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FPP

Fixed-point property

® Many mathematical fields have their fixed-point theorems:
topology, order theory, convex analysis, etc.

® [n computability theory: Kleene’s Recursion Theorem, its
extension by Ershov to numbered sets,

® [n computable analysis: Kreitz, Weihrauch, 1985
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Fixed-point property

® Many mathematical fields have their fixed-point theorems:
topology, order theory, convex analysis, etc.

® [n computability theory: Kleene’s Recursion Theorem, its
extension by Ershov to numbered sets,

® [n computable analysis: Kreitz, Weihrauch, 1985

Computability theory ‘ Computable analysis
Numbered sets Represented spaces
Computable multi-valued | Continuous multi-valued
functions functions
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FPP

From numbered sets to represented spaces

Some results easily extend:
e Ershov: A total numbering satisfies the 2nd recursion
theorem <= it is precomplete,
e Weihrauch: Effective domains satisfy the 2nd recursion
theorem.
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FPP

From numbered sets to represented spaces

New characterizations become possible, because continuity is
smoother than computability.

Problems

® Give characterizations of classes of spaces with the FPP,
¢ Why does the FPP usually hold uniformly?
® [s the diagonal argument the only way to prove the FPP?
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FPP

Represented spaces

Baire space: N' = NI,

Represented space: pair X = (X, dx),

where 0x :C N — X is surjective,

A multifunction f: X =2 Y is computable if it has a
computable realizer F' :C N — N:

name of x —» F

— name of y € f(x)

f is continuous if it has a continuous realizer.
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FPP UFPP Classes of spaces Base-complexity

FPP

UFPP

Classes of spaces
Countably-based spaces
Spaces of open sets

Base-complexity
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FPP

The fixed-point property

Definition

A represented space X has the fixed-point property (FPP)
if every continuous multifunction A : X = X has a fixed-point,
i.e. there exists z € X such that x € h(x).

Equivalently, X does not have the FPP <= the
multifunction = — {2’ : 2’ # 2} is continuous.

xr —f Algorithm

—> 2’ #x
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FPP
Examples

Which spaces have the fixed-point property?

e R

e [0,1]

e [0,1]<
e (0,1«
e [0,1)-
o Pw)

o I,(WN)
o ALWN)
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FPP
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FPP
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FPP
Examples

Which spaces have the fixed-point property?

e R No: h(z) =z + 1

o [0,1]  No: h(0) =1,Ah(1) = 0,h(z) = {0,1}
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FPP
Examples

Which spaces have the fixed-point property?

e R No: h(z) =z + 1

e [0,1]  No: h(0) =1,h(1) = 0,h(z) = {0,1}
e [0,1]«  Yes

e (0,1 No: h(z)==z/2
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FPP
Examples

Which spaces have the fixed-point property?

e R No: h(z) =z +1

e [0,1]  No: h(0)=1,h(1) =0,h(z) = {0,1}
e [0,1]«  Yes

e (0,1 No: h(z) =2/2

e [0,1)c No: h(z)=(x+1)/2

Yes

o X0(N) Yes

o AYN) No: h(A) = A°
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FPP

Proofs

How to prove the FPP?
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FPP

Proofs

How to prove the FPP?

Diagonal argument.
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FPP

Diagonal argument
The spaces [0, 1], P(w) and 9 (N) have the FPP.

Diagonal argument

If there is a continuous surjection ¢ : N — € (N, X), then X
has the FPP.
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FPP

Diagonal argument
The spaces [0, 1], P(w) and 9 (N) have the FPP.
Diagonal argument

If there is a continuous surjection ¢ : N — € (N, X), then X
has the FPP.

Proof.

Given h: X = X,

Let f € €(N,X) be such that f(p) € h(o(p)(p)),

One has f = ¢(pg) for some po,

#(po)(po) is a fixed-point of h. O]
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FPP

Diagonal argument
The spaces [0, 1], P(w) and 9 (N) have the FPP.
Diagonal argument

If there is a continuous surjection ¢ : N — € (N, X), then X
has the FPP.

Proof.

® Given h: X = X,

e Let f € €(N,X) be such that f(p) € h(o(p)(p)),

® One has f = ¢(pg) for some po,

® &(po)(po) is a fixed-point of h. O

Key fact

Every continuous multifunction from A has a continuous
single-valued selector.
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FPP

Diagonal argument

FPP? Proof
R No
[0, 1] No
[0,1]«  Yes Diagonal argument
(0,1«  No

0,1)« No
P(w) Yes Diagonal argument
S9(N)  Yes Diagonal argument
AYN) No
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FPP

Proofs

How to disprove the FPP?
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FPP

Proofs

How to disprove the FPP?

1. No least element
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FPP

Least element

Let 7 be the final topology of the representation. Let < be the
specialization preorder:

x <y <= every neighborhood of = contains y.

Proposition

If X has the fixed-point property, then X has a least element.
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X has no least element <= there exists a proper open
cover (U;)ien:
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FPP

Least element

Let 7 be the final topology of the representation. Let < be the
specialization preorder:

x <y <= every neighborhood of = contains y.

Proposition

If X has the fixed-point property, then X has a least element.

Proof.
X has no least element <= there exists a proper open
cover (U;)ien:
e X=U,U,
e X £ U; for each i.
We build h : X = X with no fixed-point.
Given z, find 4 such that x € U;, then output some 2’ ¢ U;. [
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FPP

Least element

Let 7 be the final topology of the representation. Let < be the
specialization preorder:

x <y <= every neighborhood of = contains y.

Proposition

If X has the fixed-point property, then X has a least element.

In particular, the final topology is:
e Compact,

e Not 77 (unless X is a singleton).
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FPP

Least element

FPP? Proof

R No No least element
[0, 1] No No least element
[0,1]«  Yes Diagonal argument
(0,1« No No least element
0,1)« No

P(w) Yes Diagonal argument
SY(N)  Yes Diagonal argument
AL(N)  No
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UFPP

UFPP
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UFPP

Uniform fixed-point property

The spaces P(w), [0,1]<, % (N) have the fixed-point property.

n

Moreover, a fixed-point for h : X = X can be uniformly
computed from h.

16 /37



UFPP

Uniform fixed-point property

The spaces P(w), [0,1]<, % (N) have the fixed-point property.

n

Moreover, a fixed-point for h : X = X can be uniformly
computed from h.

Let-s formalize this. ..
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UFPP

Uniform fixed-point property

® A uniform fixed-point property is defined in [Kreitz,
Weihrauch, 85]: “satisfying the t-recursion theorem”,

® Too weak: does not imply the fixed-point property.
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UFPP

Uniform fixed-point property

® A uniform fixed-point property is defined in [Kreitz,
Weihrauch, 85]: “satisfying the t-recursion theorem”,

® Too weak: does not imply the fixed-point property.

Definition (Kreitz, Weihrauch, 85)

A represented space X has the uniform fixed-point property
(UFPP) if given H : N — N, one can continuously find
some p € N such that

ox(p) = 6x o H(p).
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UFPP

Uniform fixed-point property

® A uniform fixed-point property is defined in [Kreitz,
Weihrauch, 85]: “satisfying the t-recursion theorem”,

® Too weak: does not imply the fixed-point property.

Definition

A represented space X has the uniform fixed-point property
(UFPP) if given a partial H :C N — N, one can continuously
find some p € dom(dx ) such that

x € dom(dx o H) = dx(p) = dx o H(p).
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UFPP

Uniform fixed-point property

Theorem

X has the uniform fized-point property
<~
Every partial continuous function f :C N — X has
a total continuous extension f N — X
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UFPP

Uniform fixed-point property

Theorem

X has the uniform fized-point property
<~
Every partial continuous function f :C N — X has
a total continuous extension f N — X

e This property is called multi-retraceability in [Brattka,
Gherardi, 2021]

® [t is equivalent to the effective discontinuity of the
multifunction h(x) = X \ {z}, [Brattka, 2020].
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UFPP

Uniform fixed-point property
Therefore, from the results in [Brattka, 2020|:

Corollary
Assuming the Aziom of Determinacy (AD),

FPP < UFPP.
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UFPP

Uniform fixed-point property
Therefore, from the results in [Brattka, 2020|:
Corollary
Assuming the Aziom of Determinacy (AD),

FPP < UFPP.

Proof idea.

Game: Players I and II play =1, x5 € X. Player II wins
if T2 75 xI1.
® A winning strategy for Player II is a continuous
multifunction with no fixed-point.

® A winning strategy for Player I witnesses the uniform
fixed-point property.
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UFPP
Uniform fixed-point property
Therefore, from the results in [Brattka, 2020|:

Corollary
Assuming the Aziom of Determinacy (AD),

FPP < UFPP.

We will see that (AD) can be dropped for most natural spaces.
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UFPP

Uniform fixed-point property

Theorem

Assuming the Aziom of Choice,

FPP <= UFPP.

Proof.

Let X ={0,1}, AC N and § = 14.

(X, 06) has the FPP <= A Lwadge A%

Build A by transfinite induction against all uniform procedures
(similar to the construction of a Bernstein set). Ol
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UFPP

Uniform fixed-point property

Theorem

Assuming the Aziom of Choice,

FPP <= UFPP.

Proof.

Let X ={0,1}, AC N and § = 14.

(X, 06) has the FPP <= A Lwadge A%

Build A by transfinite induction against all uniform procedures
(similar to the construction of a Bernstein set). Ol

Open problem

Build an admissibly represented space satisfying the FPP, but
not the UFPP.
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UFPP

Diagonal argument

Reminder
The spaces P(w), [0,1]<, % (N) have the fixed-point property.

=n
Proved using the diagonal argument.

Question

Is the diagonal argument the only way to prove the FPP?
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UFPP

Diagonal argument

Reminder
The spaces P(w), [0,1]<, % (N) have the fixed-point property.

=n
Proved using the diagonal argument.

Question

Is the diagonal argument the only way to prove the FPP?

Assuming (AD),

There is a continuous surjection ¢ : N — €' (N, X)
<~
X has the FPP.
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Classes of spaces

Classes of spaces
Countably-based spaces
Spaces of open sets
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Classes of spaces

Countably-based Ty-spaces

Let X be a T topological space with a countable basis (B;);en.
The standard representation: a name of a point x € X is an
enumeration of

{i eN:zx € Bz}
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Classes of spaces

Countably-based Ty-spaces

Let X be a countably-based Ty-space with the standard
representation.
Theorem
The following statements are equivalent:
1. X has the FPP,
2. X has the UFPP,
3. X is a multi-valued retract of P(w),
4. X is a pointed w-continuous dcpo with the Scott topology.

We do not assume (AD).
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Classes of spaces

Countably-based Ty-spaces

Let X be a countably-based Ty-space with the standard
representation.
Theorem
The following statements are equivalent:
1. X has the FPP,
2. X has the UFPP,
3. X is a multi-valued retract of P(w),
4. X is a pointed w-continuous dcpo with the Scott topology.

We do not assume (AD). Let’s see why FPP = w-continuous

dcpo.
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Classes of spaces

Proof ideas

Let us illustrate why, for subsets of (P(w), C):
® Not a dcpo = 4 multifunction with no fixed-point,

® Not w-continuous = 3 multifunction with no fixed-point.
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Classes of spaces

Proof ideas: dcpo

The set X = P(w) \ {w} admits a continuous h : X — X with
no fixed-point:

h(A) ={0,...,n}, where n ¢ A is minimal.
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Classes of spaces

Proof ideas: dcpo

The set X = P(w) \ {w} admits a continuous h : X — X with
no fixed-point:

h(A) ={0,...,n}, where n ¢ A is minimal.

What’s going on?
We are exploiting that X is not a dcpo: the set

D={{0,...,n}:n € w}

is directed but has no sup.
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Classes of spaces

Proof ideas: w-continuity

The set X = {0} U{A Cw : A is infinite} has a continuous
multifunction with no fixed-point:
® Given A € X, we start producing w,
e If we detect that A # (), then we pause and find
some n € A that we do not have enumerated yet,

® We then produce w \ {n}.
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Classes of spaces

Proof ideas: w-continuity

The set X = {0} U{A Cw : A is infinite} has a continuous
multifunction with no fixed-point:

® Given A € X, we start producing w,

e If we detect that A # (), then we pause and find
some n € A that we do not have enumerated yet,

® We then produce w \ {n}.

What’s going on?
X is not w-continuous: any infinite A has no finite
approximations.
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Classes of spaces

Countably-based spaces

e Multifunctions are much more flexible than functions,

® The single-valued FPP is much harder to understand, even
for finite spaces.

For finite Ty-spaces,
® PP <= It has a least element,

® Single-valued FPP <= Single-valued FPP for finite
posets, which is an open problem.
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Classes of spaces

Spaces of open sets

Let X be a topological space with an admissible representation.
The space O(X) of open sets has an admissible representation.
Theorem
The following statements are equivalent:

® X is countably-based,

® O(X) has the FPP,

® O(X) has the UFPP.

We do not assume (AD).

Knaster-Tarski or Kleene’s fixed-point theorems imply that
continuous functions O(X) — O(X) always have fixed-points.
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Classes of spaces

Spaces of open sets: proof idea

® [n a countably-based space, enumerating an open set V'
means producing a growing sequence of open sets V[s] such
that V' = J, V[s],

® When the space is not countably-based, the sets V[s] are
not always open.

For simplicity, let’s work in a space where each V[s] has empty
interior.
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Classes of spaces

Spaces of open sets: proof idea

Opponent gives some U € O(X), we produce some V # U.

® Start enumerating - .
some V # (), / Ny
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then we pause,
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® Start enumerating

some V # (),

e If we detect that U # 0,
then we pause,

® V/[s] has empty interior,
soU € Vs],
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Classes of spaces

Spaces of open sets: proof idea

Opponent gives some U € O(X), we produce some V # U.

® Start enumerating

some V # (),

e If we detect that U # 0,
then we pause,

® V/[s] has empty interior,
soU € Vs],

® Produce some V' D Vs]
such that U ¢ V.
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Base-complexity

Base-complexity
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Base-complexity

Base-complexity

Definition ([de Brecht, Schréder, Selivanov, 2016])

A topological space X is Y-based if there is a continuous
indexing Y — O(X) of a basis.

A hierarchy can be obtained by using the Kleene-Kreisel
spaces Y = N( ):

e N(0) =
. <1>:NN N,
o N(2) =NV,

N(n + 1) = €(N(n), N),

Also N(a) for countable ordinal a.
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Base-complexity

Base-complexity

Examples
¢ Countably-based = N(0)-based,
* O(N) is N(1)-based but not N(0)-based,
* N(a) is N(a + 1)-based.

Questions

Is the base-complexity hierarchy proper?
What is the exact base-complexity of N(a)?
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Base-complexity

Base-complexity

Examples
¢ Countably-based = N(0)-based,
* O(N) is N(1)-based but not N(0)-based,
* N(a) is N(a + 1)-based.

Questions

Is the base-complexity hierarchy proper?
What is the exact base-complexity of N(a)?

Theorem

For a > 2, N(«) is not N{«)-based. Hence, the hierarchy is
proper.
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Base-complexity

Base-complexity

Theorem
For a > 2, N{(«) is not N{«a)-based.

Some proof ingredients.

* O(N(w)) has a multifunction with no fixed-point,
because N{«) is not countably-based,

e We apply the diagonal argument,

e However, we need some technical trick: it produces a
multifunction while we need a function.
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Base-complexity

Question
An analogy

e The N-based spaces are the topological subspaces of O(N).

® The N-based spaces are the topological subspaces of O(N).
[de Brecht, Schréder, Selivanov, 2016]

e For N-based spaces:
FPP < UFPP
<= retract of O(N)

<= pointed w-continuous dcpo

e For N-based spaces:

777

FPP <« UFPP
<= retract of O(N)

= 777 36 /37
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