and the random delays selected. More specifi-
cally, since the protocol is probabilistic in nature, we com-
pute the expected time for the inquiry process to complete,
with completion occurring when the number of replies re-
ceived reaches a predetermined bound. We also compute the
corresponding expected power consumption.

We performed an analysis of the model described in the
previous section with the most recent version the PRISM
model checker, which allows us to assign costs to states and
transitions of the model and then compute, for example, the
expected cumulated cost before reaching some set of states.
In our model the costs we measure are time and power con-
sumption. For example, in the case of time, we assign a cost
of 1 to all time actions and 0 to all others. As described
in Section 4.3, we actually sometimes accumulate multiple
time steps into a single step. The costs of these transitions
are modified accordingly.

The first issue we must address is the initial configura-
tion of the model. We cannot assume that the sender and
receiver both start in some fixed state because this is unreal-
istic. For efficiency reasons, we restrict ourselves to the case
where the sender is already transmitting inquiry packets and
a receiver begins scanning after some unknown delay, which
is a reasonable scenario. We can hence fix the initial state of
the receiver (i.e. variablesr, freq, andy). We can also sup-
pose that the variablerecof thesendermodule initially takes
the value 0 since this cannot increase until after the receiver
begins scanning. Note that we cannot fix the actual phase
of the receiver since this is determined by its clock, whose
value could be anything when it first begins scanning. This
leaves us with 2·16·2·16·128·4096·32=17,179,869,184 pos-
sible initial states.

Since formal verification aims to be exhaustive, we must
consider all of these, although clearly it is not feasible to
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treat each one separately. Fortunately, we can deal with this
in PRISM by building a single DTMC with multiple ini-
tial states and then examining the results of model checking
for all these states. In fact, this required a modification to
PRISM, but only a trivial one: the tool always computes re-
sults for all states in the model anyway. Initially, this single
model proved too large for the workstation we were using (a
Pentium 4 with 1 GB RAM and 2.80GHz processor). How-
ever, by partitioning the set of all initial states into classes
(we fix variablephase, giving 32 sets of 536,870,912 states
each), we reduce the problem to 32 separate instances of
model checking, each of whichwasfeasible.

As we will see from the results in the following para-
graphs, though, despite this partitioning (and despite the re-
ductions in model complexity described in Section 4.3), this
still results in models with extremely large state spaces. Intu-
itively, this is because the Bluetooth devices execute compli-
cated sequences of events, comprising both actions that take
a large number of time-slots and those performed in a single
slot. Fortunately, there remains a certain degree of regularity
in the process and we are able to exploit this using PRISM’s
symbolic (BDD-based) implementation. With an approach
based on explicit data structures (e.g. sparse matrices) this
would not be feasible.

5.1 Time for a Single Reply

We first present results for the time required for the receiver
to successfully send a single reply. In fact, since the receiver
does not make a random choice until after it first replies to a
message, the expected time computed is in this case the exact
time required. The 32 models we constructed each contained
approximately 3.4×109 states, required less than a minute
to construct, and took 1–2 seconds to analyse.

We computed the expected time to send a message for
all possible initial configurations. Using PRISM, we were
able to extract information about the best- and worst-case
scenarios. The latter, for example, can be achieved with the
following query to PRISM:

R =? [ F rep=mrep{”init”}{max} ]

In the above, the notationR =? [ F φ ] corresponds to the
expected cumulated cost (in this case, time) of the system
until conditionφ is satisfied. The conditionrep=mrepiden-
tifies states of the model where a sufficient number of replies
(in this case, one) have been received. Finally, the notation
{”init”}{max} indicates that we are requested the maxi-
mum (worst-case) expected cost value over all initial states
of the model.

Our results show that the minimum time for a single re-
ply is 625µs (2 slots), which corresponds to the cases when
the receiver starts listening on the frequency that the sender
is currently sending messages on, and therefore the receiver
sends a reply after waiting 2 slots. The maximum time is
2.5716s (8,229 slots) and is achieved in 860,160 of the pos-
sible initial states. This corresponds to the situation where

the receiver does not hear the sender until it scans for the
fifth time and therefore sleeps 4 times.

We can use PRISM to identify precisely the way in which
this maximum time arises. The PRISM query given above
causes the tool to report not only the maximum expected
time, but also the actual states from which this value is ob-
served. Using this information, the model can then be in-
spected in an attempt to explain the behaviour. In fact, we
have made use of a prototype discrete-event simulation en-
gine which has been developed for PRISM. This allows us
to generate, either manually or automatically, a random path
through the model starting from a given state. Below is an
example execution which illustrates exactly how this can
arise.

Example 1Suppose that the receiver starts its first scan on
frequency 1 and that its phase is about to change. Suppose
also that the sender is performing its last repetition of the
first of the following frequency sequences:

1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 21 22 23 24 25 26 27 28 29 30 31 32

and has already sent on frequency 1 during this repetition.
During this scan, the sender will finish the sequence and start
the following one which does not contain 1. The receiver
will not hear anything during this scan and will therefore
enter sleep. When the receiver wakes, the sender will still be
using the second frequency sequence and the receiver will
now be scanning on frequency 2 (as its phase was about to
change when it first scanned), and therefore the receiver will
not hear anything and sleep again. In fact, since the sender’s
subsequent frequency sequence does not contain 2 or 3, the
receiver will not hear anything on either of these two se-
quences as, during this time, the receiver will be scanning
on 2 or 3. Only when the receiver wakes for the fourth time
will its scan be successful on frequency 3 because the sender
will by then be using the fourth sequence.

In Figure 7(a) we have plotted the time until the sender
hears a reply against the number of initial states that result
in this time. The discontinuities in the graph are to be ex-
pected and follow from the fact that, when the receiver does
not hear anything during a scan (36 time slots), it sleeps
for 2,012 slots before scanning again. Since, in the worst
case, the receiver sleeps 4 times before hearing something
from the sender, there are 5 peaks in the graph correspond-
ing to the receiver sleeping from 0 up to 4 times. The inset in
Figure 7(a) illustrates one of these peaks more clearly. The
width of each peak is 11.25ms (36 slots).

If we make the assumption that, when the receiver first
starts to listen, there is a uniform distribution on the set of
possible initial configurations, we can calculate the cumu-
lative probability distribution function for the time for the
sender to hear a reply. This is the first plot shown in Fig-
ure 7(c). Furthermore, from this distribution, we extracted
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Fig. 7 Expected time for the sender to hear one or two replies from the receiver

Table 1 Probability that the receiver sleeps at mostK times before
sendingn replies

Bluetooth v.1.2 Bluetooth v.1.1
K n = 1 n = 2 n = 1

Exact Exact Derived Exact
0 0.500305 0.461240 0.455379 0.250305
1 0.633575 0.596265 0.590829 0.383657
2 0.759062 0.731585 0.728684 0.526981
3 0.879674 0.857913 0.855329 0.681114
4 1 0.984295 0.984218 0.849408
5 1 0.988269 0.988294 0.911750
6 1 0.992398 0.992514 0.956496
7 1 0.996294 0.996519 0.985521
8 1 1 1 1

the probability that the receiver sleeps at mostK times be-
fore sending its first reply to the sender, for a range of values
of K. These figures are shown in the first column of Table 1.

5.2 Time for Two Replies

For the case where the sender waits until two replies have
been received, the 32 constructed models each have approxi-
mately 5.6×1010 states and took roughly 80 minutes to build
and 165 minutes to model check. The minimum expected
time, over all possible initial configurations, for the sender
to hear two replies is 0.0456s (146.0 slots). The maximum is
5.177 seconds (16,565 slots) and 518 of the possible initial
states result in this. This is possible since the receiver can
sleep up to 8 times before sending its second reply. We now
extend Example 1 to illustrate how this can occur.

Example 2Example 1 demonstrated the receiver sleeping 4
times and then finally hearing the sender when it is on fre-
quency 3 in the sequence:

1 2 3 4 21 22 23 24 25 26 27 28 29 30 31 32

After the receiver scans, it increases its phase by 1 and waits
a random delay before scanning again. During this random

delay the phase will increase again and the receiver will next
scan on frequency 5. Since this frequency does not appear on
the above sequence and the sender has just started using it, it
will not hear anything during this scan and the next one, and
will therefore sleep twice. When the receiver wakes again it
will scan on frequency 6 and since the sender’s subsequent
frequency sequences will be:

1 2 3 4 5 22 23 24 25 26 27 28 29 30 31 32
17 18 19 20 21 22 7 8 9 10 11 12 13 14 15 16

it follows that the receiver will sleep an additional 2 times
before finally hearing (for the second time) from the sender
while scanning on frequency 7.

In Figure 7 we have also plotted, for the expected time
for the receiver to reply to two messages, both the distribu-
tion over the states (Figure 7(b)) and the cumulative distri-
bution function (second plot in Figure 7(c)). For the latter,
as in Section 5.1, we assume that there is a uniform proba-
bilistic choice as to the state of the system when the receiver
first scans. We have also extracted the probability that the
receiver sleeps at mostK times before sending its second re-
ply to the sender, for a range of values ofK. This is shown
in the second column of Table 1. The discontinuities in Fig-
ure 7(b) are, like those in Figure 7(a), due to the time that
the receiver spends in sleep: in this case there are 9 peaks –
the last 4 being considerably smaller than the first 5 but still
visible – which correspond to the cases when the receiver
sleeps from 0 to 8 times before sending its second reply. The
inset again illustrates one of these peaks. Closer examina-
tion reveals that there are also some initial states for which
the expected time falls outside of the eight peaks.

In Figure 7(c) we have also included a third cumula-
tive distribution function, for the probability that the sender
hears two replies by timeT, derived from the earlier ob-
tained distribution for one reply (shown on the same graph).
This derivation is based on the assumption that the time to
hear the second message is independent of the time to hear
the first message and is obtained by taking the convolution
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of two copies of the original distribution together with a dis-
tribution representing the random delay made by the receiver
between sending the first reply and beginning its next scan.
The corresponding probabilities of sleeping at mostK times
before sending two replies are again shown in Table 1 (third
column). Interestingly, these results demonstrate that the as-
sumption that the time to reply to the second message is in-
dependent of the time to reply to the first is incorrect, i.e.
leads to inaccurate results. More precisely, the results show
that if the receiver sleeps before sending its first reply, it is
less likely to sleep the second time.

We have also attempted to compute the probabilities for
higher numbers of replies. However, in these cases, parti-
tioning into 32 models is not feasible. We have been able to
generate some results for up to 5 replies by partitioning the
initial states more finely, but the considerable growth in the
number of verifications required means that an exhaustive
analysis has yet to be completed.

5.3 Power Consumption

We have also performed an analysis of the expected power
consumption of the Bluetooth device discovery process. To
do so, we need only change the costs associated with tran-
sitions of the model from the elapsed time to the power
consumed. Furthermore, since during device discovery the
only change in power consumption is caused by the receiver
changing power mode1, we restrict attention to the power
consumed by the receiver (the power consumed by the sender
can be calculated directly from our expected time results).

Using the values given in [9], which are 100mW for ac-
tive mode in Inquiry-Scan and 50mW for standby, the results
obtained are presented in Figure 8. These are very similar to
the expected time results, with smaller gaps between two
peaks (as less power is consumed during sleep).

5.4 Comparison with Bluetooth Version 1.1

Our analysis of Bluetooth device discovery is based on ver-
sion 1.2 of the Bluetooth specification, the most recent at the
time of modelling. We have also carried out a comparison of
this and the previous version (1.1). The main difference in
terms of the inquiry protocol is that, in version 1.1, the re-
ceiver only sends replies to every second message received.
More precisely, the receiver’s behaviour is as follows: when
receiving the first message from the sender, it draws a ran-
dom number, waits for the corresponding random delay and
returns to its scan state. Only when receiving a message for
the second time does it reply and increase its frequency. This
random delay was chosen to avoid collisions. In fact, it does
not take much more time (two slots) to send a reply to the
first message received before the random delay and there is

1 The receiver has two power modes:active(used when the receiver
is sending/receiving) andstandby(used the receiver is sleeping/waiting
a random delay).

a chance that this reply will be successfully received by the
sender. This is the reasoning behind this difference between
version 1.2 and version 1.1.

We modified our model to reflect these changes and re-
computed the expected time for the inquiry process. The re-
sults are included in Table 1. Unsurprisingly, we see that the
time for one reply in version 1.1 and for two replies in ver-
sion 1.2 are very similar. However, we successfully illustrate
that, as was intended, version 1.2 indeed results in improved
performance.

6 Related Work

Thanks to the ongoing growth in popularity of Bluetooth
technology, an increasing amount of research is being car-
ried out in order to analyse and improve its efficiency. There
is, however, a limited amount of work regarding the inquiry
process of the protocol. To our knowledge, this paper is the
first application of formal verification to the area: the most
common form of analysis being used is simulation, with
tools such as ns-2 [21] and BlueHoc [3]; see for example
[28,2].

Elsewhere, attempts have also been made to compute the
time required for inquiry analytically. Two examples include
[26] and [29]. In the former, the emphasis is primarily on the
issue of scatternet formation, but they also discuss a sym-
metric variation of the Bluetooth inquiry process, and con-
sider analytic expressions for the completion time, compar-
ing them to that of the standard asymmetric version. The lat-
ter considers the standard version, but for an arbitrary num-
ber of devices, rather than just two. The authors also com-
plement this with results from a discrete-event simulation.
Both papers, however, take a far more simplistic approach
to modelling the inquiry process than us. Firstly, they as-
sume that the sender uses a single train of 32 frequencies
which remains constant throughout, drastically reducing the
complexity of its behaviour. They therefore also assume that
the receiver will always be able to listen to all frequencies in
a short period, and thus never need to sleep. Hence, in their
analysis, they take the frequency synchronisation delay to be
uniformly distributed.

A more comprehensive analysis was recently presented
in [22]. In similar fashion, the authors produce an analytic
expression for the probability distribution function of the
time to complete an inquiry and then use this to validate a
discrete-event simulation of the same model. Like us, they
consider the correct behaviour in terms of trains (although
some simplifications are still required in order to derive an
analytic expression), and hence the model is much closer
to ours. The most significant difference is that, whereas we
aim for an exact/worst-case analysis, considering all possi-
ble overlaps between the sender and receiver, they assume an
equiprobable distribution between all possibilities in order to
derive a probability function. This, combined with the fact
that they use different parameters to those used here (both
are compliant with the official specification), means that a
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Fig. 8 Expected power consumed before the sender hears one or two replies from the receiver

detailed comparison of the two sets of results is impractical.
Unfortunately, the publication describing the derivation of
the distribution function is not yet available. In future, we
plan to carry out a more comprehensive comparison of this
work with our own.

It is also worth noting that all of the related work men-
tioned above is based on either version 1.0 or 1.1 of the spec-
ification. In this paper, we focus on the subsequent version,
1.2.

7 Discussion and Conclusion

In this paper, we have presented a formal analysis of the per-
formance of Bluetooth device discovery, using probabilistic
model checking and the tool PRISM. We showed how this
permits an exhaustive analysis of a low-level model of the
specification. This allows us to examine the best- and worst-
case expected times for the inquiry process and identify ex-
actly how these situations can occur.

We are, however, limited to a certain extent by the huge
size of the probabilistic models that we need for this process.
Techniques based on discrete-event simulation are far less
susceptible to this phenomenon, but have two disadvantages:
firstly, they compute only approximations to the numerical
results we obtain; and secondly, they sometimes require ad-
ditional probabilistic assumptions (in this case study, on the
initial configuration of the Bluetooth devices). It would be
advantageous to compare or even combine the two approaches.
One interesting application of the results in this paper might
be to use our exact results to improve the accuracy of a sim-
ulation of Bluetooth performed at a higher level. We plan to
investigate this area further.

There are also several other directions in which we we
would like to extend this work. Two examples are: increas-
ing the number of messages received and increasing the num-
ber of receivers. The latter introduces several new dimen-
sions such as collision of messages between devices and
tracking which replies correspond to which receivers. Lastly,
it would be interesting to study the effect of noise and/or in-

terference on the inquiry procedure. Since all of these areas
lead to an increase in model size, we will almost certainly
need to consider additional techniques, such as combination
with simulation (as discussed above) or abstraction and sym-
metry reduction methods.
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