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Abstract

Overt choice was recently introduced and thoroughly studied by de
Brecht, Pauly and Schröder. They give estimates on the Weihrauch degree
of overt choice on various spaces, and relate it to the topological properties
of the space. In this article, we pursue this line of research, answering some
of the questions that were left open. We show that overt choice on the
rationals is not limit-computable. We identify the Weihrauch degree of
overt choice on the space of natural numbers with the co-finite topology.
We prove that the quasi-Polish spaces are the countably-based T0-spaces
on which a variant of overt choice, called ˜Π0

2 overt choice, is continuous.
It extends a previous result that holds in the class of T1-spaces. We also
prove an effective version of this equivalence.
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1 Introduction

In this article, we build on the work of de Brecht, Pauly and Schröder presented
in [?], in which the authors thoroughly study the computability and continu-
ity of an operator on topological spaces, called overt choice. In a topological
space (X, τ), which will be countably-based in this article (although in [?] more
general spaces are considered), the overt choice operator VCX takes as input
a closed set A ⊆ X and outputs any point of A. The available information
about A is an enumeration of the basic open sets intersecting A.

The article [?] contains many results on the continuity and computability
of overt choice in several spaces. For instance, it is proved that among the
countably-based T1-spaces, the quasi-Polish spaces are precisely the spaces on
which overt choice is continuous. A particular consequence of this result is
that overt choice is not continuous on the space Q of rational numbers with
the Euclidean topology, which was first proved by Brattka in [?], or on the
space Ncof of natural numbers with the co-finite topology.

When a problem is not solvable, i.e. not continuous or not computable, a
way to measure its complexity is using Weihrauch reducibility, which is a notion
of reducibility between multi-valued functions, inducing a notion of Weihrauch
degree. The article [?] contains estimates of the Weihrauch degree of overt choice
on many spaces, and we contribute to this line of research, giving answers to
some of the open questions raised in [?]. We also introduce a variant of overt
choice, called ˜Π0

2 overt choice, that takes as input a ˜Π0
2 set together with the

open sets intersecting it, and outputs any element of that set.
Our main results are:

• Overt choice on Ncof is Weihrauch equivalent to deciding in the limit
whether a subset of N is infinite (Theorem 3.1), and it is strictly below
overt choice on Q (Theorem 4.2),

• Overt choice on Q is not Weihrauch reducible to lim (Theorem 4.1),

• For a countably-based T0-space X, ˜Π0
2 overt choice on X is continuous

iff X is quasi-Polish (Theorem 5.2), and we prove effective versions of this
result,

• There exists a Σ0
2 subspace of N on which overt choice is not Weihrauch

reducible to unique choice over N (Proposition 6.1),

The article is organized as follows. Section 2 contains the basic definitions
and background results. Section 3 is the study of overt choice on Ncof. Section 4
contains results on overt choice on Q. In Section 5 we introduce ˜Π0

2 overt choice
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and prove the characterization of quasi-Polish spaces, and its effective versions.
We finish with Section 6, which contains a result about unique choice over N .

2 Background

We briefly present the notions that are used throughout the article.

2.1 Represented spaces

Computations on various mathematical spaces are made possible by the use of
representations. More details can be found in [?, ?, ?].

The Baire space N = NN is the space of infinite sequences of natural num-
bers, endowed with the product of the discrete topology on N.

A represented space is a pair (X, δ) where X is a set and δ :⊆ N → X
is a partial surjective function. A name of x ∈ X is any p ∈ dom(δ) such
that δ(p) = x. A multi-valued function f :⊆ X ⇒ Y assigns to each x ∈
dom(f) a non-empty subset of Y . If (X, δX) and (Y, δY ) are represented spaces,
then a partial function F :⊆ N → N is a realizer of f :⊆ X ⇒ Y if F
sends every name of every x ∈ dom(f) to a name of some y ∈ f(x). We say
that f :⊆ X ⇒ Y is computable if it has a computable realizer, and that f is
continuous if it has a continuous realizer.

An effectively countably-based T0-space is a T0 topological space (X, τ)
coming with a countable basis (Bi)i∈N and a c.e. set E ⊆ N3 such that Bi∩Bj =⋃

(i,j,k)∈E Bk. An effectively countably-based T0-space comes with its standard
representation δ defined as follows: p ∈ N is a name of x ∈ X if p is an
enumeration of the basic neighborhoods of x, i.e. if {i ∈ N : x ∈ Bi} = {i ∈ N :
∃n, p(n) = i+ 1}.

A subset U of X is an effectively open set if there exists a c.e. set W ⊆ N
such that U =

⋃
i∈W Bi. A set A ⊆ X is ˜Π0

2 if it can be written as A =⋂
n∈N Un → Vn, where Un, Vn are open sets and Un → Vn = U cn ∪ Vn, where U cn

is the complement of Un. A set A is Π0
2 if the sets Un, Vn are uniformly effectively

open sets.

2.2 Weihrauch reducibility

The notion of Weihrauch reducibility is central in this article. It enables one to
measure the non-computability of multi-valued functions by comparing them.
We give the definition and refer to [?] for more details.

Definition 2.1. Let f :⊆ X ⇒ Y and g :⊆ Z ⇒ W be partial multi-valued
functions between represented spaces. We say that f is Weihrauch reducible
to g, written f ≤W g, if there exist computable functions K :⊆ N × N → N
and H :⊆ N → N such that for every realizer G of g, the function p 7→
K(p,G ◦H(p)) is a realizer of f .

In particular, if f ≤W g and g is computable, then f is computable. We will
use the important limit operator.
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Definition 2.2. The limit operator lim :⊆ NN → N sends a converging se-
quence to its limit.

2.3 The Scott domain P(N)

The space P(N) is the space of subsets of N. It comes with the inclusion ordering,
denoted by ≤. For x ∈ P(N), we define ↑x = {y ∈ P(N) : x ≤ y} and ↓x =
{y ∈ P(N) : y ≤ x}.
P(N) is endowed with the Scott topology generated by the sets ↑F , where F

ranges over the finite subsets of N. These basic open sets make P(N) an effec-
tively countably-based T0-space. For x ∈ P(N), ↑x is ˜Π0

2 and ↓x is closed.
Actually, the effectively countaby-based T0-spaces are, up to computable

homeomorphisms, the subspaces of P(N). The embedding of an effectively
countably-based T0-space X in P(N) sends x ∈ X to the index set of its neigh-
borhood basis {i ∈ N : x ∈ Bi}.

A space is quasi-Polish if it embeds as a ˜Π0
2 subset of P(N). An effectively

countably-based T0-space X is a precomputable quasi-Polish space if there
is a computable homeomorphism between X and a Π0

2 subset of P(N). It is a
computable quasi-Polish space if it is precomputable and the set {i ∈ N :
BXi 6= ∅} is c.e., where (BXi )i∈N is the basis of X. Equivalently, X is computable
if it embeds as a Π0

2 subset Y ⊆ P(N) such that {i ∈ N : Bi ∩ Y 6= ∅} is c.e.,
where (Bi)i∈N is the basis of P(N).

We will use the next simple result, which is related to the fact that ev-
ery quasi-Polish space is sober (see [?]). P(N) is endowed with the inclusion
ordering, denoted ≤, and is a complete lattice.

Lemma 2.1. Let X be a ˜Π0
2 subset of P(N). If (xi)i∈N is a sequence in X

satisfying xi ≤ xi+1, then supxi ∈ X.

Proof. Let Un, Vn be open subsets of P(N) such that X =
⋂
n Un → Vn. Let n ∈

N. If x = supxi ∈ Un, there exists i such that xi ∈ Un. As xi ∈ X, one
has xi ∈ Vn. As xi ≤ x, x ∈ Vn as well.

We will use the fact that the standard representation is precomplete [?].

Lemma 2.2. If X is a represented space, Y is an effectively countably-based T0-
space and f : X ⇒ Y is computable, then f has a total computable realizer F :
N → N .

Proof. A proof can be found in [?]. The idea is simply that a partial realizer F
can be made total by inserting 0’s in the output sequence to make sure that it is
always infinite. By definition of the standard representation of Y , inserting 0’s
in a name of a point y still yields a name of y.

We will use the following computable fixed-point theorem, similar to Kleene’s
second recursion theorem, and proved using a standard diagonalization. Let δ :
N → P(N) be the standard representation of P(N).
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Theorem 2.1. Let H : N ×N → N be computable. There exists a computable
function K : N → N such that for all p ∈ N , δ(H(p,K(p))) = δ(K(p)).

Intuitively, K(p) is a fixed-point of the function H(p, ·).

Proof. Let φ : N × N → P(N) be a computable universal function, such that
for every computable function f : N × N → P(N) there exists a computable
function s : N → N satisfying f(p, q) = φ(s(p), q) for all p, q ∈ N . Let Φ :
N ×N → N be a computable realizer of φ, which means that φ = δ ◦ Φ.

Let F : N ×N → N be defined by F (p, q) = H(p,Φ(q, q)). There exists a
computable function s : N → N such that δ ◦ F (p, q) = φ(s(p), q). Let K(p) =
Φ(s(p), s(p)). One has δ ◦H(p,K(p)) = δ ◦ F (p, s(p)) = δ(K(p)).

In some results, we will need extra computability assumptions about the
basis of the space.

Definition 2.3. Let (X, τ, (Bi)i∈N) be an effectively countably-based space.
We say that its basis (Bi)i∈N is co-overt if the sets X \ Bi are computably
overt, uniformly in i.

In other words, the basis is co-overt if the set {(i, j) ∈ N2 : Bi\Bj 6= ∅} is c.e.
We show that this property is preserved when embedding the space in P(N).

Lemma 2.3. Let (X, τ, (BXi )i∈N) be an effectively countably-based space and Y ⊆
P(N) its canonical embedding. Let (Bi)i∈N be the basis of P(N), defined as Bi =
{A ⊆ N : Fi ⊆ A}, where (Fi)i∈N is a computable indexing of the finite subsets
of N. If the basis (BXi )i∈N of X is co-overt, then the basis (Bi ∩ Y )i∈N of Y is
co-overt as well.

Proof. Note that Bi ∩ Y is the image of
⋂
j∈Fi

BXj via the embedding. There is

a c.e. set E ⊆ N2 such that
⋂
j∈Fi

BXj =
⋃

(i,k)∈E B
X
k . Therefore,

(Bi ∩ Y ) \ (Bj ∩ Y ) 6= ∅ ⇐⇒
⋃

(i,k)∈E

BXk \
⋂
l∈Fj

BXl 6= ∅

⇐⇒
⋃

(i,k)∈E

⋃
l∈Fj

BXk \BXl 6= ∅

⇐⇒ ∃k, l such that (i, k) ∈ E, l ∈ Fj and BXk \BXl 6= ∅,

which is a c.e. condition.

2.4 Overt choice

To each space is associated a problem, introduced and thoroughly investigated in
[?] and called overt choice. Overt choice takes as input a non-empty closed set A
presented via an enumeration of the basic open sets intersecting A, and outputs
any element of A. Let us define it more precisely for the class of effectively
countably-based T0-spaces, although it can be defined with more generality in
[?].
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If X is an effectively countably-based T0-space, then V(X) is the topological
space of closed subsets of X endowed with the topology generated by the sets

{A ∈ V(X) : Bi ∩A 6= ∅},

where Bi is any basic open subset of X. These sets form a subbasis of the
topology. The collection of finite intersections of these sets has a canonical
effective numbering which makes V(X) an effectively countably-based T0-space.

An element A ∈ V(X) is called an overt closed set, and is represented by
enumerating the basic open sets Bi intersecting A. Let V+(X) be the subspace
of non-empty sets.

Definition 2.4. If X is an effectively countably-based T0-space, then overt
choice on X is VCX : V+(X) ⇒ X defined by x ∈ VCX(A) iff x ∈ A.

Among the many results of [?], let us cite two results showing that overt
choice behaves well on quasi-Polish spaces.

Theorem 2.2 (Theorem 20 in [?]). If X is quasi-Polish, then VCX is continu-
ous. If X is precomputably quasi-Polish, then VCX is computable.

Theorem 2.3 (Theorem 22 in [?]). Let X be a countably-based T1-space. The
following statements are equivalent:

• VCX is continuous,

• X is quasi-Polish.

We will see in Section 5 that the equivalence breaks if one drops the T1
assumption, but that it can be fixed by considering a stronger choice function,
taking overt ˜Π0

2 sets rather than overt closed sets as inputs.

3 Overt choice on Ncof

The space Ncof is the set of natural number N endowed with the co-finite topol-
ogy, generated by the complements of the finite subsets of N. The closed subsets
of Ncof are the finite sets and the whole set N. In [?] it is observed that this
space is T1 but not quasi-Polish, so overt choice is not continuous on Ncof. A
more precise measure of its Weihrauch complexity is left open (Open Question
52 in [?]).

In this section, we identify the Weihrauch complexity of VCNcof
. Let us

reformulate what the task of VCNcof
is:

• VCNcof
takes as input a non-empty set V ⊆ N which is either finite or all N,

and which is described by an enumeration of the finite sets that do not
contain V ,

• VCNcof
should enumerate all the natural numbers except one element of V .
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We will show that VCNcof
is Weihrauch equivalent to the following multifunc-

tion H.

Definition 3.1. Let H : 2ω ⇒ 2ω map an infinite binary sequence s to any
converging infinite binary sequence t such that lim tn = lim sup sn ∈ {0, 1}.

Said differently, H takes the characteristic sequence of a set A ⊆ N and
answers whether A is infinite, with finitely many mind changes; H is Weihrauch
equivalent to the operator taking an enumeration of a set E ⊆ N and answering
whether E = N, with finitely many mind changes. Intuitively, H transforms an
instance of a Π0

2 problem into an instance of a ∆0
2 problem. Another equivalent

problem is the identity from the Sierpinski space to the 2 point discrete space,
where each representation is replaced by its jump; the jump of a representation δ
is a representation δ′ such that a δ′-name of a point is a sequence converging to
a δ-name of that point (see [?]).

As pointed out by a referee, H is reducible to Sort but not to CN (the latter
is proved by observing that H is a non-computable closed fractal, and applying
Theorem 2.4 in [?]).

Theorem 3.1. VCNcof
is Weihrauch equivalent to H.

Proof. We first prove VCNcof
≤W H. We are given a non-empty set V ⊆ N, which

is either finite or N, presented via an enumeration of all the finite sets that do
not contain V . Using H, we enumerate a set S = N\{a} for some a ∈ V . S will
be defined as the union of a growing sequence of finite sets Si. By induction,
we will make sure that each Si does not contain V .

Whether V = N is equivalent to the condition that every finite set is enumer-
ated in the overt presentation of V . Therefore, giving to H the overt presentation
of V , the output of H tells us whether V = N with finitely many mind changes.
More precisely, the output of H is a binary sequence t converging to 1 if V = N,
and to 0 if V 6= N. We now explain the algorithm.

We start with S0 = ∅, which indeed does not contain V . Once Si has been
defined, let a < b be the smallest two numbers that do not belong to Si. We
run the following two tests in parallel:

(a) V * Si ∪ {a} and ∃j ≥ i, tj = 0,

(b) V * Si ∪ {b}.

One of them must succeed. Indeed, if (b) never succeeds, i.e. V ⊆ Si ∪ {b},
then V * Si ∪ {a} (otherwise V ⊆ Si, contradicting the induction hypothesis)
and V is finite, so lim tj = 0; therefore, the test (a) must succeed.

If test (a) succeeds first, then let Si+1 = Si ∪ {a}, if test (b) succeeds first,
then let Si+1 = Si ∪ {b}. Note that Si+1 does not contain V by construction.

Let S =
⋃
i∈N Si. We first show that S does not contain V . If V is finite, as

the sets Si grow and do not contain V , their union does not contain V either.
If V is infinite, then lim ti = 1 so there exists i0 such that tj = 1 for all j ≥ i0.
For all i ≥ i0, test (a) does not succeed, so the minimal element outside Si0 is
never added to Si+1. Therefore, S does not contain a, which belongs to V = N.
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We show that there is only one element outside S. If it it not so, then
let a < b be the two smallest such elements. Let i be such that all the numbers
smaller than a or b belong to Si. By construction, one must have Si+1 = Si∪{a}
or Si∪{b}, contradicting the assumption that a and b are outside S. Therefore,
we have shown that S = N \ {a} for some a ∈ V . It completes the proof of the
Weihrauch reduction from VCNcof

to H.
Conversely, we prove that H ≤W VCNcof

. Given the characteristic function
of a set A ⊆ N, we first add 0 to A to make sure that it is non-empty and define

V =

{
N if A is infinite,

{maxA} if A is finite.

Let us first show that from A, we can compute an overt presentation of V .

Claim 1. A finite set F does not contain V if and only if F ∩ A = ∅ or there
exists n ∈ A such that n > max(F ∩A).

Proof of the claim. One has the following equivalences:

F contains V

⇐⇒ A is finite and maxA ∈ F
⇐⇒ there exists k ∈ F ∩A such that there is no n ∈ A satisfying n > k

⇐⇒ F ∩A 6= ∅ and there is no n ∈ A satisfying n > max(F ∩A).

The condition is c.e. relative to A, so one can enumerate the finite sets that
do not contain V .

We give the overt presentation of V to VCNcof
, which produces n ∈ V given

via an enumeration of N \ {n}. Using this enumeration, we show how to decide
with finite many mind-changes whether A is finite or infinite. We can compute n
with finitely many mind changes, by guessing at each stage that n is the smallest
number that was not enumerated so far. Each time the value of n changes, we
start testing whether A contains an element larger than n. As long as such an
element is not found, we guess that A is finite; when such an element is found,
we guess that A is infinite. Eventually, the value of n ∈ V does not change any
more so our guesses converge to the correct answer.

In particular, we easily obtain an upper bound on VCNcof
.

Corollary 3.1. VCNcof
is Weihrauch reducible to lim.

Proof. It is easy to see that H is reducible to lim. Given a binary sequence s,
we define the binary sequence t by tn = supp≥n sp. One has lim tn = lim sup sn
so t ∈ H(s), and t can be computed from s by applying lim.
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4 Overt choice on Q
Brattka [?] proved that overt choice on the spaceQ of rational numbers, endowed
with the Euclidean topology, is not continuous. The results of [?] imply that the
only subspaces of R on which overt choice is continuous are the Polish subspaces
of R, i.e. the ˜Π0

2 subsets of R.
A more precise estimation of the Weihrauch degree of VCQ was investigated

in [?] and [?], and we contribute to this problem in this section.

4.1 Comparison with lim

Whether VCQ is Weihrauch reducible to lim is left as an open question (Open
Question 50) in [?]. We show that the answer is negative.

Theorem 4.1. VCQ is not Weihrauch reducible to lim.

Proof. Similarly to [?], we work on the space F of finitary sequences w10 where w ∈
{0, 1}∗ (for some technical reason, we exclude the zero sequence). As Q ∩ [0, 1]
and F are easily computably homeomorphic, VCQ is equivalent to VCF. We show
that VCF is not reducible to lim (VCF is called ECP in [?]).

Observe that VCF is reducible to lim iff VCF is limit-computable, i.e. there is
a computable procedure converting a name of a non-empty overt set C ⊆ F to a
sequence of elements of F converging to an element of C (the equivalence between
reduction to lim and limit-computability can be found as Proposition 11.6.1 in
[?]). We assume that VCF is limit-computable and derive a contradiction. We
build a name of an overt set C ⊆ F, feed VCF with that name and make sure that
corresponding output sequence does not converge to an element of C. Note that
we need to build a valid name of C without assuming that the output sequence
is well-defined and converges.

In other words, we are given a partial sequence (xp)p∈N of points of the
Cantor space and build an overt set C ⊆ F, such that if xp is total and converges
to a finitary sequence, then that sequence is outside C. The sequence is partial,
which means that the bits xp(i) may be undefined.

Let u be a finite binary string. We say that xp extends u, written xp � u,
if the prefix of length |u| of xp is defined and coincides with u. We say that xp
is incompatible with u, written xp ⊥ u, if xp is defined at a position i < |u|
with xp(i) 6= u(i).

We introduce the following quantities, which can be infinite:

ϕ+(u) = #{p ∈ N : xp � u},
ϕ−(u) = #{p ∈ N : xp ⊥ u}.

The general idea is that if we observe that xp is more often extending u than
incompatible with u, i.e. if ϕ+(u) > ϕ−(u), then xp might converge to u0, so
we remove u0 from C. We need to do it carefully so that we can at the same
time produce the overt information about C. We now give the details.
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If u, v are finite strings, then we also write u ⊥ v if they are incomparable
for the prefix ordering. Observe that if u ⊥ v, then ϕ+(v) ≤ ϕ−(u), because
each xp that extends v is incompatible with u.

Claim 2. If u ⊥ v, then ϕ+(u) ≤ ϕ−(u) or ϕ+(v) ≤ ϕ−(v).

Proof. Indeed, if ϕ+(u) > ϕ−(u), then ϕ+(v) ≤ ϕ−(u) < ϕ+(u) ≤ ϕ−(v).

We define ϕ+
k (u) = #{p ∈ N : xp[k] � u}, where xp[k] is the part of xp

computed at stage k. Note that ϕ+
k (u) is non-decreasing in k, and converges

to ϕ+(u). We now define C:

A = {w10k+2 : w ∈ 2∗, k ∈ N, ϕ+
k (w1) > ϕ−(w1)},

C = F \
⋃
σ∈A

[σ],

where [σ] is the set of infinite sequences extending σ.
By definition, C is closed. If (xp)p∈N is completely defined and converges

to w10, then ϕ+(w1) = ∞ and ϕ−(w1) < ∞, so w10k+2 ∈ A for some k,
hence w10 /∈ C. It remains to show that we can compute an overt presentation
of C.

Claim 3. Let σ be a finite string. The cylinder [σ] intersects C iff no prefix of σ
belongs to A.

Proof. Of course, if [σ] intersects C, then no prefix of σ belongs to A. Conversely,
assume that no prefix of σ belongs to A. Let u = σ11 and v = σ101. These
two words are incomparable, so by Claim 2, ϕ+(u) ≤ ϕ−(u) or ϕ+(v) ≤ ϕ−(v).
In the first case, u0 ∈ C because no prefix of this sequence belongs to A; in the
second case, v0 ∈ C. In either case [σ] intersects C.

Relative to the partial sequence (xp)p∈N, the set A is co-c.e., so the set of
cylinders intersecting C is c.e., which means that we can compute an overt
presentation of C.

4.2 Lower bound on VCQ

We also compare overt choice on Q with overt choice on Ncof.

Theorem 4.2. VCNcof
is strictly Weihrauch reducible to VCQ.

Proof. We saw in Theorem 3.1 that VCNcof
is Weihrauch equivalent to H. We

prove that H is reducible to VCF, which is equivalent to VCQ. Given a set A ⊆ N,
we build an overt set VA ⊆ F such that from any element of VA we can decide
whether A is infinite, with finitely many mind changes. We first add 0 to A to
make it non-empty.

If A is infinite, then VA is the set of characteristic sequences of finite subsets
of A. If A is finite, then VA is the set of characteristic sequences of the (finite)
subsets of A containing maxA.
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We show that from A one can uniformly compute an overt presentation of VA.
Let σ be a finite binary string, n = |σ| and F be the finite set of positions at
which σ has a 1.

Claim 4. The cylinder [σ] intersects VA if and only if F ⊆ A and (max(A ∩
[0, n− 1]) ∈ F or there exists k ≥ n such that k ∈ A).

Proof of the claim. One has the following equivalences:

[σ] does not intersect VA

⇐⇒ F * A or (A is finite, max(A) < n and max(A) /∈ F )

⇐⇒ F * A or (max(A ∩ [0, n− 1]) /∈ F and there is no k ≥ n in A).

The condition in the claim is c.e. relative to A, so VA is computably overt
relative to A.

Given A, we feed VCF with VA which produces an element x of VA. Note
that x is the characteristic sequence of a finite set F . We show that using x, one
can decide with finitely many mind changes whether A is infinite. Indeed, A
is infinite iff there exists n ∈ A such that n > maxF . From x, maxF can be
computed with finitely mind changes, and then the existence of such an n can
be decided with one mind change.

We have shown that VCNcof
is reducible to VCQ. Conversely, VCQ is not

reducible to VCNcof
because VCNcof

is reducible to lim (Corollary 3.1) while VCQ
is not (Theorem 4.1).

5 Characterization of quasi-Polish spaces

In [?] it is proved that overt choice is continuous on quasi-Polish spaces, and
among the T1 countably-based spaces, the spaces on which overt choice is con-
tinuous are exactly the quasi-Polish spaces.

First, it is easy to see that the characterization fails for spaces that are not T1.
The following example is not quasi-Polish, but overt choice is continuous (and
even computable) on that space.

Example 5.1. The space N≤ is the set of natural numbers endowed with the lower
topology, whose open sets are the sets [n,+∞). It is an effectively countably-
based space which is not quasi-Polish. Indeed, it can be embedded in P(N)
by sending n to the set {0, . . . , n}. The image of N≤ under this embedding is
not ˜Π0

2, because it does not satisfy Lemma 2.1.
However, overt choice on N≤ is computable. Indeed, every non-empty closed

subset of N≤ contains 0, so the algorithm that immediately outputs 0 without
even reading its input is a realizer of VCN≤ .

We introduce a stronger variant of overt choice that does characterize the
quasi-Polish spaces among the countably-based spaces. While overt choice only
takes closed sets as inputs, this variant takes any ˜Π0

2 set as input.
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5.1 Π0
2 overt choice

Let X be an effectively countably-based T0-space.

Definition 5.1. PV(X) is the space of ˜Π0
2 subsets of X. A name of A ∈ PV(X)

consists of a ˜Π0
2 presentation together with an overt presentation of A. PV+(X)

is the subspace of non-empty ˜Π0
2 subsets of X.

More precisely, if (Bi)i∈N is the basis of X, then a name of A ∈ PV(X) is
an enumeration of three sets E,F,G ⊆ N such that:

• A =
⋂
n∈N Un → Vn, where Un =

⋃
(i,n)∈E Bi and Vn =

⋃
(i,n)∈F Bi,

• G = {i ∈ N : Bi ∩A 6= ∅}.

Definition 5.2. PVCX : PV+(X) ⇒ X sends a non-empty ˜Π0
2 overt subset

of X to any element of that set.

We start with a few elementary facts about this choice principle. First, every
closed set is ˜Π0

2, in a uniform computable way.

Proposition 5.1. If X is an effectively countably-based T0-space, then the in-
clusion map I : V(X)→ PV(X) is computable.

Proof. If A ⊆ X is closed, then A =
⋂
iBi → Ui where Ui = ∅ if Bi ∩ A = ∅

and Ui = Bi otherwise. The sets Ui are uniformly effectively open from the
overt presentation of A.

Corollary 5.1. If X is an effectively countably-based T0-space, then VCX ≤W
PVCX .

Proof. One has VCX = PVCX ◦I which is reducible to PVCX as I is computable
by Proposition 5.1.

Proposition 5.2. Let Y be an effectively countably-based T0-space. If X ∈
Π0

2(Y ), then PVCX ≤W PVCY .

Proof. Every ˜Π0
2 subset of X is a ˜Π0

2 subset of Y , and we show that the inclusion
map J : PV(X)→ PV(Y ) is computable. First, a ˜Π0

2(X) presentation of A ⊆ X
is a set B ∈ ˜Π0

2(Y ) such that A = B ∩ X. Intersecting it with the Π0
2(Y )

presentation of X gives a ˜Π0
2(Y ) presentation of A. The basis of X is given

by BXi = BYi ∩ X, so the overt presentation of A is the same in X and in Y .
As a result, PVCX = PVCY ◦ J is reducible to PVCY .

Corollary 5.2. If X is quasi-Polish then PVCX is continuous. If X is a pre-
computable quasi-Polish space, then PVCX is computable.

Proof. If X is a precomputable quasi-Polish space, then X embeds as a Π0
2

subset of P(N). By Proposition 5.2, PVCX is reducible to PVCP(N) which is
computable (which follows from [?] and [?]), so PVCX is computable. The
non-effective case is obtained by relativization.
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We will see below that the first part of Corollary 5.2 is actually an equiv-
alence: X is quasi-Polish if and only if PVCX is continuous. In the next two
sections, we give examples showing that the second part of Corollary 5.2 is not
an equivalence, i.e. PVCX can be computable even though X is not precom-
putable.

5.1.1 Subspaces of the lower reals

We give a class of quasi-Polish spaces on which ˜Π0
2 overt choice is computable,

without any computability assumption on the space.
We work in the computable quasi-Polish space [0, 1]≤, which is the unit

interval endowed with the lower topology whose open sets are ∅, [0, 1] and (x, 1]
for 0 ≤ x < 1.

Proposition 5.3. If X ⊆ [0, 1]≤ is quasi-Polish, then PVCX is computable.

Proof. As X is quasi-Polish, X is a ˜Π0
2 subset of [0, 1]≤. Given A ∈ PV(X)

we can use the overt information about A to compute supA. Here, “comput-
ing” supA means enumerating the rational numbers q < supA, which can be
done because q < supA if and only if (q, 1] intersects A. The same argument as
in Lemma 2.1 shows that because A is ˜Π0

2, it indeed contains supA.

In particular, if X is a quasi-Polish space such that PVCX is computable,
then X need not be precomputable.

5.1.2 Removing compact points

We give another way of obtaining quasi-Polish spaces on which PVC is com-
putable. It involves the compact points of the space, which play a particular
role in the computability of PVC.

Definition 5.3. Let X be a topological space. We say that a point x ∈ X is
compact if the intersection of its neighborhoods is open.

In P(N), the compact points are the finite sets. In a T1-space, the compact
points are the isolated points.

Proposition 5.4. Let X be a countably-based T0-space. X contains countably
many compact points, and for each compact x ∈ X, the singleton {x} is a
difference of two open sets. Therefore, any set of compact points of X is ˜Σ0

2.

Proof. To each compact point x we associate a basic neighborhood Bi of x which
is the intersection of the neighborhoods of x. This correspondence is one-to-one,
because the space is T0. For each compact x, one has {x} = Bi ∩ cl(x) which is
a difference of two open sets.

We show that, assuming that the basis of the space Y is co-overt (Definition
2.3), if Π0

2 overt choice is computable on Y then it is computable on any sub-
space X obtained by removing a collection of compact elements of Y , with no
effectiveness assumption on that collection.

13



Theorem 5.1. Let Y be an effectively countably-based T0-space whose basis is
co-overt. Assume that Y is quasi-Polish and PVCY is computable.

If X ⊆ Y contains all the non-compact elements of Y , then PVCX is com-
putable.

The results of the next sections imply that the assumption that Y is quasi-
Polish is actually implied by the computability of PVCX . Note that X is au-
tomatically quasi-Polish, because it is a ˜Π0

2 subset of Y (indeed, it is obtained
from Y by removing a set of compact elements, which is ˜Σ0

2 by Proposition 5.4).
Before presenting the proof of the theorem, let us formulate a particular case,

which is another source of quasi-Polish spaces X which are not precomputable,
but such that PVCX is computable.

Corollary 5.3. Let F be a collection of finite subsets of N, and let X =
P(N) \ F . PVCX is computable, although the quasi-Polish space X need not
be precomputable.

Proof. The space Y = P(N) satisfies all the assumptions of Theorem 5.1, and its
compact elements are the finite sets. If we fix a computable bijection between N
and the finite subsets of N, and choose F so that the corresponding index set is
not a Σ0

2 subset of N, then X is not a Π0
2 subset of P(N).

Proof of Theorem 5.1. We assume that X ⊆ Y ⊆ P(N), so Y is a ˜Π0
2 subset

of P(N). We are given a non-empty set A ∈ PV(X). The strategy is to define a
non-empty set B ⊆ A for which we can compute a description in PV(Y ) (rather
than PV(X)). We then apply PVCY to B and compute an element of B, which
will also belong to A. Let

KA = {x ∈ Y : x is a compact element of Y and ∃y ∈ A, y > x}

and B = A\KA. In other words, B is obtained by removing from A the compact
elements that are not isolated in A. An element x ∈ A is isolated in A if there
exists an open set U such that U ∩ A = {x}. We show that one can compute
a PV(Y )-name of B.

Claim 5. One can compute a ˜Σ0
2(Y ) description of KA from the overt informa-

tion about A.

Proof. To each basic open set BYi we associate the set Vi of elements of Y that
are not lower bounds of BYi . One has Vi =

⋃
{BYj : BYi \BYj 6= ∅}. Indeed,

x is not a lower bound of BYi

⇐⇒ there exists y ∈ BYi such that x � y

⇐⇒ there exists y ∈ BYi and j such that x ∈ BYj and y /∈ BYj
⇐⇒ there exists j such that x ∈ BYj and BYi \BYj 6= ∅.

Therefore, Vi is effectively open, uniformly in i. We show that KA =
⋃
i∈E B

Y
i \

Vi where E = {i ∈ N : BYi ∩ Vi intersects A}. As E is c.e. relative to the overt
description of A, it implies that KA is Σ0

2 relative to A.
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For each i ∈ N, if BYi has a minimal element x (i.e. an element which is also
a lower bound of BYi ), then BYi \Vi = {x} and x is compact, otherwise BYi \Vi is
empty. Conversely, every compact element is the minimal element of some BYi .
If BYi \ Vi = {x}, then BYi ∩ Vi = {y ∈ Y : y > x}. Therefore, BYi ∩ Vi
intersects A iff there exists y ∈ A, y > x.

Note that A ⊆ X ⊆ Y , and from the overt information about A as a subset
of X we can compute the overt information of A as a subset of Y : an open
set U ⊆ Y intersects A if and only if the U ∩X intersects A.

From the overt information about A, which coincides with the overt infor-
mation about clY (A), we can compute a ˜Π0

2(Y ) description of clY (A). The
description of A ∈ ˜Π0

2(X) is a set G ∈ ˜Π0
2(Y ) such that A = G ∩X.

Claim 6. One has B = G ∩ clY (A) \KA.

Proof. B is clearly contained in the set on the right-hand side, because B =
A\KA ⊆ G∩ clY (A)\KA. The two sets coincide on the non-compact elements,
because the non-compact elements belong to X, on which G coincides with A.
It remains to show that every compact element of G∩clY (A)\KA belongs to B.

Let x be a compact element of clY (A) \ KA (we do not even need to as-
sume x ∈ G). There exists i such that {x} = BYi \ Vi. As x ∈ clY (A), BYi
intersects A. As x /∈ KA, BYi ∩ Vi does not intersect A. As a result, BYi can
only intersect A at x, so x ∈ A. As x /∈ KA, x ∈ B.

Therefore, one can compute a ˜Π0
2(Y )-name of B.

Claim 7. B is dense in A.

Proof. Assume that some open set U intersects A but not B. As U ∩ A is
contained in KA, it contains only compact elements that are not isolated in A.
If x ∈ A is compact and not isolated in A, then there exists y ∈ A such that x <
y. We start from some x0 ∈ U ∩ A; there exists x1 ∈ A such that x0 < x1. It
implies that x1 ∈ U ∩A, so we can iterate and build a sequence x0 < x1 < x2 <
. . . in U ∩ A. Note that G is a ˜Π0

2 subset of Y , which is a ˜Π0
2 subset of P(N),

so G is a ˜Π0
2 subset of P(N). Each xi belongs to G, so supxi ∈ G by Lemma

2.1. x is not compact because every neighborhood of x contains some xi < x,
so x ∈ X. Therefore x ∈ U ∩G∩X = U ∩A. It contradicts the fact that U ∩A
only contains compact elements. Therefore, B is dense in A.

Therefore, B is non-empty and the overt description of A is also an overt
description of B. All in all, we can compute a PV(Y ) description of B from
a PV(X) description of A, and the proof is complete.

5.2 Characterization of quasi-Polish spaces

We now state and prove the characterization of quasi-Polish spaces in terms
of ˜Π0

2 overt choice. The proofs will be given in the next section.

Theorem 5.2. Let X be a countably-based T0-space. The following statements
are equivalent:
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• PVCX is continuous,

• X is quasi-Polish.

At the same time, we prove effective versions of this result. In all the effective
results, we assume that X is computably overt, and that the complements of
the basic open sets are uniformly computably overt.

The first result is the most general one, and implies Theorem 5.2 by rela-
tivization.

Theorem 5.3 (Effective result, general case). Let X be an effectively countably-
based T0-space whose basis is co-overt. The following statements are equivalent:

• PVCX is computable,

• X is contained in a Π0
2 space Y whose basis is co-overt, and X contains

all the non-compact elements of Y .

Under certain assumptions, the statement can be simplified. The first case
is when the space has no compact element.

Theorem 5.4 (Effective result, no compact element). Let X be an effectively
countably-based T0-space whose basis is co-overt. If X has no compact element,
then the following statements are equivalent:

• PVCX is computable,

• X is a computable quasi-Polish space.

The second case is when the space is a subspace of a precomputable quasi-
Polish space which is T1. In that case, the compact elements need not be treated
separately.

Corollary 5.4 (Effective result, T1-space). Let Z be a precomputable quasi-
Polish space that is T1. If X ⊆ Z and the basis of X is co-overt, then the
following statements are equivalent:

• PVCX is computable,

• X is a computable quasi-Polish space.

Proof. Let X ⊆ Z ⊆ P(N), where Z is Π0
2 and T1. First, the closure cl(X)

of X in P(N) is Π0
2, because it is computably overt by assumption. Assume

that PVCX is computable. Let Y ⊇ X be given by Theorem 5.3. The set cl(X)∩
Y ∩ Z is Π0

2 and contains X. Let us show that it actually coincides with X,
implying that X is Π0

2 and therefore precomputable (it is then computable, as
it is computably overt by assumption).

Assume that there exists x ∈ cl(X) ∩ Y ∩ Z \ X. As x ∈ Y \ X, x is a
compact element of Y so there exists i such that Bi ∩ Y = Bi ∩ ↑x. As Y is T1
and x ∈ Y , one actually has Bi ∩ Y = {x}. As x ∈ cl(X), Bi intersects X.
The only possible element of Bi ∩ X is x, so x ∈ X which is a contradiction.
Therefore, there is no such x, and cl(X) ∩ Y ∩ Z = X.

The result applies in particular if X is a subspace of a computable Polish
space.
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5.3 The proof

We give the rather involved proof of Theorem 5.3 and explain how Theorems
5.2 and 5.4 can be derived.

One direction is already proved: if X and Y satisfy the conditions of the
Theorem, then PVCY is computable (Corollary 5.1), so PVCX is computable by
Theorem 5.1. We prove the other direction.

We assume that X is embedded in P(N), and that PVCX is computable.
Instead of basis BXi we will use the basis induced by the basis (Bi)i∈N of the
Scott topology on P(N). Note that the set {(i, j) : Bi \ Bj ∩X 6= ∅} is c.e. by
Lemma 2.3. Let

N = {x ∈ P(N) : x ∈ cl(X \ ↑x)}.

In the definition of N , the closure is taken in P(N) rather than X. Observe
that X ∩N is the set of non-compact elements of X. We know that X ∩N is
a ˜Π0

2 subset of X (Proposition 5.4). Here we prove an effective version.

Claim 8. N is a Π0
2 subset of P(N).

Proof. Let

Vi = {x ∈ P(N) : x is not a lower bound of X ∩Bi}.

Let us show that Vi =
⋃
{Bj : Bi \ Bj ∩ X 6= ∅}, which is effectively open by

assumption about X. Indeed,

x is not a lower bound of X ∩Bi
⇐⇒ there exists y ∈ X ∩Bi such that x � y

⇐⇒ there exist y ∈ X ∩Bi and j such that x ∈ Bj , y /∈ Bj
⇐⇒ there exists j such that x ∈ Bj and X ∩Bi \Bj 6= ∅.

One has N =
⋂
iBi → Vi, which is Π0

2. Indeed,

x ∈ cl(X \ ↑x) ⇐⇒ [∀i, x ∈ Bi =⇒ Bi ∩X \ ↑x 6= ∅]
⇐⇒ [∀i, x ∈ Bi =⇒ X ∩Bi * ↑x]

⇐⇒ [∀i, x ∈ Bi =⇒ x is not a lower bound of X ∩Bi]
⇐⇒ [∀i, x ∈ Bi =⇒ x ∈ Vi].

The construction of the set Y ⊆ P(N) works in two steps:

• We build a set Z ∈ Π0
2(P(N)) containing X and such that X∩N = Z∩N ,

• We then define Y = Z \
⋃
{Bi \Bj : Bi \Bj ∩X = ∅}.

The construction of Z uses the assumption that PVCX is computable. It may
not be the case that X contains all the non-compact elements of Z, and the
definition of Y fixes this problem. The core of the proof will be the construction
of Z. Before, let us quickly explain how Theorems 5.4 and 5.2 follow.
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Theorem 5.4 is a particular case: ifX contains no compact element, thenX =
X ∩N = Z ∩N is Π0

2, because Z and N are Π0
2.

Theorem 5.2 is obtained by relativization to an oracleA ⊆ N that makes {(i, j) :
BXi \ BXj 6= ∅} c.e. and PVCX computable. The space Y is quasi-Polish, and
any subspace of Y containing its non-compact elements is quasi-Polish as well.

Building the set Z. The set Z will be built using the next result. In order
to improve the readability, we denote δ(p) by xp.

Lemma 5.1. Let A,B be two disjoint subsets of P(N). If there exists a com-
putable function K : N → N such that

xK(p) = xp if xp ∈ A,
xK(p) 6= xp if xp /∈ B,

then there exists a Π0
2 set Z ⊆ P(N) containing A and disjoint from B.

Proof. Let S = {p ∈ N : xK(p) = xp}. As K is computable and equality
on P(N) is Π0

2, S is a Π0
2 subset of N which contains δ−1(A) and is disjoint

from δ−1(B). A Π0
2 subset of P(N) can be obtained by applying the Vaught

transform to S: let

Z = {x ∈ P(N) : S is co-meager in δ−1(x)},

which indeed contains A and is disjoint from B. This transform was defined by
Vaught in [?] and applied to representations of countably-based spaces in [?, ?,
?]. Let us prove that Z is indeed Π0

2, for the purpose of giving a self-contained
presentation. Let Sn ⊆ N be uniformly effectively open sets such that S =⋂
n Sn. For each x ∈ P(N), δ−1(x) is ˜Π0

2 hence Polish, so S is co-meager
in δ−1(x) iff it is dense there, iff each Sn is dense in δ−1(x). Therefore, x ∈
Z ⇐⇒ for every n ∈ N and every finite sequence σ ∈ N∗, if [σ] intersects δ−1(x)
then [σ] ∩ Sn intersects δ−1(x). In other words,

Z =
⋂
n,σ

δ([σ])→ δ([σ] ∩ Sn),

which is indeed a Π0
2 subset of P(N).

We now show that the computability of PVCX can be used to build a func-
tion K satisfying the assumptions of Lemma 5.1.

Lemma 5.2. If PVCX is computable, then there exists a computable func-
tion K : N → N such that for all p ∈ N ,

xK(p) = xp if xp ∈ X, (1)

xK(p) 6= xp if xp ∈ N \X. (2)

Lemma 5.1 then implies the existence of a Π0
2 set Z ⊆ P(N) containing X

and disjoint from N \X, as wanted.
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Proof of Lemma 5.2. Let us start with an intuitive explanation of how K works.
For x ∈ X ∪ N , let Sx = (X ∩ ↓x) ∪ clX(X \ ↑x). It is a closed subset

of X, which is non-empty if x ∈ X ∪ N . We build an algorithm that takes as
input a name p of x ∈ X ∪ N , tries to produce a PV+(X) name of Sx, feeds
the computable realizer of PVCX with that name, observe the output and use
it to guide the construction of the name of Sx. The purpose is to force the
realizer of PVCX to output a name of x, when x ∈ X. We then define K(p) as
the output of the realizer of PVCX . If x ∈ X, then xK(p) = xp; if x ∈ N \X,
then xK(p) 6= xp because xK(p) belongs to Sx ⊆ X.

Observe that the construction of the input of the realizer of PVCX depends
on its output, which itself depends on its input. We make the argument precise
using the computable fixed-point theorem (Theorem 2.1).

We now give the details of how to build K.
Each p ∈ N induces a growing sequence (xp[n])n∈N of finite subsets of N

whose union is xp ∈ P(N). In the sequel, it may help the reader to think of p as
a name of x ∈ X ∪N and of q as the output of a realizer of PVCX (however, for
the moment p and q are arbitrary elements of N ). We first define a computable
function η : N ×N → N< as follows:

η(p, q) = sup{n ∈ N : xp[n] ≤ xq and xq[n] ≤ xp}. (3)

It is an equality testing function in the sense that η(p, q) = ∞ if and only
if xp = xq. This function is computable (which means that there is an algorithm
taking p, q as inputs and computes a non-decreasing sequence of natural numbers
converging to η(p, q)). Let

D = {(p, q) ∈ N ×N : xp ∈ X or xp = xq ∈ N}.

We then define a function ψ : D → PV+(X) as follows:

ψ(p, q) =

{
(X ∩ ↓xp ∩ ↑xp[n+ 1]) ∪ (X \ ↑xp[n]) if n = η(p, q) <∞,
(X ∩ ↓xp) ∪ clX(X \ ↑xp) if η(p, q) =∞.

Note that when η(p, q) = ∞, ψ(p, q) is Sxp
. We are now going to use the

following properties of ψ:

• If (p, q) ∈ D then ψ(p, q) 6= ∅,

• The function ψ : D → PV+(X) is computable.

They will be proved in Lemma 5.3, let us assume them for the moment.
The multifunction PVCX ◦ψ : D ⇒ X is computable. By Lemma 2.2, it has

a total computable realizer H : N ×N → N . We write Hp(q) for H(p, q). By
the computable fixed-point theorem (Theorem 2.1), a fixed-point of Hp can be
uniformly computed from p, i.e. there is a computable function K : N → N
such that

xHp(K(p)) = xK(p).

We finally check that K satisfies the sought conditions of Lemma 5.2. To lighten
the notations, let us fix p ∈ N and put q = K(p).
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Claim 9. If (p, q) ∈ D, then xq ∈ ψ(p, q).

Proof of Claim 9. As H is a realizer of PVCX ◦ ψ, xHp(q) ∈ ψ(p, q). As q is a
fixed-point of Hp, one has xq = xHp(q) so xq ∈ ψ(p, q).

Claim 10. If xp ∈ X, then xq = xp.

Proof of Claim 10. As xp ∈ X, one has (p, q) ∈ D, so xq ∈ ψ(p, q) by Claim 9.
Assume for a contradiction that xq 6= xp. It implies that η(p, q) is a finite

number n, so xq ∈ ↑xp[n] by definition of η (3). As xq ∈ ψ(p, q), one must
have xq ∈ ↓xp∩↑xp[n+1]. It implies that η(p, q) ≥ n+1 which is a contradiction.
Therefore, xq = xp.

Claim 11. If xp ∈ N \X, then xq 6= xp.

Proof of Claim 11. Equivalently, we show that if xp ∈ N and xq = xp, then xp ∈
X. If xq = xp ∈ N , then (p, q) ∈ D, so xq ∈ ψ(p, q) by Claim 9. As ψ(p, q) ⊆ X,
it implies that xp = xq ∈ X.

We have proved that if xp ∈ X, then xK(p) = xp, and if xp ∈ N \ X,
then xK(p) 6= xp, which completes the proof of Lemma 5.2.

We now prove the computability of ψ.

Lemma 5.3. If (p, q) ∈ D then ψ(p, q) 6= ∅, and the function ψ : D → PV+(X)
is computable.

Proof of Lemma 5.3. We split ψ into two parts and show that each part is
computable.

Claim 12. The map ψ0 : D → ˜Π0
2(X) defined by

ψ0(p, q) =

{
X ∩ ↓xp ∩ ↑xp[n+ 1] if n = η(p, q) <∞,
X ∩ ↓xp if η(p, q) =∞,

is computable.

Proof of Claim 12. We need to show that ψ0(p, q) is a Π0
2 subset of X, relative

to and uniformly in p, q.
First, ↓xp is a Π0

2 subset of P(N), relative to and uniformly in p. Indeed,
one has ↓xp =

⋂
i∈NBi →Wi(p) where

Wi(p) =

{
P(N) if xp ∈ Bi,
∅ if xp /∈ Bi.

Next, let

ψ′0(p, q) =

{
↑xp[n+ 1] if n = η(p, q) <∞,
P(N) if η(p, q) =∞.
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One then has ψ′0(p, q) =
⋂
n∈N Un(p, q)→ Vn(p, q), where

(Un(p, q), Vn(p, q)) =


(∅, ∅) if η(p, q) < n,

(P(N), ↑xp[n+ 1]) if η(p, q) = n,

(P(N),P(N)) if η(p, q) > n.

The sets Un(p, q), Vn(p, q) are effectively open relative to and uniformly in n, p, q
because they are increasing w.r.t. η(p, q). Start with (∅, ∅), switch to (P(N), ↑xp[n+
1]) if the inequality η(p, q) ≥ n is eventually satisfied, and then switch to
(P(N),P(N)) if η(p, q) ≥ n+ 1 is eventually satisfied.

Claim 13. The map ψ1 : N ×N → PV(X) defined by

ψ1(p, q) =

{
X \ ↑xp[n] if n = η(p, q) <∞,
clX(X \ ↑xp) if η(p, q) =∞,

is computable.

Proof of Claim 13. As it has closed images, it is sufficient to show that ψ1 is
computable when typed as ψ1 : N × N → V(X). A basic open set Bi in-
tersects ψ1(p, q) iff there exists a finite number n ≤ η(p, q) such that Bi \
↑xp[n] intersects X, which is a c.e. condition by the co-overtness assumption
about X.

We show that for (p, q) ∈ D, the closure in P(N) of ψ(p, q) is ↓xp∪ψ1(p, q). It
is clearly contained in that set. Let U ⊆ P(N) be an open set intersecting ↓xp,
i.e. containing xp. First assume that xp ∈ X. One has xp ∈ ψ0(p, q) so U
intersects ψ(x). Now assume that x ∈ N \X. As (p, q) ∈ D, one has η(p, q) =∞
so ψ1(p, q) = clX(X \ ↑xp). As xp ∈ N , which means that xp ∈ cl(X \ ↑xp), U
intersects X \ ↑xp so U intersects ψ1(p, q) hence ψ(p, q).

Therefore, ψ(p, q) = ψ0(p, q) ∪ ψ1(p, q) is Π0
2 relative to and uniformly

in (p, q) ∈ D. We need to show that ψ(p, q) is computably overt, relative
to and uniformly in (p, q) ∈ D, which is implied by the following result.

Claim 14. For (p, q) ∈ D, Bi intersects ψ(p, q) if and only if Bi intersects ψ1(p, q)
or xp ∈ Bi.

Proof. If Bi intersects ψ(p, q) but not ψ1(p, q), then Bi intersects ψ0(p, q) which
is contained in ↓xp, therefore xp ∈ Bi.

Conversely, assume that xp ∈ Bi. If xp ∈ X, then xp ∈ ψ0(p, q) so Bi
intersects ψ(x). If xp ∈ N \ X, then η(p, q) = ∞ as (p, q) ∈ D, so ψ1(p, q) =
clX(X \ ↑xp). As xp ∈ N , which means that xp ∈ cl(X \ ↑xp), U intersects X \
↑xp so U intersects ψ1(p, q) hence ψ(p, q).

As a result, we have shown that the map ψ : D → PV(X) is computable.
Moreover, if xp ∈ X then ψ0(p, q) 6= ∅, and if xp = xq ∈ N then ψ1(p, q) 6= ∅.
Therefore, ψ(p, q) 6= ∅ for all (p, q) ∈ D. The proof of Lemma 5.3 is complete.
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The set Y . As announced, we define Y = Z \
⋃
{Bi \Bj : Bi \Bj ∩X = ∅}.

By definition, Y contains X. We need to show that:

1. Y is Π0
2,

2. {(i, j) : BYi \BYj 6= ∅} is c.e.,

3. X contains all the non-compact elements of Y .

1. As Z is Π0
2, it is sufficient to show that the set

⋃
{Bi \ Bj : Bi \ Bj ∩

X = ∅} is Σ0
2. This set is

⋃
i,j Bi \Wi,j , where Wi,j = Bj if Bi \ Bj ∩ X =

∅, and Wi,j = P(N) otherwise. Wj is effectively open, uniformly in i, j: we
start enumerating Bj , and if we eventually see that Bi \ Bj intersects X (a
c.e. condition), then we enumerate P(N).

2. It is easy to see that Bi \ Bj intersects Y if and only if it intersects X.
One direction follows from the fact that Y contains X. In the other direction,
if Bi \ Bj intersects Y , then it was not removed from Z in the definition of Y ,
so it intersects X.

3. Let x ∈ Y \X. We show that x is compact in Y . As x /∈ N , there exists i
such that x ∈ Bi and X∩Bi = X∩↑x. Let y = inf X∩Bi, we show that x = y.
One has x ≤ y and for every j,

y ∈ Bj =⇒ X ∩Bi ⊆ Bj because X ∩Bi ⊆ ↑ y
⇐⇒ X ∩Bi \Bj = ∅
=⇒ x /∈ Bi \Bj because x ∈ Y
=⇒ x ∈ Bj because x ∈ Bi

so y ≤ x, therefore y = x.
Let z ∈ Y ∩ Bi. If z ∈ X, then x ≤ z. If z /∈ X, then by the previous

argument applied to z, there exists k such that z ∈ Bk and z = inf X ∩ Bk.
As z ∈ Bi, X ∩Bk ⊆ X ∩Bi so z = inf X ∩Bk ≥ inf X ∩Bi = x.

Therefore, Y ∩Bi = Y ∩↑x, so x is compact in Y and the proof is complete.
All in all, we have built the space Y satisfying all the conditions listed in

Theorem 5.3.

6 Unique choice over the Baire space

The problem UCN is called unique choice over the Baire space and is defined
as follows. It takes as input a singleton {p} ⊆ N, given via an enumeration of
a set E of finite sequences σ of natural numbers such that {p} = N \

⋃
σ∈E [σ],

and outputs p.
In [?] it is asked whether there exists an effectively countably-based space X

which is effectively analytic, and such that VCX is not Weihrauch reducible
to UCN (Open Question 49 in [?]). We answer positively.

We use the following result, which is Corollary 3.4 in [?]. We say that a
point of a represented space is hyperarithmetical if it has a hyperarithmetical
name.
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Lemma 6.1. Let X,Y be represented spaces and f : X ⇒ Y . If f ≤W UCN ,
then for every computable x ∈ X, f(x) contains an hyperarithmetical element.

Proof. A computable name of x is mapped to a Π0
1 singleton in N . Its unique

element is hyperarithmetical and computes (a name of) an element of f(x).

Proposition 6.1. There exists a Σ0
2 subspace X ⊆ N such that VCX �W UCN .

Proof. We take X such that X is dense in N and contains no hyperarithmetical
element. It can be built as follows. Kleene [?] prove the existence of a non-empty
set P ∈ Π0

1(N ) containing no hyperarithmetical element. Let X = {σ · p : σ ∈
N∗ and p ∈ P}. We apply Lemma 6.1 to f = VCX . As X is dense in N , X is a
computable element of V(X). However, VCX(X) = X has no hyperarithmetical
element, so VCX �W UCN .
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