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• In computability theory and computable analysis, one studies
“constructible” objects:

∆0
2

LeftCE

CE

Computable

Some classes of constructible subsets of N
• Applying tools and technics from ordinary mathematics is not
always possible: these classes of objects do not have ordinary
structures.

• Goal: adapt mathematics to these spaces.
• Here: Baire Category.
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Baire Category

In a complete metric space (X, d), gives a notion of typical point.
Let P (x) be a property of points x ∈ X. If

{x ∈ X : ¬P (x)}

is small then a typical point satisfies P .

Example (Banach, Mazurkiewicz, 1932)
Let X = C [0, 1] with d(f, g) = maxx∈[0,1] |f(x)− g(x)|. The typical
continuous function is not differentiable at any point.

Example (Weil, 1976)
For a suitable choice of X ⊆ C [0, 1] and d(f, g) = sup[0,1] |f ′ − g′|, the
typical element of X is a differentiable nowhere monotonic
function.
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Baire Category on classes of constructible objects?
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Figure: Classes of constructible subsets of N

What does the typical object of each class look like?

Problem
These spaces are not complete metric spaces. Baire Category does
not work there. We have to adapt it.
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Baire Category
Provides notions of small and large sets.

Definition
A set is nowhere dense if it is contained in the complement of a
dense open set.

The Sierpiński Carpet is nowhere dense
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Baire Category

Definition
Small sets:

• Nowhere dense sets,
• Their countable unions.

Large sets: complements of small sets.

Does it make sense? Can a small set contain everything?

Baire Category Theorem (Baire, 1899)

In a complete metric space, these notions make sense:

large sets are
non-empty (and even dense).

A space where it fails
Let X = Q with the usual metric. Each singleton {q} is small
so X =

⋃
q∈Q{q} is small. But it covers X!
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Baire Category

If A ⊆ X is small then a typical element of X lies outside A.

Example
Let X = C [0, 1] with d(f, g) = maxx∈[0,1] |f(x)− g(x)|. The typical
continuous function is not differentiable at any point.

Proof.
If f is differentiable at some x then f ∈

⋃
nEn, where

En =

{
f : ∃x ∈ [0, 1− 1

n ],∀h ∈ [0, 1− x],
|f(x+ h)− f(x)|

h
≤ n

}
is nowhere dense.
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Proof of Baire Category Theorem

The following sets are nowhere dense:

. . .

Let’s build a point avoiding them.
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Proof of Baire Category Theorem

and so on... and so on...
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Baire Category on classes of constructible objects?
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Some classes of constructible subsets of N

What does the typical object of each class look like?

For each class we adapt the notion of nowhere dense set and prove
a Baire Category theorem.
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Baire Category on Computable

Reminder

Small and large sets

Small sets:
• Complements of dense open sets,
• Their countable unions.

Large sets: complements of small sets.

Baire Category Theorem (Baire, 1899)

In a complete metric space, large sets are non-empty (and even
dense).

Yasugi, Mori, Tsujii (1999)
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Baire Category on Computable

Reminder

Small and large sets in Computable

Small sets:
• Complements of dense effective open sets,
• Their effective unions.

Large sets: complements of small sets.

Baire Category Theorem on Computable

In Computable, large sets are non-empty (and even dense).

Yasugi, Mori, Tsujii (1999)
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Baire Category on Computable

Example
The typical computable function f ∈ C [0, 1] is nowhere differentiable.

Can also be developed on the class of polytime computable functions.
[Breutzmann, Juedes, Lutz, 2001]
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Baire Category on ∆0
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Baire Category on ∆0
2

Just relativize...

Small and large sets in ∆0
2

Small sets:
• Complements of dense ∅′-effective open sets,
• Their effective unions.

Large sets: complements of small sets.

Baire Category Theorem on ∆0
2

In ∆0
2, large sets are non-empty (and even dense).
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Baire Category on ∆0
2

The boundary of an effective open set is the complement of a dense
∅′-effective open set.

Corollary

The class ∆0
2 is not covered by the boundaries of effective open sets.

The uncovered elements are called 1-generic [Jockush, 1977].
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Baire Category on ∆0
2

Example
If (A,B) is 1-generic pair then A and B are Turing incomparable.

Proof.
Given a Turing functional Φ,

UΦ := {(A,B) : ∃n,ΦA(n) = 0 but B(n) = 1}

is an effective open set. If ΦA = B then (A,B) belongs to the
boundary of UΦ.
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Baire Category on ∆0
2

Fact
LeftCE is small in ∆0

2: a 1-generic real is never left-c.e.

Proof.
If x is left-c.e. then x belongs to the boundary of the effective open
set U = [0, x).
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Baire Category on LeftCE
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Baire Category on LeftCE

An open set:

0 1

its boundary:

0 1

and we define its left-boundary:

0 1
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Baire Category on LeftCE

Small and large sets in LeftCE

Small sets:
• Left-boundaries of effective open sets,
• Their effective unions.

Large sets: complements of small sets.

Baire Category Theorem on LeftCE

In LeftCE, large sets are non-empty (and even dense).
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Baire Category on LeftCE

Definition
A left-c.e. real is generic from the right if it avoids the
left-boundary of every effective open set.
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Baire Category on LeftCE

If x ∈ [0, 1] then its binary representation bin(x) ∈ {0, 1}N is always
computable relative to x.
However,

Theorem
If x ∈ [0, 1] is generic from the right then bin(x) �computable modulus x.

Proof.
Effectivization of the following fact: if the restriction of bin to a
set C ⊆ [0, 1] is uniformly continuous then C is nowhere dense.
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Baire Category on LeftCE

Corollary (Downey, Hirschfeldt and LaForte, 2004)

There exist left-c.e. reals x, y such that

bin(x) ≤cm bin(y) but x �cm y.

Proof.
Let y be generic from the right and bin(x)n = 1 ⇐⇒ dn < y,
where (dn)n∈N is an enumeration of the dyadic rationals.
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Baire Category on CE
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Investigated by Lachlan, Ingrassia, Maass, Jockush and others (1970’s
and early 1980’s).
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Baire Category on CE

∅

N

An open set,
∅

N

its boundary
∅

N

and its down-boundary.
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Baire Category on CE

Let A ∈ 2N and U ⊆ 2N.

Reminder
A belongs to the boundary of U if A /∈ U and

∃An ∈ U such that lim
n→∞

An = A.

Definition
A belongs to the down-boundary of U if A /∈ U and

∃An ∈ U such that lim
n→∞

An = A and A ⊆ An.
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Baire Category on CE

Small and large sets in CE

Small sets:
• Down-boundaries of effective open sets,
• Their effective unions.

Large sets: complements of small sets.

Baire Category theorem on CE

In CE, large sets are non-empty (and even dense).
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Baire Category on CE

Definition
A c.e. set is generic from above if it avoids the down-boundary of
every effective open set.

Coincides with Ingrassia’s p-generic sets (1981).
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Baire Category on CE

Theorem
For a typical pair of c.e. sets (A,B), A and B are Turing
incomparable.

Same proof as for 1-generics.

Given a Turing functional Φ,

UΦ := {(A,B) : ∃n,ΦA(n) = 0 but B(n) = 1}

is an effective open set. If ΦA = B then (A,B) belongs to the
down-boundary of UΦ.

Corollary (Friedberg-Muchnik, 1957-1956)

There exists a pair of Turing incomparable c.e. sets.
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Baire Category and ergodic decomposition

• Ergodic measures are a special type of measures.
• Ergodic measures µ, ν are uniquely determined by their sum:
if µ′, ν′ are ergodic and µ′ + ν′ = µ+ ν then {µ′, ν′} = {µ, ν}.

• Are they computably determined by their sum?

No!

Theorem (H., 2012)

There exist non-computable ergodic measures µ and ν such that µ+ ν
is computable.
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Baire Category and ergodic decomposition

Definition
(µ, ν) belongs to the ?-boundary of U if (µ, ν) /∈ U and

∃(µn, νn) ∈ U such that lim
n→∞

(µn, νn) = (µ, ν) and µn + νn = µ+ ν.

Let ComputableSum ={(µ, ν) : µ+ ν is computable}.

Baire Category theorem on ComputableSum

ComputableSum is not covered by ?-boundaries of effective open
sets.
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Baire Category and ergodic decomposition

Theorem
The typical element (µ, ν) of ComputableSum satisfies:

• µ and ν are ergodic,
• µ and ν are not computable,
• For each string w, if µ([w]) < ν([w]) then

• µ([w]) is left-c.e. and generic from the right,
• ν([w]) is right-c.e. and generic from the left.
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The general result

Let (X, τ) be a Polish space and τ ′ a weaker topology.

Definition (Specialization pre-order)

Define x ≤τ ′ y if every neighborhood of x is a neighborhood of y.

Definition
x belongs to the down-boundary of U if x /∈ U and

∃xn ∈ U such that lim
n→∞

xn = x and x ≤τ ′ xn.

Under reasonable computability assumptions on τ and τ ′,

Baire Category on the τ ′-computable points (H., 2014)

There exists τ ′-computable points that do not belong to the
down-boundary of any τ -effective open set.
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Limitations

• These versions of the Baire Category theorem only capture
simple constructions (simplest form of priority method with finite
injury).

• One should find weaker notions of small sets and prove stronger
versions of Baire Category theorem.
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An example

The class CE, identified to

S =

{∑
n∈A

1

2n
: A is a c.e. subset of N

}
,

is small in LeftCE.

Is this one small too?

S ′ =

{∑
n∈A

1

n2
: A is a c.e. subset of N

}

No.

Theorem
There exists a c.e. set A such that

∑
n∈A

1
n2 is generic from the right.
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Theorem
There exists a c.e. set A such that

∑
n∈A

1
n2 is generic from the right.

Proof idea.
This is an existence result: instead of building A, we take it generic
from above, in a suitable topology.

Declare the following classes as open:

En := {A ⊆ N : A ⊆ An}

where

An = {2n(2k + 1) : k ∈ N}.

Lemma
If A ⊆ N is generic from above in the new topology then

∑
n∈A

1
n2

is generic from the right.
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Hence the class

S ′ =

{∑
n∈A

1

n2
: A is a c.e. subset of N

}

is not small in LeftCE, but it should be!
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Possible future directions

• Define weaker notions of small set,
• Prove stronger version of the Baire Category theorem to capture
more involved constructions.

• We have a notion of typical/generic c.e. set. What is a
random c.e. set?

Sara H. Jones. Applications of the Baire Category Theorem. Real
Analysis Exchange, 23(2):363–394, 1999.
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