
COMPUTABLE TOPOLOGICAL PRESENTATIONS

MATHIEU HOYRUP, ALEXANDER G. MELNIKOV, AND KENG MENG NG

Abstract. A computable topological presentation of a space is given by an

effective list of a countable basis of non-empty open sets so that the intersection

of the basic sets is uniformly effectively enumerable.
We show that every countably based T0-space has a computable topologi-

cal presentation, and that, conversely, every (formal) computable topological

presentation represents some Polish space. In the compact case, we give a
computable uniform list of computable topological presentations such that ev-

ery compact Polish space is represented by exactly one presentation from the

list. Note that none of these results assume that the Polish (or T0) spaces are
effective.

Quite surprisingly, the effectively compact topological presentations turn
out to be rather well behaved. Not only do such presentations allow one

to construct a ∆0
2 (complete) metric compatible with the topology, but also,

under a mild extra condition, they can be turned into a computably compact
Polish presentation of the space.

1. Introduction

The present paper contributes to the recent framework [GKP17, HTMN20,
HKS20] that seeks to establish the foundations of computably presented separa-
ble structures, akin to computable algebra [GK02, EG00], which focuses on count-
able discrete structures. The study of effectively presented algebraic structures
has become a prominent part of recursion theory [AK00, EG00]. Various alge-
braic structures, such as linear orders, groups, and Boolean algebras, have been
classified regarding different notions of effective presentability, distinguishing be-
tween these notions [Khi98, Fei70b, Hig61]. Following this pattern, many standard
notions of effective presentability for spaces have been compared and separated
in [BMN, HTMN20, HKS20, LMN23, BHTM23, KMN, GKP17] by various authors.

The main purpose of the present article is to demonstrate that the notion of
a computable topological presentation (Def. 1.1) can be extremely ill-behaved in
general. In the special case of compact spaces however, we obtain a number of
positive results.

There are several definitions of a computable topological space that can be found
in Kalantari and Weitkamp [KW85], Korovina and Kudinov [KK08], and Spreen
[Spr90]. We will use the following version of this definition. This version appears to
be standard in the modern literature; e.g., [KK17, Def. 3.1] and [GW07, Def. 3.1].
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Definition 1.1. A computable topological presentation of a countably-based topo-
logical space M is given by a sequence (Bi)i∈ω of non-empty basic open sets of M
and a computably enumerable set W such that

Bi ∩Bj =
⋃

{Bk : (i, j, k) ∈ W},

for any i, j ∈ ω.

Note that the important restriction in the definition is that the basic open sets
must be non-empty. If one drops this assumption from the definition, then ev-
ery countably-based space trivially admits a computable presentation, because one
can pick any countable sub-basis and close it under finite intersections. The in-
dices can clearly be assigned effectively, providing a countable basis for which finite
intersections can be computed.

Conversely, under some mild restrictions, such as {k : (i, i, k) ∈ W} ̸= ∅ (see
section 3.2 for a detailed discussion), every c.e. set W can be viewed as a (collection
of indices of) some formal topological presentation. However it is not entirely clear
that every formal computable topological presentation actually represents some
space. Further, it is not difficult to see that non-homeomorphic spaces can share
the exact same topological presentation. Indeed, any dense subset of a (computably
topologically) represented space M will share a same presentation as M . This con-
trasts greatly the situation with computable Polish presentations (Def. 1.2), and
with pretty much every single notion of effective presentation ever used in alge-
bra, such as finite presentations of groups [Hig61], and computable, decidable, and
Σ0

n-presentations of structures [EG00, AK00]). Nonetheless, despite its apparent
weakness and limitations, the notion of a computable topological space is rather
common in the literature.

1.1. Which spaces are computable topological? Whenever a notion of ef-
fective presentability is proposed, one of the first tasks is to test it by producing
examples and counterexamples to understand its relationship with existing notions.
For instance, the following question appears to be fundamental.

Question 1: Which (countably based T0) topological spaces admit a computable
topological presentation? Conversely, which (formal) topological presentations

represent some topological space?

For example, which Polish spaces admit a computable topological presentation?
To discuss what is known about partial solutions to the question, we need another
commonly studied notion of effective presentability in topology (e.g., Ceitin [Cei59]
and Moschovakis [Mos64]).

Definition 1.2. A Polish presentation of a (Polish-able) space M is given by a
countable metric space X = ((xi)i∈ω, d) so that the completion of X is homeomor-
phic to M . A presentation X is:

- right-c.e. if {r ∈ Q : d(xi, xj) < r} is c.e. uniformly in i, j;
- left-c.e. if {r ∈ Q : d(xi, xj) > r} is c.e. uniformly in i, j;
- computable if it is both left-c.e. and right-c.e.

We call each xi a special point of M .
It is well-known that the open rational balls {y : d(xi, y) < r} in every right-

c.e. (upper semi-computable) Polish space form a computable topological presen-
tation of the underlying topology (folklore). However, quite surprisingly, until
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recently not much was known beyond this elementary observation. It has recently
been shown in [KMN23] that every computable topological, locally compact Polish
group admits a right-c.e. Polish presentation. Thus, for topological groups Defi-
nition 1.1 is well-behaved. But of course, this result from [KMN23] additionally
assumes that the group operations are effective. Under the (seemingly strong) extra
assumption of effective regularity, a computable topological space can be effectively
metrised [Sch98]. In contrast with these results, there exists a computable topo-
logical (locally compact) Polish space not homeomorphic to any hyperarithmetical
Polish space [MN23].

The strongest positive result in the literature known to us is as follows: Every
∆0

2-Polish space has a computable topological presentation [BMN]. The proof in
[BMN] was a computability-theoretic approximation construction, mimicking those
commonly encountered in computable structure theory. The resulting computable
topological structure is ∆0

3-homeomorphic to that induced by the ∆0
2-metric. While

such proofs tend to give more fine-grained analysis of the constructed objects, they
clearly have their limitations. For example, it is not clear at all whether the con-
struction from [BMN] can be iterated to show that every arithmetical space is
computable topological, let alone every hyperarithmetical space or beyond.

The main technical idea of the present article is to abandon the effective dynamic
intuition almost entirely and use purely topological methods. The first main result
of the paper is:

Theorem 1.1.

(1) Every countably-based T0-space has a computable topological presentation.
(2) Conversely, every (formal) computable topological presentation is a presen-

tation of a zero-dimensional Polish space.

While this result says that computable topological presentations are essentially
“useless”, we will see that more can be said in the particularly important case of
compact Polish spaces.

1.2. Classifying presentations of compact Polish spaces. We will see that
given a computable topological presentation of a Polish space, one can detect (using
a number of quantifiers) the basic open sets containing exactly one point. Therefore,
one can detect the number of isolated points and whether or not the isolated points
are dense. Our second result implies in particular that these properties are the
only ones that can be detected from a presentation, and that all the spaces that
behave the same w.r.t. these properties actually share a computable topological
presentation.

Theorem 1.2. There is a uniformly computable sequence of computable topological
presentations (Ti)i∈ω, so that every compact Polish space is represented by exactly
one Ti from this sequence.

The uniform sequence is given by parameters describing the cases (1)-(4):

(1) The space is finite.
(2) The space has a perfect kernel and has exactly m ≥ 0 isolated points,

m ∈ ω.
(3) Compact Polish spaces with infinitely many isolated points, in which iso-

lated points are dense.
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(4) Compact Polish spaces having infinitely many isolated points, but so that
the isolated points are not dense.

For example, in (2) with m = 0, the presentation can be taken to be the standard
computable topological presentation of 2ω, given by an effective numbering of its
non-empty clopen sets.

1.3. Effective compactness. All results so far confirm our intuition that com-
putable topological presentations are too weak to be of much use, at least without
any extra assumptions. In the present paper we will look at one such extra condi-
tion which appears to be among the most popular (and widely used) in the modern
literature.

We say that a compact computable topological space is effectively compact if we
can effectively list all tuples of basic open sets covering the space. A Polish space
is computably compact if it has a computable Polish presentation (Def. 1.2) and is
effectively compact. Computably compact presentations are very common in the
modern literature; we cite the two recent surveys [IK21, DM23]. In particular, the
notion of a computably compact Polish space is exceptionally robust, as it admits
many equivalent formulations; for example, a compact computable Polish space is
computably compact iff the continuous diagram of the space is decidable [DM23].
Our third result gives a somewhat unexpected, further characterisation of com-
putably compact Polish spaces in terms of computable topological presentations.
It is as follows.

Theorem 1.3. For a compact Polish space X, the following are equivalent:

(1) X has an effectively compact ∩-decidable (Def. 4.2) topological presentation.
(2) X admits a computably compact Polish presentation.

Thus by relativization, every effectively compact topological space admits a ∆0
2-

Polish presentation. This is also sharp (i.e., ∆0
2 cannot be improved to “computable”

in general).

(To obtain the notion of a ∩-decidable presentation, we require that the non-
emptiness of the intersection of basic sets in Definition 1.1 is decidable rather
than merely c.e.) It follows from Theorem 1.3 that, in the context of compact
spaces, effective compactness “fixes” the issues with the general computable topo-
logical presentation. In particular, effectively compact topological presentations
completely determine the topological structure on the represented space, as one
can effectively metrize the space (as we will show in due course).

We finish the introduction with an open question.

Question 1. Is it true that the following are equivalent?

(1) The space admits an effectively compact topological presentation.
(2) The space admits an effectively compact right-c.e. Polish presentation.

The implication (2) → (1) is of course obvious, and we will show in Proposi-
tion 4.1 that (1) → (2) holds for Stone spaces.

Our main theorem, Theorem 1.1, provides a computable topological presentation
for every countably-based T0-space. On the surface this might seem to be a near
impossible task given the richness and the variety of topological types. We do
this by exploiting the fact that very different spaces can appear (via emedding
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into a universal space) as being very similar to each other. An important step
in our analysis is the following fact which was already mentioned earlier in the
introduction:

If X is a dense subset of Y then any computable topological presentation of Y
is also a computable topological presentation of X.

Using the afore-mentioned fact, the main steps in our proof of Theorem 1.1
proceed as follows:

(1) We first obtain a computable topological presentation for every compact
Polish space. Compact spaces are somewhat more tractable than the gen-
eral case.

(2) Since every separable metrizable space X embeds as a dense subset of a
compact Polish space Y , (1) will provide a computable topological presen-
tation for X.

(3) To extend (2) to all countably-based T0-spaces, we note that every such
space can be embedded into P(ω) with the Scott topology. Therefore it is
sufficient to provide a computable topological presentation of every closed
subspace of P(ω).

(4) Each closed subset X of P(ω) will itself have a zero-dimensional dense
subset M ⊆ X. Each zero-dimensional subset is metrizable and therefore
(2) provides a computable topological presentation for M .

(5) Since M is a subset of X, it is not immediate that (4) gives a computable
topological presentation for X. However we shall show that (4) can be
extended to a computable topological presentation for X.

For technical reasons, we shall first prove Theorem 1.2, then we will apply the
techniques developed in the proof of Theorem 1.2 to establish Theorem 1.1, and
only after that we will demonstrate Theorem 1.3. We also chose to present notions
and technical facts when needed, instead of creating a preliminaries section.

2. Compact spaces: Proof of Theorem 1.2

It this section we prove Theorem 1.2 that every compact Polish space admits a
computable topological presentation.

In order to prove Theorem 1.2, we will classify all compact Polish spaces under
the following congruence:

(†) X ∼ Y ⇐⇒ X and Y share a computable topological presentation.

We will see that these classes are completely described by the four cases listed
after the statement of Theorem 1.2. The techniques accumulated in the proof of
Theorem 1.2 will be used throughout the rest of the paper, in particular, to prove
Theorem 1.1 covering non-compact spaces.

2.1. Detecting the behaviour of isolated points. We use ∼ as defined by (†).

Lemma 2.1. Suppose X ∼ Y . If X has at least n isolated points, then so does Y ,

Proof. Suppose X ∼ Y is witnessed by a computable topological presentation P .
We can express that a basic open D ∈ P isolates a point by saying that there are
no B0, B1 such that Bi∩D ̸= ∅, i = 0, 1, and B0∩B1 = ∅. Further, we can say that
P has at least n isolated points if there are disjoint basic open D0, D1, . . . , Dn−1

each isolating a point. □
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In particular, it follows that the number of isolated points in X is ∼-invariant.

Lemma 2.2. Suppose X ∼ Y . If the isolated points in X are dense, then the same
is true in Y .

Proof. If the isolated points are dense, then for every basic B there exists a D
isolating a point (see the proof of Lemma 2.1) so that B ∩D ̸= ∅. □

Note that the lemmas above really say that the number of isolated points and
their density in the space are definable properties (in the language where terms are
built using only ∩, and where we only allow comparison between a term and ∅). We
conclude that the following are ∼-invariant properties of compact Polish spaces:

(1) Case 1: The space is finite of size n > 0. (There are n isolated points and
isolated points are dense.)

(2) Case 2: The space has a perfect kernel and has exactly m ≥ 0 isolated
points. (There are m isolated points and they are not dense.)

(3) Case 3: The space has infinitely many isolated points which are dense in
the space.

(4) Case 4: The space has infinitely many isolated points which are not dense
in the space.

Note these cases cover all possible compact Polish spaces. Our next task is to
show that in each case, all spaces share the exact same fixed computable presenta-
tion, and thus are all pairwise ∼-equivalent. We will see that, furthermore, given the
parameters describing each case, we can uniformly produce the computable topo-
logical presentation shared between all compact spaces that satisfy the conditions
of this case. This will give Theorem 1.2.

2.2. Quotient maps and almost injective functions. Before we go over the
cases (1)-(4), we need to accumulate enough technical facts that will allow us to
handle ∼-equivalent spaces.

It is well-known that any continuous surjective function from a compact space X
to a Hausdorff space Y is a quotient map, in the sense that for all U ⊆ Y , f−1(U) is
open iff U is open. Moreover, the next result shows that any basis of X canonically
induces a basis of Y , assuming it is closed under finite unions.

Proposition 2.1. Let X be compact and Y be Hausdorff and (Bi)i∈I be a basis of
the topology of X which is closed under finite unions. Let f : X → Y be surjective
continuous and define

Ci = Y \ f(X \Bi) = {y ∈ Y : f−1(y) ⊆ Bi}.

The family (Ci)i∈I is a basis of the topology of Y . If (Bi)i∈I is moreover closed
under finite intersections, then Bi ∩Bj = Bk implies Ci ∩ Cj = Ck.

Proof. First, each Ci is open: X \ Bi is compact so f(X \ Bi) is compact hence
closed.

Let U ⊆ Y be open and y ∈ U . One has f−1(y) ⊆ f−1(U). As f−1(y) is compact
and (Bi)i∈I is closed under finite unions, there exists i such f−1(y) ⊆ Bi ⊆ f−1(U).
Therefore, y ∈ Ci ⊆ f(Bi) ⊆ U . Therefore, (Ci)i∈I is a basis.

If Bi∩Bj = Bk, then Ci∩Cj = Y \f(X \ (Bi∩Bj)) = Y \f(X \Bk)) = Ck. □
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Note that if Ci ̸= ∅ then Bi ̸= ∅ but the converse implication fails in general.
However, we will see that when the function is “almost injective” (to be defined),
we obtain an equivalence.

For a function f : X → Y , we define

Df = {x ∈ X : f−1(f(x)) = {x}},
which is the set of points at which f is injective.

Definition 2.1. A function f : X → Y is almost injective if the set

Df = {x ∈ X : f−1(f(x)) = {x}}
is dense.

Proposition 2.2. If f : X → Y is almost injective, then for each i ∈ I, Bi ̸= ∅
iff Ci ̸= ∅.
Proof. If Bi is non-empty then it contains a point x such that f−1(f(x)) = {x}.
As a result, Ci contains f(x) and is therefore non-empty. □

These simple results enable one to easily transfer a presentation from a space to
another, as follows.

Corollary 2.1. Let X be compact and (Bi)i∈N be a basis of X which is closed under
finite unions and intersections. If Y is Hausdorff and f : X → Y is continuous,
surjective and almost injective, then the presentation of X induces a presentation
of Y .

Our next task will be to build almost injective functions from known spaces
to arbitrary compact Polish spaces. Before that, we need to investigate further
properties of almost injective functions.

First, almost injectiveness is preserved by composition.

Proposition 2.3. If f : X → Y is almost injective and A ⊆ Y is dense, then f−1(A)
is dense.

Assume that X,Y are compact Polish. If f : X → Y and g : Y → Z are almost
injective, then so is g ◦ f : X → Z.

Proof. Let Bi be non-empty. Ci is a non-empty open subset of Y (Proposition 2.2)
so it intersects A. Let y ∈ Ci ∩ A. One has f−1(y) ⊆ Bi ∩ f−1(A), so f−1(A)
intersects Bi.

We show that if X is compact Polish, Y is Hausdorff and f : X → Y is contin-
uous, then {x ∈ X : f−1(f(x)) = x} is a Gδ-set. Let (Bi)i∈N be a countable basis
of X and E = {(i, j) : cl(Bi)∩ cl(Bj) = ∅}. Let A =

⋃
(i,j)∈E f(cl(Bi))∩f(cl(Bj)).

It is an Fσ-subset of Y . One has Df = X\f−1(A). Indeed, x /∈ Df ⇐⇒ f−1(f(x))
contains at least two points ⇐⇒ ∃(i, j) ∈ E, f(x) ∈ f(cl(Bi)) ∩ f(cl(Bj)).

As g is almost injective, the set Dg := {y ∈ Y : g−1(g(y))} is dense. As f is
almost injective, f−1(Dg) is dense by the first assertion. Therefore, f−1(Dg) andDf

are dense Gδ-sets, so their intersection is dense by the Baire category theorem. If x
belongs to the intersection, then

(g ◦ f)−1(g ◦ f(x)) = f−1(g−1(g(f(x)))

= f−1(f(x)) as f(x) ∈ Dg

= {x} as x ∈ Df .

Therefore, g ◦ f is almost injective. □
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Next, isolated points are preserved by almost injective functions.

Proposition 2.4. If f : X → Y is almost injective, surjective continuous, then it
bijectively maps the isolated points of X to the isolated points of Y .

Proof. If x ∈ X is isolated, then {x} is open so it intersects Df , therefore x ∈ Df

and f−1(f(x)) = {x}. As a result, {f(x)} = Y \ f(X \ {x}) is an open set, so f(x)
is isolated.

Conversely, if f(x) is isolated then f−1(f(x)) is a non-empty open set so it
intersects Df . Let y belong to the intersection: one has f(y) = f(x) and {y} =
f−1(f(y)) so x = y and {x} = f−1(f(x)) is open, i.e. x is isolated. □

We now show that the general case of compact Polish spaces can be reduced to
the case of zero-dimensional ones. The basic intuition is quite straightforward; the
compactness of a space X allows us to cover each closed subset of X with finitely
many open sets. The closure of each of these “cells” can in turn be covered by
finitely many other open sets. This process allows us to simulate the construction
of a compact zero-dimensional space. Since the space itself does not have to be
zero-dimensional, this association is not exact. However, if we are careful enough,
we will be able to produce an almost injective map. To be precise, we prove:

Lemma 2.3. Let X be a compact Polish space. There exists a zero-dimensional
compact space X0 and a continuous surjective function f : X0 → X which is almost
injective.

Proof. We first build, for each n, an almost partition of X: a finite disjoint family
of non-empty open sets Un

0 , . . . , U
n
kn

of diameters < 2−n, whose closures cover X.
By compactness, there exists a finite covering (Bn

i )i≤kn
of X by open sets of

diameters < 2−n. Let Un
i = Bn

i \ cl(Bn
0 ∪ . . .∪Bn

i−1). By definition, for each n the
open sets Un

i are pairwise disjoint. Note that

(1) cl(Bn
i ) \ cl(Bn

0 ∪ . . . ∪Bn
i−1) ⊆ cl(Un

i ) ⊆ cl(Bn
i ) \ (Bn

0 ∪ . . . ∪Bn
i−1).

The closures cl(Un
i ) cover X: for x ∈ X, let i be minimal such that x ∈ cl(Bn

i ).
One has x ∈ cl(Un

i ) by the first inclusion in (1). We finally remove the Un
i ’s that

are empty.
Each Un

i is called an open cell, its closure is called a closed cell. Say that a
point x ∈ X is generic if it belongs to an open cell at each level, i.e. if x ∈

⋂
n

⋃
i U

n
i .

The set of generic points is dense.
Consider the finitely-branching tree T of finite sequences (in)n<N , where N ∈ N

and in ≤ kn, such that the corresponding intersection of open cells
⋂

n<N Un
in

is
non-empty. It is a pruned tree, because if

⋂
n<N Un

in
is not empty then it intersects

some UN
i , so the sequence (in)n<N has an extension in T . Let X0 = [T ] be the set

of infinite paths in T and f : [T ] → X send an infinite path to the unique point
of X that belongs to the intersection of the closed cells cl(Un

in
). It is continuous,

because the diameters of the cells converge to 0.
The function f is surjective. Each generic point x belongs to the image of f ,

because its unique path p belongs to T (every finite intersection of open cells along p
is a neighborhood of x, so it is non-empty), and f(p) = x. The image of f is a
compact set containing the dense set of generic points, so it is the whole space X.

Finally, f is almost injective. A finite path of T defines a non-empty open subset
of X; take a generic point there, its unique path extends the given finite path. □
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We now have all the ingredients to prove Theorem 1.2.

2.3. Compact perfect Polish spaces.

Theorem 2.1. All the compact perfect Polish spaces share a computable presenta-
tion.

Proof. Let X be a compact perfect Polish space. We show that there exists a con-
tinuous surjective function f : 2ω → X which is almost injective. By Lemma 2.3,
there exists a zero-dimensional compact Polish space X0 and a surjective almost
injective continuous function f : X0 → X. As X is perfect, so is X0 by Proposition
2.4. Therefore, X0 is a perfect compact zero-dimensional space, so it is homeo-
morphic to the Cantor space. Let (Bi)i∈N be the computable presentation of the
Cantor space, which is an effective enumeration of its non-empty clopen subsets.
It is closed under finite unions and intersections, so it induces a formally identical
computable presentation (Ci)i∈N of X by Corollary 2.1. □

2.4. Compact with finitely many isolated points. All finite Polish spaces Fn

(where |Fn| = n) are clearly computable topological. All the infinite compact Polish
spaces with n isolated points share a computable presentation, Fn⊔2ω, by applying
Theorem 2.1.

2.5. Infinitely many isolated points that are dense. We show that all the
compact Polish spaces having infinitely many isolated points, and such that the
isolated points are dense, share a computable presentation.

For that, consider the space Z = 2≤ω, which is the Cantor space with a dense
set of isolated points. (Each finite string is isolated, and for each finite string u,
the set of all finite or infinite sequences extending u is open.) Since Z satisfies the
premises of Corollary 2.1, in this case it is sufficient to prove:

Lemma 2.4. If X is compact Polish with infinitely many isolated points which
are dense in X, then there is a surjective almost injective continuous function f :
2≤ω → X.

Proof.

Claim 1. We can assume w.l.o.g. that X is zero-dimensional.

Proof. Let X0 be zero-dimensional compact and f : X0 → X be given by Lemma
2.3. As X has infinitely many isolated points, so does X0 (Proposition 2.4). As the
set of isolated points is dense in X, so is its pre-image (Proposition 2.3), which is
the set of isolated points of X0. It is sufficient to show the existence of a surjective
almost injective continuous function g : 2≤ω → X0, because the composition f ◦ g :
2≤ω → X is then surjective, almost injective continuous (Proposition 2.3). □

We assume that X is zero-dimensional. Let T be a pruned finitely-branching
tree such that [T ] ∼= X. Let f : 2ω → [T ]′ be surjective continuous, where [T ]′ is
the Cantor-Bendixon derivative of [T ], i.e. the set of non-isolated points of [T ]. We
define a bijection g : 2<ω → [T ] \ [T ]′ and will let h : 2≤ω → [T ] be the sought
function, obtained by combining f and g. Of course we need to make sure that h
is continuous.

As [T ] is zero-dimensional and [T ]′ is closed, there is a continuous retraction r :
[T ] → [T ]′ [Kec95, Theorem 7.3]. We will exploit the following property: for
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every σ ∈ T , the set r−1([σ]) \ [σ] is finite because it is compact and only contains
isolated points ([σ] is the set of infinite extensions of σ).

Let (ui)i∈N be a one-to-one enumeration of 2<ω and (xi)i∈N a one-to-one enu-
meration of the isolated points of [T ]. Let F : 2<ω → T be monotone w.r.t. the
prefix ordering and converge to f : if u ⪯ v then F (u) ⪯ F (v) and for p ∈ 2ω, the
length of F (p|n) goes to infinity as n grows, and therefore F (p|n) converge to f(p)
(we can define F (u) as the longest common prefix of elements of f([u])).

For i ∈ N, we inductively define g(ui) as the isolated point x ∈ [T ] with minimal
index that does not belong to {g(u0), . . . , g(ui−1)} and such that r(x) extends F (ui).

First, g is well-defined: r−1([F (u)]) is an open set intersecting [T ]′ because it
contains the non-empty set [F (u)] ∩ [T ]′, so r−1([F (u)]) contains infinitely many
isolated points, so one can always pick a “fresh” isolated point of [T ] in that set.

Second, g is injective by construction.
Finally, g is surjective because each isolated point has infinitely many chances

to be chosen. Let x be isolated. As f : 2ω → [T ]′ is surjective, there exists p ∈ 2ω

such that f(p) = r(x), so for every prefix u of p, r(x) extends F (u). Therefore,
there exists i such that ui is a prefix of p and g(ui) = x.

Let h : 2≤ω → [T ] be obtained by joining f and g. h is surjective, almost injective
(indeed, 2<ω is dense), we show that it is continuous. We only need to show that
it is continuous at each point of 2ω, because all the other points are isolated.

Let f(p) = q and let σ be a prefix of q. Let u0 be a prefix of p such that F (u0)
extends σ. There are only finitely many u’s such that g(u) ∈ r−1([σ]) \ [σ], so
there exists a prefix u1 of p, longer than u0, such that for every finite extension u
of u1, g(u) /∈ r−1([σ]) \ [σ]. Let then u be a string extending u1 and let x = g(u).
As r(x) extends F (u) which extends σ, one has x ∈ r−1([σ]) so x ∈ [σ]. We have
proved that h is continuous at p. □

2.6. Infinitely many isolated points that are not dense. Let X contain in-
finitely many isolated points, which are not dense. We build a surjective almost
injective continuous function f : 2ω ⊔ 2≤ω → X.

We decompose X as K ∪ U , where K is the perfect kernel and U is countable
and open. Note that cl(U) has infinitely many isolated points, which are dense
in cl(U).

By the previous results, there exist surjective almost injective continuous func-
tions f : 2ω → K and g : 2≤ω → cl(U). Their combination h : 2ω ⊔ 2≤ω → X is
surjective continuous. We show that it is almost injective.

If x ∈ 2ω and x′ ∈ 2≤ω and f(x) = g(x′) = y then y ∈ ∂U . The closed set ∂U
has empty interior, so its preimage under f and g also has empty interior, because f
and g are almost injective (so the preimage of the complement of ∂U is dense by
Proposition 2.3). Therefore, Dh contains (Df \ f−1(∂U)) ⊔ (Dg \ g−1(∂U)) which
is dense.

To finish the proof of Theorem 1.2, we just note that the finite spaces Fn (n ∈ ω,
n > 0), the spaces 2ω ⊔ Fnn, 2

≤ω, and 2ω ⊔ 2≤ω make up the complete list which
mentions every ∼-class of compact Polish spaces exactly once.

Remark 2.1. The computable presentations build in the proof of Theorem 1.2 have
additional property that the set {(i1, . . . , in) : Bi1 ∩ . . . ∩ Bin ̸= ∅} is computable
rather than merely c.e.
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3. General spaces. Proof of Theorem 1.1

Theorem 1.2 implies in particular that every compact Polish space has a com-
putable presentation. But this readily gives the following:

Corollary 3.1. Every separable metrizable space has a computable topological pre-
sentation.

Proof. Every separable metrizable space X embeds as a dense subset of a compact
Polish space Y (embed the space in the Hilbert cube and take its closure). As X
is dense in Y , they share the same computable topological presentation. □

Moreover, the same classification as in Theorem 1.2, expressed in terms of num-
ber and density of isolated points, also holds for separable metrizable spaces, be-
cause these properties are preserved under compactification.

Theorem 1.1(1) states that, more generally, every countably based T0-space ad-
mits a computable topological presentation. For the purpose of proving this more
general fact, let us summarise what we have, adding an ingredient that will be
useful in the next section.

Proposition 3.1. Let X be a countably-based and metrizable and F be a countable
family of clopen subsets of X. There exists a basis (Bi)i∈N of X that contains C
and such that {(i1, . . . , in) : Bi1 ∩ . . . ∩Bin ̸= ∅} is computable.

Proof. When we embed X in the Hilbert cube Q and take its closure cl(X), a
clopen subset of X need not be the intersection of a clopen subset of cl(X) with X.
However, if we choose in advance a countable family of clopen subsets of X, we can
choose an embedding which “respects” these clopen sets.

Let X0 ⊆ Q be homeomorphic to X. Let F = (Fj)j∈N be a countable family of
clopen subsets of X0. For each Fj ∈ F , the characteristic function fj : X0 → {0, 1}
of Fj is continuous. Let f : X0 → Q map x to the sequence (fj(x))j∈N. Let
then X1 = {(x, f(x)) : x ∈ X0} ⊆ Q × Q ∼= Q. X1 is homeomorphic to X. For
each j, cl(X1) ∩ {(x, y) : yj = 1} = cl(X1) ∩ {(x, y) : yj > 0} is a clopen set
corresponding to Fj .

Applying the previous results, we obtain a surjective continuous almost injec-
tive function f : Z → cl(X1) for some compact zero-dimensional Z whose clopen
sets form a computable basis (Bi)i∈N. We then define the basis of cl(X1), Ci =
cl(X1) \ f(Z \ Bi). Note that this subbasis contains every clopen set F ⊆ cl(X1).
Indeed, f−1(F ) is clopen so it is some Bi, therefore F = Ci. We finally define a ba-
sis of X1, Di = Ci∩X1. Every Fj ∈ F is the intersection of a clopen set F ⊆ cl(X1)
with X1, F is some Ci, so Fj = F ∩X1 = Ci ∩X1 = Di. □

3.1. Every countably-based T0-space has a computable presentation. We
prove Theorem 1.1(1) (stated in the title of this subsection).

The countably-based T0-spaces are exactly the subspaces of P(ω) with the Scott
topology. It is sufficient to prove the result for closed subspaces of P(ω), because a
presentation of the closure of X ⊆ P(ω) induces a presentation of X.

A basis of the Scott topology on P(ω) is given by the sets [F ] = {A ∈ P(ω) :
F ⊆ A} where F ⊆ N is finite.

Let X be a non-empty closed subset of P(ω) and M = maxX be the set of
elements of X that are maximal w.r.t. inclusion.
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First, M is zero-dimensional because each [F ]∩M is clopen in M : if A ∈ M \ [F ]
then as A is maximal in X, A∪F /∈ X which is closed, so there exists a finite set G
such that [G] contains A ∪ F and is disjoint from X. As a result, [G \ F ] ∩M is a
neighborhood of A which is disjoint from [F ] ∩M .

AsM is countably-based and zero-dimensional, it is metrizable. We apply Propo-
sition 3.1 to M and the countable family of clopen sets [F ] ∩ M , so M has a
computable basis (Bi)i∈N which contains each [F ] ∩M .

As each Bi is an open subset ofM , it extends to an open subset ofX: there exists
an open set Vi ⊆ X such that Vi ∩M = Bi. However, the Vi’s will not in general
be rich enough to form a basis of X, because there are many ways to extend Bi to
an open set of X, and we only chose one. The idea is to allow more choices: for
each i, we define a family of open sets (Un

i )n∈N such that Un
i ∩M = Bi. As M is

dense in X, a finite intersections of Un
i ’s is non-empty iff the corresponding finite

intersection of Bi’s is non-empty, which is computable. In order to make (Un
i )n,i∈N

a basis of X, we use the fact that ([Fn] ∩X)n∈N is a basis of X, where (Fn)n∈N is
an enumeration of the finite subsets of N, and we let Un

i = [Fn]∩X for some i such
that [Fn] ∩M = Bi.

More precisely, let

Un
i =

{
[Fn] ∩X if [Fn] ∩M = Bi,

Vi otherwise.

By definition, we always have Un
i ∩ M = Bi. The family (Un

i )n,i∈N is a basis
because it contains each [F ] ∩ X. Indeed, for each n, one has [Fn] ∩ M = Bi for
some i, so Un

i = [Fn] ∩X.
As M is dense in X, a finite intersection of Un

i ’s is non-empty iff it intersects M
iff the corresponding intersection of Bi’s is non-empty, so it is a computable relation.

Remark 3.1. For a metrizable space X, there are two proofs. There is a common
part: Every countably-based zero-dimensional space Z has a computable basis,
proved by building a surjective almost injective map f : Z0 → Z, where Z0 is 2ω

or 2≤ω or 2ω ⊔ 2≤ω (plus the cases with finitely many isolated points). Then the
proofs diverge:

• Embed X in [0, 1]ω, build an almost injective function g : Z → cl(X) for
some zero-dimensional compact Z, then transfer the computable subbasis
of Z to cl(X) using g, and then to X.

• Embed X in P(ω), consider the zero-dimensional space Z = max(cl(X)),
then transfer the computable subbasis of Z to a cl(X), and then to X.

The second proof applies to any space, so it might seem stronger. However, the
first proof gives extra information that might be interesting (existence of almost
injective function, the basis is formally the same as one of the Cantor-like spaces).

3.2. Every computable topological presentation presents a Polish space.
We now prove statement (2) in Theorem 1.1. It is easier to work with a slightly
different but equivalent formulation of topological presentations. For a countably-
based space X, we will call topological presentations of the first and second kind
respectively, the two following data:

(1) A basis (Bi)i∈N consisting of non-empty sets and an enumeration of a
set E ⊆ N3 such that Bi ∩Bj =

⋃
(i,j,k)∈E Bk,
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(2) A subbasis (Bi)i∈N and an enumeration of the (indices of) finite sets F ⊆ N
such that BF :=

⋂
i∈F Bi ̸= ∅.

Note that the effective version of the first one is Definition 1.1.

Claim 2. These notions of presentations are equivalent in the sense that there is a
computable translation between them.

Proof. Given a basis (Bi)i∈N of the first kind with a set E, take (Bi)i∈N as a
subbasis; one can test whether BF is non-empty by expressing it as

⋃
k∈G Bk for

some G that can be enumerated using E, and so BF ̸= ∅ iff G ̸= ∅.
Conversely, given a subbasis (Bi)i∈N of the second kind, with an enumera-

tion (Fi)i∈N of the finite sets inducing non-empty open sets BFi , let B′
i = BFi

and E = {(i, j, k) : Fi ∪ Fj = Fk}. □

In a presentation of the second kind, note that if F ⊆ G and BG ̸= ∅, then BF ̸=
∅, i.e. the set {F : BF ̸= ∅} is downward closed. It is the only restriction to
be a valid presentation. In other words, given any non-empty downward closed
collection S of finite sets, there exists a space X with a subbasis (Bi)i∈N such
that F ∈ S ⇐⇒

⋂
i∈F Bi ̸= ∅. Indeed, let P(N) be the powerset of N with the

Scott topology and

X = {A ∈ P(N) : ∀F, F ⊆ A =⇒ F ∈ S}
and let Bi = {A ∈ A : i ∈ A}.

We now improve this observation, by making the space zero-dimensional Polish.

Proposition 3.2. Every topological presentation of the second kind is a presenta-
tion of a zero-dimensional Polish space.

Proof. Let X be a topological space with a subbasis (Bi)i∈N and an enumeration
of {F : BF ̸= ∅}, where BF =

⋂
i∈F Bi.

Let Y ⊆ 2ω be defined as follows. Let

P = {A ∈ 2ω : ∀F, F ⊆ A =⇒ BF ̸= ∅}.
Let Y be the set of maximal elements of P w.r.t. inclusion. Let Ci = {A ∈ Y : i ∈
A} and CF =

⋂
i∈F Ci.

First, C = (Ci)i∈N is a subbasis of the Cantor topology on Y . We only need to
check that each set Nj := {A ∈ Y : j /∈ A} is open in the topology generated by C.
Let A ∈ Y and j /∈ A. As A is maximal in P, A∪{j} /∈ P so there exists F ⊆ A∪{i}
such that BF = ∅. Note that F must contain j because A ∈ P. As BF = ∅,
every A′ ∈ P containing F \ {j} does not contain j, so A ∈

⋂
i∈F\{j} Ci ⊆ Nj .

Next, we show that CF ̸= ∅ ⇐⇒ BF ̸= ∅. If CF ̸= ∅, then let A ∈ CF .
As F ⊆ A and A ∈ P, BF ̸= ∅. Conversely, if BF ̸= ∅ then let x ∈ BF and
let A = {i ∈ N : x ∈ Bi}. Note that A ∈ P. A may not be maximal in P, but it is
contained in a maximal element A′ of P (iteratively add to A the smallest number
which is not already in and results in an element of P). Therefore, A′ ∈ CF which
is non-empty.

As a result, the presentations (Bi)i∈N and (Ci)i∈N are identical.
The space Y is a subspace of the Cantor space, we need to show that it is Polish,

i.e. Gδ. Note that

A ∈ Y ⇐⇒

{
∀F, F ⊆ A =⇒ BF ̸= ∅ and

∀n, n /∈ A =⇒ ∃F ⊆ A,BF∪{n} = ∅.
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All this is a Π0
2 formula (relative to the set {F : BF ̸= ∅}). □

Remark 3.2. Another way to express what we are doing is: we canonically embed X
in P(N), the powerset of the natural numbers with the Scott topology, via x ∈ X 7→
{i ∈ N : x ∈ Bi}, take the closure P ofX in P(N), and consider the set Y of maximal
elements of P. We show that the Scott topology coincides with the Cantor topology
on Y .

The proof also gives an effective version.

Corollary 3.2. Every presentation of the second kind where the set {F : BF ̸= ∅}
is computable is a presentation of a zero-dimensional computable Polish space.

Proof. We say that a subset S of computable topological space (X, τ, (Bi)i∈N) is
effectively overt if the set {i ∈ N : Bi ∩ S ̸= ∅} is c.e.. We say that a subset S is
effectively Gδ in M , or simply Π0

2, if there is a uniformly c.e. sequence of open sets
Ui such that S =

⋂
i Ui. The following effective version of Alexandrov’s Theorem

was proved in [Hoy17, Proposition 2.3.3].

Lemma 3.1. An effectively overt Π0
2 subset of a computable Polish M is itself

computable Polish.

It remains to observe that the space Y from the proof of Proposition 3.2 is
computably overt and is a Π0

2-subset of the Cantor space. □

We are now ready to prove Theorem 1.1(2) which states that that every topolog-
ical presentation (of the first kind) is a presentation of a zero-dimensional Polish
space.

Proof of Theorem 1.1(2). Start from a presentation (Bi) and E, transform into the
second kind, apply Proposition 3.2 to obtain the space Y with a subbasis (Ci). We
have Ci ∩ Cj ⊇

⋃
(i,j,k)∈E Ck: if (i, j, k) ∈ E and A ∈ Y contains k but not i, then

by maximality there is F ⊆ A such that BF ∩Bi = ∅. As F ∪{k} ⊆ A, BF ∩Bk ̸= ∅.
It contradicts Bk ⊆ Bi. However, we may not have equality. Solution: remove the
difference. Let

Z = Y \
⋃
i,j

Ci ∩ Cj \
⋃

(i,j,k)∈E

Ck

 .

We have removed a Σ0
2-subset of Y , so Z is still Polish and by construction, Ci∩

Cj =
⋃

(i,j,k)∈E Ck on Z. It remains to show that each Cn is non-empty in Z.

By Baire category, it is sufficient to show that what the complement of what we
remove is dense in Y , i.e. that every (Ci ∩ Cj)

c ∪
⋃

(i,j,k)∈E Ck is dense in Y .

Let CF be a non-empty basic open subset of Y . If it intersects (Ci ∩ Cj)
c then

we are done, otherwise CF ⊆ Ci ∩ Cj . Let G = F ∪ {i, j}. One has CG = CF

which is non-empty, so BG ̸= ∅. Let A ∈ BG ⊆ Bi ∩ Bj . There exists k such
that (i, j, k) ∈ E and A ∈ Bk. Let A′ be maximal in P and contain A. One
has A′ ∈ CF ∩

⋃
(i,j,k)∈E Ck. □

Question 2. Is there an example of a computable topological presentation which
does not represent a computable Polish space?
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4. Effective compactness. Proof of Theorem 1.3

Definition 4.1. A (compact) computable topological space is effectively compact
if there exists an enumeration of all finite covers of the space by basic open balls.

Definition 4.2. A computable topological presentation is ∩-decidable ifBi∩Bj = ∅
is a computable relation in i, j.

We now prove the first half of Theorem 1.3 which states that, for a compact
Polish space X, the following are equivalent:

(1) X has an effectively compact ∩-decidable (Def. 4.2) topological presenta-
tion.

(2) X admits a computably compact Polish presentation.

Proof of (2) → (1). It is kown that a computably compact Polish space admits a
system of 2−n-covers so that the property Bi ∩Bj = ∅ is decidable for any pair of
open balls from the system; [DM23, Thm 1.1]. These balls form an effective basis
of the space with the desired property. □

Proof of (1) → (2). A computable topological spaceX is effectively normal ([Sch98],
after [Dym84]) if, given (names of) disjoint effectively closed sets C0 and C1, we
can effectively produce (names of) disjoint effectively open sets U0 and U1 that
separate C0 and C1, i.e., so that

C0 ⊆ U0 and C1 ⊆ U1.

A very similar lemma has been established in [AH23].

Lemma 4.1. Any effectively compact ∩-decidable topological space X is effectively
normal.

Proof. Fix two disjoint effectively closed sets C0, C1. Search for finite collections of
basic open sets O0, O1, U0, U1 with the properties:

(1) U0 ⊆ X \ C0 and U1 ⊆ X \ C1,
(2) each of the open sets U0 ∪O0 and U1 ∪O1 is a cover of X,
(3) O0 ∩O1 = ∅.

It is clear that such finite collections of basic open sets exist, and that for any such
collection, C0 ⊆ O0 and C1 ⊆ O1. Since the O0 and O1 consist of finitely many
open sets, we can effectively check (3), while the first two conditions are Σ0

1. □

Lemma 4.2 (Effective Urysohn Lemma [Sch98]). Let X be an effectively normal
computable topological space. Given disjoint effectively closed sets A and B we can
uniformly produce a computable function

fA,B : X → [0, 1]

so that fA,B ↾A= 0 and fA,B ↾B= 1.

Proof. The proof essentially follows the standard textbook argument (e.g., [Mun00,
Thm 33.1]) but with one minor modification. To define the map, instead of the
set of all rationals we will be using the set of the dyadic rationals. We give more
details.
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Define a uniformly effective list of closed sets Ai and open sets Oi, where i ranges
over the dyadic rationals in [0, 1], as follows. Begin with A0 = A and O1 = X \B.
By effective normality, there we can find A1/2 and O1/2 so that

A0 ⊆ O1/2 ⊆ A1/2 ⊆ O1,

and then we can iterate this and define

A0 ⊆ O1/4 ⊆ A1/4 ⊆ O1/2 ⊆ A1/2 ⊆ O1,

and
A0 ⊆ O1/4 ⊆ A1/4 ⊆ O1/2 ⊆ A1/2 ⊆ O3/4 ⊆ A3/4 ⊆ O1,

and so on. We also set Od = X for every dyadic d > 1 and Ad = ∅ for each dyadic
d < 0. The desired function is

fA,B(x) = inf{i : x ∈ Oi} = sup{j : x /∈ Aj}.
The function is well-defined. The former version of its definition shows that the left
cut of the real fA,B(x) is c.e., and the latter implies that the right cut of this real
is c.e. as well. □

Note we never used that the closed sets were non-empty.

Lemma 4.3. Let X be an effectively compact topological space. We can effectively
uniformly list all disjoint effectively closed subsets of X.

Proof. Two effectively closed sets C0 = X \ U0 and C1 = X \ U1 are disjoint iff
U0 ∪U1 covers X. For an effectively open set, being a cover of X is a Σ0

1 property,
by effective compactness. □

Lemma 4.4. For every x ∈ X and every open U ∋ x there exist disjoint effectively
closed C ∋ x and D ⊇ (X \ U).

Proof. It is perhaps easiest to use that the compact X is (classically) metrizable.
Fix any compatible metric d and the induced Hausdorff metric dH .

Claim 3. For each ϵ > 0 and every closed set C ⊆ X there exists an effectively
closed set Cε ⊇ C so that dH(C,Cε) < ϵ.

Proof of Claim 3. Given a closed C ⊆ X, fix a finite cover (Vi)i≤k of X by basic
open sets whose diameters are bounded by ε/2, where diam(Vi) = diam(cl(Vi)).
Then the effectively closed set

Cε = X \
⋃

{Vi : Vi ∩ C = ∅}

satisfies
dH(C,Cε) < ϵ.

Clearly, C ⊆ Cε. Suppose y ∈ Cε \ C. Then necessarily y ∈ Vj for some Vj

intersecting C, and thus d(x,C) ≤ diam(Vi) ≤ ϵ/2 < ϵ. □

To complete the proof of the lemma, fix disjoint closed C ′ ∋ x and D′ ⊇ (X \U),
and let C = C ′

ϵ ⊇ C ′ and D = D′
ϵ ⊇ D′ ⊇ (X \ U), where ϵ < dH(C ′

i, D
′
i)/2. □

Using Lemma 4.3, fix an effective enumeration (Ci, Di)i∈ω of all (computable
indices of) disjoint effectively closed subsets in X, perhaps with repetition. Using
Lemma 4.1 and Lemma 4.2, produce a uniformly effective list of functions

fCi,Di
: X → [0, 1]



COMPUTABLE TOPOLOGICAL PRESENTATIONS 17

that map the respective Ci to 1 and vanish at Di. Define g : X → [0, 1]ω to be

g(x) = (fCi,Di
)i∈ω,

where the computable metric on [0, 1]ω is given by d((xi)i∈ω, (yi)i∈ω) =
∑

i 2
−i|xi−

yi|. The function is computable. Lemma 4.4 implies that g is injective, and thus g
is a computable homeomorphic embedding of X into [0, 1]ω.

We claim that we can effectively list all finite covers of f(X) (that intersect
f(X)). For that, list all finite tuples of basic open balls in [0, 1]ω and calculate
their preimages. Keep only those tuples that consist of balls having non-empty
preimage, and so that these preimages cover the entire space X. It follows that
f(X) is a computable subset of the computably compact [0, 1]ω, e.g., [DM23, Prop.
3.29]. Thus, in particular, it is Σ0

1-closed. It is also well-known that, for closed
subsets of computable Polish spaces, being Σ0

1-closed is equivalent to the existence
of an effectively dense sequence; e.g., [DM23, Lemma 3.27]. Use this effective dense
sequence in f(X) and the metric inherited from [0, 1]ω to produce a computably
compact Polish presentation of X. This finishes the proof of (1) → (2) (of Theo-
rem 1.3). □

If we drop the assumption of ∩-decidability, we can use ∅′ to produce a ∆0
2-

Polish presentation of the space. To finish Theorem 1.3, we need to show that this
is sharp, i.e., in absence of ∩-decidability we cannot contain a computable Polish
presentation (in general). For that, we shall use some known results.

Proposition 4.1. For a (separable) Stone space S and the dual Boolean algebra

Ŝ, the following are equivalent:

(1) S has an effectively compact computable topological presentation;
(2) S has 0′-compact computable topological presentation;
(3) S has a ∆0

2-compact Polish presentation;
(4) S has a ∆0

2-Polish presentation;
(5) S has a right-c.e. Polish effectively compact presentation;

(6) Ŝ has a c.e. presentation, i.e., is isomorphic to a factor of the (computable)
atomless Boolean algebra by a c.e. ideal;

(7) Ŝ has a ∆0
2-presentation.

Proof. The implications (1) → (2) and (3) → (4) are trivial (and so is (6) → (7)).
(2) → (3): This follows from Theorem 1.3.
(5) → (1): Basic open balls in a right-c.e. Polish space induce a computable

topological presentation of the space; e.g., [KK17, Thm 2.3] or [DM23, Prop. 2.4].
(4) → (7): This is [HTMN20, Thm 1.1] relativised to ∅′.
(6) → (5): This is [BHTM23, Thm 3.1].
(7) → (6): This is a well-known fact due to Feiner [Fei70a]. □

Now, to establish the final part of Theorem 1.3, we argue that there exists an
effectively compact topological space with no computable Polish presentation. To
see why such a space exists, fix a c.e. presented Boolean algebra without a com-
putable presentation [Fei70a], and apply Proposition 4.1 and the aforementioned
[HTMN20, Thm 1.1].

This finishes the proof of Theorem 1.3.
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Remark 4.1. It also follows that there exists an effectively compact topological
space that is not homeomorphic to any ∩-decidable effectively compact topological
space.
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