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Motivating the Problem

Algorithmic randomness with respect to a measure is fairly well
understood, for both computable and non-computable measures.

In this talk, I will discuss recent joint work with Laurent Bienvenu,
Rupert Hölzl, and Paul Shafer on finding a natural and useful
definition of randomness with respect to a semi-measure.

In particular, we will focus on randomness with respect to a
left-c.e. (or lower semi-computable) semi-measure.



Outline

1 Randomness with respect to a measure

2 Left-c.e. semi-measures

3 Restricting semi-measures to measures

4 Weak 2-randomness and semi-measures

5 Open questions



1. Randomness with respect to a measure



Some notation

2<ω is the collection of finite binary sequences.

2ω is the collection of infinite binary sequences.

The standard topology on 2ω is given by the basic open sets

JσK = {X ∈ 2ω : σ ≺ X},

where σ ∈ 2<ω and σ ≺ X means that σ is an initial segment of X .

Lastly, the Lebesgue measure on 2ω, denoted λ, is defined by

λ(JσK) = 2−|σ|

for each σ ∈ 2<ω (where |σ| is the length of σ), and then we
extend λ to all Borel sets in the usual way.



Computable probability measures on 2ω

A probability measure µ on 2ω is computable if σ 7→ µ(JσK) is
computable as a real-valued function, i.e., if there is a computable
function µ̂ : 2<ω × ω → Q2 such that

|µ(JσK)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω.

From now on, we will write µ(JσK) as µ(σ).

We’ve already seen one example of a computable measure: the
Lebesgue measure.



MLR with respect to a computable measure

Definition

Let µ be a computable measure.

A µ-Martin-Löf test is a uniform sequence (Ui )i∈ω of Σ0
1 (i.e.

effectively open) subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

A sequence X ∈ 2ω passes the µ-Martin-Löf test (Ui )i∈ω if
X /∈

⋂
i Ui .

X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X
passes every µ-Martin-Löf test.



Turing functionals

Recall: A Turing functional Φ : 2ω → 2ω is a c.e. set of pairs of
strings (σ, τ) such that if (σ, τ), (σ′, τ ′) ∈ Φ and σ � σ′, then
τ � τ ′ or τ ′ � τ .

Given σ ∈ 2ω, Φσ :=
⋃
{τ : ∃σ′ � σ(σ′, τ) ∈ Φ}.

Further, given B ∈ 2ω, Φ(B) :=
⋃

n ΦB�n.

Equivalently, Φ(B) =
⋃
{τ : ∃n(B�n, τ) ∈ Φ}.

If Φ(B) ∈ 2ω, we say Φ(B) is defined, denoted Φ(B)↓.

A Turing functional Φ is almost total if

λ(dom(Φ)) = 1.



Computable measures and Turing functionals

Given an almost total Turing functional Φ, the measure induced by
Φ, denoted λΦ, is defined by

λΦ(σ) = λ(Φ−1(σ)) = λ({X : ΦX � σ})

It’s not hard to verify that λΦ is a computable measure.

Moreover, given a computable measure µ, there is some almost
total functional Φ such that µ = λΦ.



Preservation of randomness

The following result is very useful.

Theorem

Given Φ is an almost total Turing functional and X ∈ MLR,
Φ(X ) ∈ MLRλΦ

.



Non-computable measures on 2ω

Let P(2ω) be the collection of probability measures on 2ω.

To define randomness for a non-computable measure, we need to
have access to the measure in some way.

In order to have access to the measure, we need to code it as a
sequence, which we will use as an oracle in defining our tests.

We will fix such a coding map Θ : 2ω → P(2ω) (the details of
which we won’t consider here).

Given a measure µ, if Θ(M) = µ, we will refer to M as a
representation of µ.

Θ is defined in such a way that each measure has many
representations.



MLR with respect to a non-computable measure, 1

Definition

Let µ be a non-computable measure, and let M be a
representation of µ.

An M-Martin-Löf test is a uniform sequence (Ui )i∈ω of Σ0
1(M)

(i.e. M-effectively open) subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

X ∈ 2ω is M-Martin-Löf random, denoted X ∈ MLRM
µ , if X

passes every M-Martin-Löf test.



MLR with respect to a non-computable measure, 2

Definition

Let µ be a non-computable measure.

X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if there is
some representation M of µ such that X is M-Martin-Löf random.



Blind randomness

An alternative approach to defining randomness with respect to a
non-computable measure dispenses with the representations.

Definition

Let µ be a non-computable measure.

A blind µ-Martin-Löf test is a uniform sequence (Ui )i∈ω of Σ0
1

(i.e. effectively open) subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

X ∈ 2ω is blind µ-Martin-Löf random, denoted X ∈ bMLRµ, if
X passes every blind µ-Martin-Löf test.



2. Left-c.e. semi-measures



What is a semi-measure?

A semi-measure can be seen as a defective probability measure.

Whereas a probability measure µ on 2ω satisfies

µ(∅) = 1 and

µ(σ) = µ(σ0) + µ(σ1) for every σ ∈ 2<ω,

a semi-measure ρ on 2ω satisfies

ρ(∅) ≤ 1 and

ρ(σ) ≥ ρ(σ0) + ρ(σ1) for every σ ∈ 2<ω.

Given that every probability measure on 2ω is a semi-measure on
2ω, it’s not unreasonable to seek to extend the definition of
randomness with respect to a measure to a definition of
randomness with respect to a semi-measure.



Left-c.e. semi-measures

Henceforth, we will restrict our attention to the class of left-c.e.
semi-measures.

A semi-measure ρ is left-c.e. (or lower semi-computable) if,
uniformly in σ, there is a computable non-decreasing sequence
(qi )i∈ω such that

lim
i→∞

qi = ρ(σ).

That is, the values of ρ on basic open sets are uniformly
approximable from below.



Why restrict to left-c.e. semi-measures?

The answer is: left-c.e. semi-measures are precisely the class of
semi-measures that are induced by Turing functionals.

That is, for every Turing functional Φ, the function

λΦ(σ) = λ(Φ−1(σ)) = λ({X : ΦX � σ})

is a left-c.e. semi-measure.

Moreover, for every left-c.e. semi-measure ρ, there is a Turing
functional Φ such that ρ = λΦ.



Conditions for a definition of randomness

What conditions do we want a definition of randomness with
respect to a semi-measure to satisfy?

First, we want it to extend the definition of randomness with
respect to a measure:

If X is random with respect to a measure µ, we also want X
to be random with respect to µ considered as a semi-measure.

Second, it’d be nice to have a version of the preservation of
randomness theorem:

If X is random and Φ is a Turing functional, then Φ(X ) is
random with respect to the semi-measure λΦ.



A first approach to randomness wrt a semi-measure

Why not simply replace the measure µ in the definition of
µ-Martin-Löf randomness with a left-c.e. semi-measure ρ?

Let’s say a ρ-test is a uniform sequence (Ui )i∈ω of Σ0
1 subsets of

2ω such that for each i ,

ρ(Ui ) ≤ 2−i .

Can we define randomness with respect to a semi-measure in terms
of ρ-tests?



The drawback of ρ-tests

Unfortunately, ρ-tests don’t behave so nicely:

Proposition (BHPS)

There is a left-c.e. semi-measure ρ such that for any uniform
sequence (Ui )i∈ω of Σ0

1 subsets of 2ω satisfying, for every i ∈ ω,

ρ(Ui ) ≤ 2−i ,

we have
⋂

i∈ω Ui = ∅.

Thus, if we were to count a sequence as Martin-Löf random with
respect to a semi-measure ρ if it avoids all ρ-tests, then every
sequence would be random with respect to the above-mentioned
semi-measure.



A second approach to randomness wrt a semi-measure

Recently, Shen asked the following question.

Question

If Φ and Ψ are Turing functionals that induce the same
semi-measure, i.e.,

λΦ = λΨ,

does it follow that Φ(MLR) = Ψ(MLR)?

A positive answer to Shen’s question might justify the following
definition:

Y is random with respect to a semi-measure ρ if for any Turing
functional Φ such that ρ = λΦ, there is some X ∈ MLR such that
Φ(X ) = Y .



A negative answer to Shen’s question

But we have the following.

Proposition (BHPS)

There exist Turing functionals Φ and Ψ such that

λΦ = λΨ

and
Φ(MLR) 6= Ψ(MLR).



Proof idea

Consider Chaitin’s Ω, a nicely approximable Martin-Löf random
sequence.

We can define a Turing functional Φ such that dom(Φ) = {Ω} and
Φ(Ω) = 0ω.

Using the definition of Φ as a blueprint, we can define a functional
Ψ that maps the same amount of measure to each string, but
which satisfies dom(Ψ) = {0ω} and Ψ(0ω) = 0ω.

Thus Φ(MLR) = {0ω} and Ψ(MLR) = ∅.



3. Restricting semi-measures to measures



A semi-measure as a network flow

It is helpful to think of a semi-measure as a network flow through
the full binary tree:

We initially give the node at the root of the tree some amount of
flow ≤ 1 (ρ(∅) ≤ 1).

Some amount of this flow at each node σ is passed along to the
node corresponding to σ0, some is passed along to the node
corresponding to σ1, and potentially, some of the flow is lost.
(ρ(σ) ≥ ρ(σ0) + ρ(σ1).



The bar of a semi-measure

Using this idea, we can define the largest measure less than a given
semi-measure.

The idea is to ignore all of the flow that is lost from the network,
so that for a given node, we consider the amount of flow that
passes through it and is never lost.

ρ(σ) := infn
∑

τ�σ & |τ |=n

ρ(τ)

One can verify that ρ is the largest measure such that ρ ≤ ρ (but
it is not a probability measure in general).



The bar of a semi-measure and Turing functionals

One particularly nice feature of ρ is its connection to Turing
functionals.

If
ρ(σ) = λ({X : ΦX � σ}),

then
ρ(σ) = λ({X : Φ(X )↓ & ΦX � σ}).



Two more candidate definitions

1 Define MLRρ := {X : X ∈ MLRρ}

2 Define MLRρ := {X : X ∈ bMLRρ}

Why consider option 2 as opposed to option 1?

Because ρ can encode lots of information.



Encoding information in ρ

Theorem (BHPS)

There is a left-c.e. semi-measure ρ and some α ∈ (0, 1) such that

ρ = α · λ; and
α ≡T ∅′′.

There are two ways to “control” the value ρ(σ):

1 Increase the value of the current approximation of ρ(σ).

2 Increase the amount of flow the leaves the network below σ.



Some consequences

Given the ρ from the previous theorem, any representation of ρ
must compute ∅′′.

Thus if M is a representation of ρ,

X ∈ MLRM
ρ ⇒ X is at least 3 - random.

However,
X ∈ bMLRρ ⇔ X ∈ MLR,

since every blind ρ-test is simply a Martin-Löf test, and vice versa.



No preservation of randomness

There is still a problem:

Proposition (BHPS)

There is a semi-measure ρ such that

ρ = λΦ for some Turing functional Φ;

dom(Φ) ∩MLR 6= ∅; and
bMLRρ = ∅.

That is, preservation of randomness fails in this case.



4. Weak 2-randomness and semi-measures



Weak 2-randomness

Definition

Let µ be a computable measure.

A generalized µ-Martin-Löf test is a uniform sequence (Ui )i∈ω
of Σ0

1 (i.e. effectively open) subsets of 2ω such that

lim
i→∞

µ(Ui ) = 0.

X ∈ 2ω is µ-weakly 2-random, denoted X ∈W2Rµ, if X
passes every µ-Martin-Löf test.

We can also define weak 2-randomness for non-computable
measures, as well as blind weak 2-randomness.



W2R wrt a semi-measure is promising, 1

Given a left-c.e. semi-measure ρ, a generalized ρ-test is a uniform
sequence (Ui )i∈ω of Σ0

1 subsets of 2ω such that for each i ,

lim
i→∞

ρ(Ui ) = 0.

Theorem (BHPS)

X ∈ bW2Rρ if and only if for every generalized ρ-test (Ui )i∈ω,
X /∈

⋂
i∈ω Ui .



W2R wrt a semi-measure is promising, 2

Unlike bMLRρ, we have preservation of randomness for bW2Rρ:

Theorem (BHPS)

If X ∈W2R and Φ is a Turing functional such that X ∈ dom(Φ),
then Φ(X ) ∈ bW2Rρ.



5. Open questions



Question

If Φ and Ψ are Turing functionals that induce the same
semi-measure, i.e.,

λΦ = λΨ,

does it follow that Φ(W2R) = Ψ(W2R)?

Question

If Y ∈ bW2Rρ and ρ = λΦ for some Turing functional Φ, is there
some X ∈W2R such that Φ(X ) = Y ?

Question

For a given left-c.e. semi-measure ρ, how complicated can the set
of Turing degrees of representations of ρ be?


