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Definitions

A, B finite alphabets;
A* the (finite) words;
AZ the configurations;
o the shift action o(a); = a;_1;

A cellular automaton is an action F : A* — A” defined by a local rule f : AV — A
on some neighbourhood U.

ForA={B O}and U = {-1,0,1}:
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Definitions

A, B finite alphabets;
A* the (finite) words;
AZ the configurations;
o the shift action o(a); = a;_1;

A cellular automaton is an action F : AZ — AZ defined by a local rule f : AV — A
on some neighbourhood U.

For A= {W.0}andU = {—1,0,1}:
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Simulations and typical asymptotic behaviour

Traffic automaton Captive automaton

3-state cyclic automaton Additive automaton
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Measure space

M (A?) the o-invariant probability measures on A”.
1([u]) the probability that a word u € A* appears, for 1 € M, (A%).

Examples

Ju|—1
Bernoulli measure Let (Az)aca suchthat Y A\, =1.|Vu € A", u([u]) = H Ay

1ifxe U

Dirac measure For x € A% and a borelian U, 5 (U) = -
0 otherwise.

[w|—1

Measure supported by a periodic orbit For w € A*, |6, = |W| Z Ogi(oowso)

Markov measure With finite memory.
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Action of an automaton on an initial measure

» F extends to an action F, : M, (A%) — M, (A%):

Fon(U) = u(F'U)|

for any borelian U.

» For an initial measure p € M, (A%),
F! 1 represents the repartition at time
t;

» Typical asymptotic behaviour is well
described by the limit(s) of (F!u)en
in the weak-* topology:

Flin a v & Yue A Fla(lu) - ().
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Examples of asymptotic behaviours

k.

Proposition (left)

Let  be the uniform Bernoulli measure on {0, 1,2} and F the 3-state cyclic

automaton.

14 1~ 1
Fiﬂ_>§§0+§51+§52~
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Examples of asymptotic behaviours

k.

Proposition (right)

Let 1 be a Bernoulli measure on {0, 1} and F the additive automaton.

1 11
fZF,,{u—>Ber - =.
n 2'2

t=0
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Main question

Question

Which measures v are reachable as the limit of the sequence (F!u)en for some
cellular automaton F and initial measure p?
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Main question

Question

Which measures v are reachable as the limit of the sequence (F!u)en for some
cellular automaton F and initial measure p?

Answer
All. (Take F = Id and . = v)
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Main question

Better question

Which measures v are reachable as the limit of the sequence (F! ) for some
cellular automaton F and simple initial measure p (e.g. the uniform Bernoulli
measure)?

In a sense, this would correspond to the “physically relevant” measure for F.
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Section 2

Necessary conditions: computability obstructions

o =2 = E DA
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Topological obstructions

Topological obstruction

The accumulation points of (F!u):en form a nonempty and compact set.

=} F = E DAy
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Measures and computability

f 1 X — Y is computable if there exists a Turing machine that, on any input x € X,
stops and outputs f(x) (up to encoding).
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Measures and computability

f: X — Y is computable if there exists a Turing machine that, on any input x € X,
stops and outputs f(x) (up to encoding).

A probability measure i € M, (A%) is:

computable if there exists a computable function f : A* x N — Q such that

() — F(u,m) < 27"

(& can be simulated by a probabilistic Turing machine)

Examples of computable measures
> Any periodic orbit measure;
> Any Bernoulli or Markov measure with computable parameters.
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Measures and computability
f: X — Y is computable if there exists a Turing machine that, on any input x € X,
stops and outputs f(x) (up to encoding).

A probability measure 11 € M, (A%) is:

semi-computable if there exists a computable function f : A* x N — Q such that

() — Hu,m)| — 0.

(< limit of a computable sequence of measures)

Examples of computable measures
» Any periodic orbit measure;
» Any Bernoulli or Markov measure with computable parameters.
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Computability obstruction

Action of an automaton on a computable measure
» If 41 is computable, then F!p is computable;
» If 14 is computable, and Ffp — v,
t—o00
then v is semi-computable.
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Section 3

Sufficient conditions: construction of limit measures

o =2 = E DA
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State of the art

Theorem [Boyet, Poupet, Theyssier 06]
There is an automaton F such that the language of words u satisfying

Fip(lu]) # 0

in not computable for any nondegenerate Bernoulli measure p.

Theorem [Boyer, Delacourt, Sablik 10]

Let 1 be the uniform Bernoulli measure.

For a large class of sets U C .A” (under computability conditions), there is an
automaton F such that U is the union of the supports of the limit points of
(Fip)ten:

Hellouin, Sablik (LATP) Characterization of limit measures Journées Calculabilités 2013 13/30



Main result

Action of an automaton on a computable measure
» If u is computable, then F! . is computable;
» If 14 is computable, and Ffy — v,
t—o00
then v is semi-computable.

Theorem
Let v be a semi-computable measure. There exists:
> an alpabet B> A
» acellular automaton F : B — B
such that, for any ergodic and full-support measure p € MU(BZ),

Flp — v
t—o0
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Approximation by periodic orbits

Proposition

Measures supported by periodic orbits are dense in MU(AZ).

Example: Uniform Bernoulli measure
Wy = 01

w; = 0011

w, = 00010111

ws = 0000110100101111
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Approximation by periodic orbits

Proposition

Measures supported by periodic orbits are dense in M(,.(AZ).

Example: Uniform Bernoulli measure
Wy = 01

w; = 0011

w, = 00010111

ws = 0000110100101111

Proposition

Ifv e MU(AZ) is semi-computable, there is a computable sequence of words
(Wh)nen such that 4, — v.

Our construction will compute each w,, in succession and approach the measure d,,,
by writing concatenated copies of w, on all the configuration.
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Computation in cellular automata

To simulate computation in a cellular automaton, we use auxiliary states.

» each cell contains the content of one tape cell;
» the cell where the head is located contains also the current state of the machine.

and the local rule corresponds to the rules of the machine.
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Initialization

o = = = ) Q (
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Initialization
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Initialization
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Time counters
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Initialization

=} F = E E DA
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Initialization

old

counter

young

counter

=} F = E E DA
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Sweeping counters
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Merging and copying processes

Tn—1 T
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Section 4

Extensions

o F = E DAy
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General remarks

Implementation
» Non-trivial Turing machine satisfying space constraints;
> Large number of states;
(for |B| = 2, at least 2244 times more than the corresponding Turing machine)

» Speed of convergence O (Io%t) in the best case.

Extensions
» What about accumulation points?
Can we remove auxiliary states?

>

» What about Cesaro mean convergence?

> Are properties of the limit measure decidable?
>

Can we use the initial measure as an argument or an oracle?
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Compact sets and computability

Consider the following distance function:

o0

a(prs 12) = 3 5 ma (1) = ()

Then the computability of a compact set V can be defined as the computability of
the associated distance function dy, : © — min, ey da (g, v).

V computable if dy : M, (A%) — R is computable, that is:
N _— 1
3f : A* x N — Q computable, |dy () — f(w, n)| < o
and 3b : N — Q computable,

1
(i, pe) < b(m) =|f(p1, n) = f(p2, n)| < om
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Compact sets and computability

Consider the following distance function:

oo

a(prs 12) = 3 5 ma (1) = )

Then the computability of a compact set V can be defined as the computability of
the associated distance function dy, : © — min, ey da(p, v).

V ¥,-computable if| dy, = liminfd; |, where d; are elements in M, (A%) — R, and:

3f : N x A" x N — Q computable,
—~ 1
|di(dw) — f(i,w, n)| < o (sequential computability)
and db : N — Q computable,

1 . . S
dm (i, p2) < b(m) = |di(ug) — di(p2)] < om (effective uniform equicontinuity).
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Computability obstructions, again

Action of an automaton on a computable measure:
» If 4 is computable, then F!u is computable;

> If u is computable and the accumulation points of (F!u):cn are V,
then V) is nonempty, compact and 3,-computable.

Intuitively, dy, = liminf dp(Flp, .).
Proposition

If V € M, (A?) is nonempty and ¥ ,-computable, there is a computable sequence of
words (W, )nen such that V is the set of accumulation points of (dy, ) nen-
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Main result, again

Theorem

Let V be a nonempty, compact, connected, 3,-computable set of measures.
Then there exists an automaton F : A — A such that, for any measure p € M, (A%)
o-mixing and full-support,

The set of accumulation points of (F!u)en is V.
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Main result, again

Theorem

Let V be a nonempty, compact, connected, 3,-computable set of measures.
Then there exists an automaton F : A — A such that, for any measure p € M, (A%)
o-mixing and full-support,

The set of accumulation points of (F!u)en is V.

Hypothesis of connectedness

Wn—1

1100020077

Whn
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Removing the auxiliary states

Theorem

Let v be a non full-support, semi-computable measure.
Then there exists an automaton F : A — A such that, for any measure 1 € M, (A%)
o-mixing and full-support,

Flyu —s v.

t—o00

Idea: use forbidden words to encode auxiliary states.
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Removing the auxiliary states

Theorem

Let v be a non full-support, semi-computable measure.
Then there exists an automaton F : A — A such that, for any measure y € M, (A%)
o-mixing and full-support,

Flyu —s v.
t—o0

Idea: use forbidden words to encode auxiliary states.

Remark

If Ff — v where v is a full support measure, then F is a surjective automaton and
the uniform Bernoulli measure is invariant.
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Computation in the measure space
Let us consider the operator

u +— accumulation points of (FLu)ier ‘

The previous construction gave us operators that were essentially constant (on a
large domain).
Question

Which operators M, (AZ) — M, (AZ) (ou M, (AZ) — P(M,(A%))) can be
realized in this way?

Theorem
Letv : R — M, (A?) be a semi-computable operator. There is:
> an alphabet B D A,
» an automaton F : BZ — BZ
such that, for any full-support and exponentially o-mixing measure p,

Fly — 1/(,u (m)) .

t—o0

Hellouin, Sablik (LATP) Characterization of limit measures Journées Calculabilités 2013

28/30



Some examples

Let M C MU(BZ) be the set of full-support, exponentially o-mixing measures.
Example 1: Density classification

There exists an automaton F : B2 — BZ realizing the operator:
M — M, ({0,1}%)
. {50 if p(@) < 1

~

04 otherwise.
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Some examples

Let M C M, (B%) be the set of full-support, exponentially o-mixing measures.

Example 1: Density classification

There exists an automaton F : B2 — BZ realizing the operator:
M — M, ({0,1}%)
- 1
M’_){(So If}ll(m)< 3

~

04 otherwise.

Example 2: A simple oracle

There exists an automaton F : B% — BZ realizing the operator:

M — M, ({0,1}%)
p = Ber(p((1))
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Implementation of a simple case

Fibonacci word
Consider the morphism :

p: A — A*
0 — Of
1 — 0

Then the sequence "(0) converges to an infinite word called Fibonacci word:

©(0) = 0100101001001010010101 . ..

Proposition
The Fibonacci word is uniquely ergodic.
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