Characterizing possible typical asymptotic behaviours of cellular automata

Benjamin Hellouin de Menibus joint work with Mathieu Sablik

Laboratoire d'Analyse, Topologie et Probabilités Aix-Marseille University

Journées Calculabilités 2013, Nancy

- \mathcal{A}, \mathcal{B} finite alphabets;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the **configurations**;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A **cellular automaton** is an action $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a **local rule** $f: \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \square\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

- A, B finite alphabets;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A cellular automaton is an action $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f: \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \square\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

- A, B finite alphabets;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A **cellular automaton** is an action $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a **local rule** $f: \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \square\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

- \mathcal{A}, \mathcal{B} finite alphabets;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A **cellular automaton** is an action $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a **local rule** $f: \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \square\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

Simulations and typical asymptotic behaviour

Measure space

 $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ the σ -invariant probability measures on $\mathcal{A}^{\mathbb{Z}}$.

 $\mu([u])$ the probability that a word $u \in \mathcal{A}^*$ appears, for $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$.

Examples

Bernoulli measure Let $(\lambda_a)_{a\in\mathcal{A}}$ such that $\sum \lambda_a = 1$. $\forall u\in\mathcal{A}^*, \mu([u]) = \prod_{i=0}^{|u|-1} \lambda_{u_i}$.

Dirac measure For $x \in \mathcal{A}^{\mathbb{Z}}$ and a borelian U,

$$\delta_x(U) = \begin{array}{c} 1 \text{ if } x \in U \\ 0 \text{ otherwise.} \end{array}$$

Measure supported by a periodic orbit For $w \in \mathcal{A}^*$, $\left|\widehat{\delta_w} = \frac{1}{|w|} \sum_{i=0}^{|w|-1} \delta_{\sigma^i(^\infty w^\infty)}\right|$.

Markov measure With finite memory.

Action of an automaton on an initial measure

▶ F extends to an action $F_*: \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$:

$$F_*\mu(U)=\mu(F^{-1}U)$$

for any borelian U.

- For an initial measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$, $F_*^t \mu$ represents the repartition at time t;
- Typical asymptotic behaviour is well described by the limit(s) of $(F_*^t \mu)_{t \in \mathbb{N}}$ in the weak-* topology:

$$\boxed{F_*^t \mu \xrightarrow[t \to \infty]{} \nu \quad \Leftrightarrow \quad \forall u \in \mathcal{A}^*, F_*^t \mu([u]) \to \nu([u]).}$$

Examples of asymptotic behaviours

Proposition (left)

Let μ be the uniform Bernoulli measure on $\{0,1,2\}$ and F the 3-state cyclic automaton.

$$F_*^t \mu \to \frac{1}{3}\widehat{\delta_0} + \frac{1}{3}\widehat{\delta_1} + \frac{1}{3}\widehat{\delta_2}.$$

Examples of asymptotic behaviours

Proposition (right)

Let μ be a Bernoulli measure on $\{{\bf 0},{\bf 1}\}$ and ${\it F}$ the additive automaton.

$$\overline{\left[rac{1}{n}\sum_{t=0}^{n}F_{*}^{t}\mu
ightarrow ext{Ber}\left(rac{1}{2},rac{1}{2}
ight).}
ight.}$$

Main question

Question

Which measures ν are reachable as the limit of the sequence $(F_*^t \mu)_{t \in \mathbb{N}}$ for some cellular automaton F and initial measure μ ?

Main question

Question

Which measures ν are reachable as the limit of the sequence $(F_*^t \mu)_{t \in \mathbb{N}}$ for some cellular automaton F and initial measure μ ?

Answer

All. (Take F = Id and $\mu = \nu$)

Main question

Better question

Which measures ν are reachable as the limit of the sequence $(F_*^t\mu)_{t\in\mathbb{N}}$ for some cellular automaton F and **simple** initial measure μ (e.g. the uniform Bernoulli measure)?

In a sense, this would correspond to the "physically relevant" measure for F.

Section 2

Necessary conditions: computability obstructions

Topological obstructions

Topological obstruction

The accumulation points of $(F_*^t \mu)_{t \in \mathbb{N}}$ form a nonempty and **compact** set.

Measures and computability

 $f: X \to Y$ is **computable** if there exists a Turing machine that, on any input $x \in X$, stops and outputs f(x) (up to encoding).

Measures and computability

 $f: X \to Y$ is **computable** if there exists a Turing machine that, on any input $x \in X$, stops and outputs f(x) (up to encoding).

A probability measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is:

computable if there exists a computable function $f: \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ such that

$$|\mu([u])-f(u,n)|<2^{-n}$$

(⇔ can be **simulated** by a probabilistic Turing machine)

Examples of computable measures

- Any periodic orbit measure;
- ▶ Any Bernoulli or Markov measure with computable parameters.

Measures and computability

 $f: X \to Y$ is **computable** if there exists a Turing machine that, on any input $x \in X$, stops and outputs f(x) (up to encoding).

A probability measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is:

semi-computable if there exists a computable function $f: \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ such that

$$|\mu([u]) - f(u,n)| \underset{n \to \infty}{\longrightarrow} 0.$$

(⇔ **limit** of a computable sequence of measures)

Examples of computable measures

- Any periodic orbit measure;
- ▶ Any Bernoulli or Markov measure with computable parameters.

Computability obstruction

Action of an automaton on a computable measure

- ▶ If μ is computable, then $F_*^t \mu$ is **computable**;
- If μ is computable, and $F_*^t \mu \xrightarrow[t \to \infty]{} \nu$, then ν is **semi-computable**.

Section 3

Sufficient conditions: construction of limit measures

State of the art

Theorem [Boyet, Poupet, Theyssier 06]

There is an automaton F such that the language of words u satisfying

$$F_*^t\mu([u]) \not\to 0$$

in **not computable** for any nondegenerate Bernoulli measure μ .

Theorem [Boyer, Delacourt, Sablik 10]

Let μ be the uniform Bernoulli measure.

For a large class of sets $U \subset \mathcal{A}^{\mathbb{Z}}$ (under computability conditions), there is an automaton F such that U is the union of the supports of the limit points of $(F_*^t \mu)_{t \in \mathbb{N}}$.

Main result

Action of an automaton on a computable measure

- ▶ If μ is computable, then $F_*^t \mu$ is **computable**;
- ▶ If μ is computable, and $F_*^t \mu \xrightarrow[t \to \infty]{} \nu$, then ν is **semi-computable**.

Theorem

Let ν be a **semi-computable** measure. There exists:

- an alpabet $\mathcal{B} \supset \mathcal{A}$
- ▶ a cellular automaton $F: \mathcal{B} \to \mathcal{B}$

such that, for any **ergodic** and **full-support** measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{B}^{\mathbb{Z}})$,

$$F_*^t \mu \xrightarrow[t \to \infty]{} \nu$$

Approximation by periodic orbits

Proposition

Measures supported by periodic orbits are dense in $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$.

Example: Uniform Bernoulli measure

 $w_0 = 01$

 $w_1 = 0011$

 $w_2 = 00010111$

 $w_3 = 0000110100101111$

Approximation by periodic orbits

Proposition

Measures supported by periodic orbits are dense in $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$.

Example: Uniform Bernoulli measure

 $w_0 = 01$

 $w_1 = 0011$

 $w_2 = 00010111$

 $w_3 = 0000110100101111$

Proposition

If $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is semi-computable, there is a **computable** sequence of words $(w_n)_{n \in \mathbb{N}}$ such that $\widehat{\delta_{w_n}} \to \nu$.

Our construction will compute each w_n in succession and approach the measure $\widehat{\delta_{w_n}}$ by writing concatenated copies of w_n on all the configuration.

Computation in cellular automata

To simulate computation in a cellular automaton, we use auxiliary states.

- each cell contains the content of one tape cell;
- ▶ the cell where the head is located contains also the current state of the machine.

and the local rule corresponds to the rules of the machine.

Time counters

?	?	?	?	#	1	0	2	W
?	?	?	?	?	#	2	1	W
?	?	?	?	?	#	1	2	W
?	?	?	?	?	#	1	1	W
?	?	?	?	?	?	#	2	W
?	?	?	?	?	?	#	1	W
?	?	?	?	?	?	#	0	W
?	?	?	?	?	?	?	#	I

Sweeping counters

Merging and copying processes

Section 4

Extensions

General remarks

Implementation

- Non-trivial Turing machine satisfying space constraints;
- Large number of states; (for $|\mathcal{B}|=2$, at least 2244 times more than the corresponding Turing machine)
- ▶ Speed of convergence $O\left(\frac{1}{\log t}\right)$ in the best case.

Extensions

- What about accumulation points?
- Can we remove auxiliary states?
- What about Cesaro mean convergence?
- Are properties of the limit measure decidable?
- Can we use the initial measure as an argument or an oracle?

Compact sets and computability

Consider the following distance function:

$$d_{\mathcal{M}}(\mu_1, \mu_2) = \sum_{n=0}^{\infty} \frac{1}{2^n} \max_{u \in \mathcal{A}^n} |\mu_1([u]) - \mu_2([u])|$$

Then the **computability of a compact set** V can be defined as the computability of the associated distance function $d_{V}: \mu \to \min_{\nu \in V} d_{\mathcal{M}}(\mu, \nu)$.

 \mathcal{V} computable if $d_{\mathcal{V}}: \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \mapsto \mathbb{R}$ is **computable**, that is:

$$\exists f: \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q} \text{ computable}, |d_{\mathcal{V}}(\widehat{\delta_w}) - f(w,n)| \leq \frac{1}{2^n}$$

and $\exists b : \mathbb{N} \mapsto \mathbb{Q}$ computable,

$$d_{\mathcal{M}}(\mu_1, \mu_2) < b(m) \Rightarrow |f(\mu_1, n) - f(\mu_2, n)| \leq \frac{1}{2^m}$$

Compact sets and computability

Consider the following distance function:

$$d_{\mathcal{M}}(\mu_1, \mu_2) = \sum_{n=0}^{\infty} \frac{1}{2^n} \max_{u \in \mathcal{A}^n} |\mu_1([u]) - \mu_2([u])|$$

Then the **computability of a compact set** $\mathcal V$ can be defined as the computability of the associated distance function $d_{\mathcal V}: \mu \to \min_{\nu \in \mathcal V} d_{\mathcal M}(\mu, \nu)$.

 \mathcal{V} Σ_2 -computable if $\boxed{d_{\mathcal{V}} = \liminf d_i}$, where d_i are elements in $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \mapsto \mathbb{R}$, and:

 $\exists f : \mathbb{N} \times \mathcal{A}^* \times \mathbb{N} \mapsto \mathbb{Q}$ computable,

$$|d_i(\widehat{\delta_w}) - f(i, w, n)| \le \frac{1}{2^n}$$
 (sequential computability)

and $\exists b : \mathbb{N} \mapsto \mathbb{Q}$ computable,

 $d_{\mathcal{M}}(\mu_1,\mu_2) < b(m) \Rightarrow |d_i(\mu_1) - d_i(\mu_2)| \leq \frac{1}{2^m}$ (effective uniform equicontinuity).

Computability obstructions, again

Action of an automaton on a computable measure:

- If μ is computable, then $F_*^t \mu$ is **computable**;
- ▶ If μ is computable and the accumulation points of $(F_*^t\mu)_{t\in\mathbb{N}}$ are \mathcal{V} , then \mathcal{V} is nonempty, compact and Σ_2 -computable.

Intuitively, $d_{\mathcal{V}} = \liminf d_{\mathcal{M}}(F_*^t \mu, .)$.

Proposition

If $\mathcal{V}\subset\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is nonempty and Σ_2 -computable, there is a **computable** sequence of words $(w_n)_{n\in\mathbb{N}}$ such that \mathcal{V} is the set of accumulation points of $(\widehat{\delta_{w_n}})_{n\in\mathbb{N}}$.

Main result, again

Theorem

Let $\mathcal V$ be a nonempty, compact, **connected**, Σ_2 -**computable** set of measures. Then there exists an automaton $F:\mathcal A\to\mathcal A$ such that, for any measure $\mu\in\mathcal M_\sigma(\mathcal A^\mathbb Z)$ σ -mixing and full-support,

The set of accumulation points of $(F_*^t \mu)_{t \in \mathbb{N}}$ is \mathcal{V} .

Main result, again

Theorem

Let $\mathcal V$ be a nonempty, compact, **connected**, Σ_2 -**computable** set of measures. Then there exists an automaton $F:\mathcal A\to\mathcal A$ such that, for any measure $\mu\in\mathcal M_\sigma(\mathcal A^\mathbb Z)$ σ -mixing and full-support,

The set of accumulation points of $(F_*^t \mu)_{t \in \mathbb{N}}$ is \mathcal{V} .

Hypothesis of connectedness $w_{n-1} \qquad w_n$

Removing the auxiliary states

Theorem

Let ν be a **non full-support**, **semi-computable** measure.

Then there exists an automaton $F: A \to A$ such that, for any measure $\mu \in \mathcal{M}_{\sigma}(A^{\mathbb{Z}})$ σ -mixing and full-support,

$$F_*^t \mu \xrightarrow[t \to \infty]{} \nu.$$

Idea: use forbidden words to encode auxiliary states.

Removing the auxiliary states

Theorem

Let ν be a **non full-support**, **semi-computable** measure.

Then there exists an automaton $F: A \to A$ such that, for any measure $\mu \in \mathcal{M}_{\sigma}(A^{\mathbb{Z}})$ σ -mixing and full-support,

$$F_*^t \mu \xrightarrow[t \to \infty]{} \nu.$$

Idea: use forbidden words to encode auxiliary states.

Remark

If $F_*^t \mu \to \nu$ where ν is a full support measure, then F is a **surjective** automaton and **the uniform Bernoulli measure is invariant**.

Computation in the measure space

Let us consider the operator

$$\mu \mapsto \mathsf{accumulation} \ \mathsf{points} \ \mathsf{of} \ (F_*^t \mu)_{t \in \mathbb{R}}$$

The previous construction gave us operators that were essentially **constant** (on a large domain).

Question

Which operators $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ (ou $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{P}(\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}))$) can be realized in this way?

Theorem

Let $\nu : \mathbb{R} \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be a **semi-computable** operator. There is:

- ▶ an alphabet $\mathcal{B} \supset \mathcal{A}$,
- ightharpoonup an automaton $F:\mathcal{B}^{\mathbb{Z}}
 ightarrow \mathcal{B}^{\mathbb{Z}}$

such that, for any **full-support** and **exponentially** σ -mixing measure μ ,

$$F_*^t \mu \xrightarrow[t \to \infty]{} \nu \left(\mu \left(\square \right) \right)$$

Some examples

Let $M \subset \mathcal{M}_{\sigma}(\mathcal{B}^{\mathbb{Z}})$ be the set of **full-support**, **exponentially** σ **-mixing** measures.

Example 1: Density classification

There exists an automaton $F:\mathcal{B}^\mathbb{Z} \to \mathcal{B}^\mathbb{Z}$ realizing the operator:

$$\begin{split} \mathbf{M} &\to \mathcal{M}_{\sigma}\big(\{0,1\}^{\mathbb{Z}}\big) \\ \mu &\mapsto \begin{cases} \widehat{\delta_0} & \text{if } \mu(\square) < \frac{1}{2} \\ \widehat{\delta_1} & \text{otherwise.} \end{cases} \end{split}$$

Some examples

Let $M \subset \mathcal{M}_{\sigma}(\mathcal{B}^{\mathbb{Z}})$ be the set of **full-support**, **exponentially** σ **-mixing** measures.

Example 1: Density classification

There exists an automaton $F:\mathcal{B}^\mathbb{Z}\to\mathcal{B}^\mathbb{Z}$ realizing the operator:

$$\begin{split} \mathbf{M} &\to \mathcal{M}_{\sigma}\big(\{0,1\}^{\mathbb{Z}}\big) \\ \mu &\mapsto \begin{cases} \widehat{\delta_0} & \text{if } \mu(\square) < \frac{1}{2} \\ \widehat{\delta_1} & \text{otherwise.} \end{cases} \end{split}$$

Example 2: A simple oracle

There exists an automaton $F: \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ realizing the operator:

$$M o \mathcal{M}_{\sigma}(\{0,1\}^{\mathbb{Z}})$$

 $\mu \mapsto \mathit{Ber}(\mu(\square))$

Implementation of a simple case

Fibonacci word

Consider the morphism:

$$\varphi: \quad \mathcal{A}^* \quad \to \quad \mathcal{A}^*$$

$$0 \quad \mapsto \quad 01$$

$$1 \quad \mapsto \quad 0$$

Then the sequence $\varphi^n(0)$ converges to an infinite word called **Fibonacci word**:

$$\varphi^{\infty}(0) = 0100101001001010010101\dots$$

Proposition

The Fibonacci word is uniquely ergodic.