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Fixed-point property

• Many mathematical fields have their fixed-point theorems:
topology, order theory, convex analysis, etc.

• In computability theory: Kleene’s Recursion Theorem, its
extension by Ershov to numbered sets,

• In computable analysis: Kreitz, Weihrauch, 1985
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Computable multi-valued Continuous multi-valued
functions functions
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From numbered sets to represented spaces

Some results easily extend:
• Ershov: A total numbering satisfies the 2nd recursion

theorem ⇐⇒ it is precomplete,
• Weihrauch: Effective domains satisfy the 2nd recursion

theorem.
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From numbered sets to represented spaces

New characterizations become possible, because continuity is
smoother than computability.

Problems

• Give characterizations of classes of spaces with the FPP,
• Why does the FPP usually hold uniformly?
• Is the diagonal argument the only way to prove the FPP?
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Represented spaces

• Baire space: N = NN,
• Represented space: pair X = (X, δX),

where δX :⊆ N → X is surjective,
• A multifunction f : X ⇒ Y is computable if it has a

computable realizer F :⊆ N → N :

Fname of x name of y ∈ f(x)

• f is continuous if it has a continuous realizer.
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FPP

UFPP

Classes of spaces
Countably-based spaces
Spaces of open sets

Base-complexity
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The fixed-point property

Definition
A represented space X has the fixed-point property (FPP)
if every continuous multifunction h : X ⇒ X has a fixed-point,
i.e. there exists x ∈ X such that x ∈ h(x).

Equivalently, X does not have the FPP ⇐⇒ the
multifunction x 7→ {x′ : x′ ̸= x} is continuous.

Algorithmx x′ ̸= x
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Examples

Which spaces have the fixed-point property?

• R

No: h(x) = x+ 1

• [0, 1]

No: h(0) = 1, h(1) = 0, h(x) = {0, 1}

• [0, 1]<

Yes

• (0, 1]<

No: h(x) = x/2

• [0, 1)<

No: h(x) = (x+ 1)/2

• P(ω)

Yes

• ˜Σ0
n(N )

Yes

• ˜∆0
n(N )

No: h(A) = Ac
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Proofs

How to prove the FPP?

Diagonal argument.
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Diagonal argument
The spaces [0, 1]<, P(ω) and ˜Σ0

n(N ) have the FPP.

Diagonal argument

If there is a continuous surjection ϕ : N → C (N ,X), then X
has the FPP.

Proof.

• Given h : X ⇒ X,
• Let f ∈ C (N ,X) be such that f(p) ∈ h(ϕ(p)(p)),
• One has f = ϕ(p0) for some p0,
• ϕ(p0)(p0) is a fixed-point of h.

Key fact
Every continuous multifunction from N has a continuous
single-valued selector.
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Diagonal argument

FPP? Proof

R No

[0, 1] No

[0, 1]< Yes Diagonal argument

(0, 1]< No

[0, 1)< No

P(ω) Yes Diagonal argument

˜Σ0
n(N ) Yes Diagonal argument

˜∆0
n(N ) No
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Proofs

How to disprove the FPP?

1. No least element
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Least element
Let τ be the final topology of the representation. Let ≤ be the
specialization preorder:

x ≤ y ⇐⇒ every neighborhood of x contains y.

Proposition

If X has the fixed-point property, then X has a least element.

13 / 37



FPP UFPP Classes of spaces Base-complexity

Least element
Let τ be the final topology of the representation. Let ≤ be the
specialization preorder:

x ≤ y ⇐⇒ every neighborhood of x contains y.

Proposition

If X has the fixed-point property, then X has a least element.

Proof.
X has no least element ⇐⇒ there exists a proper open
cover (Ui)i∈N:

• X =
⋃

i Ui,
• X ̸= Ui for each i.

We build h : X ⇒ X with no fixed-point.
Given x, find i such that x ∈ Ui, then output some x′ /∈ Ui.
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Least element
Let τ be the final topology of the representation. Let ≤ be the
specialization preorder:

x ≤ y ⇐⇒ every neighborhood of x contains y.

Proposition

If X has the fixed-point property, then X has a least element.

In particular, the final topology is:
• Compact,
• Not T1 (unless X is a singleton).
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Least element

FPP? Proof

R No No least element

[0, 1] No No least element

[0, 1]< Yes Diagonal argument

(0, 1]< No No least element

[0, 1)< No

P(ω) Yes Diagonal argument

˜Σ0
n(N ) Yes Diagonal argument

˜∆0
n(N ) No
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FPP

UFPP

Classes of spaces
Countably-based spaces
Spaces of open sets

Base-complexity
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Uniform fixed-point property

The spaces P(ω), [0, 1]<, ˜Σ0
n(N ) have the fixed-point property.

Moreover, a fixed-point for h : X ⇒ X can be uniformly
computed from h.

Let-s formalize this. . .
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Uniform fixed-point property

• A uniform fixed-point property is defined in [Kreitz,
Weihrauch, 85]: “satisfying the t-recursion theorem”,

• Too weak: does not imply the fixed-point property.
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Uniform fixed-point property

• A uniform fixed-point property is defined in [Kreitz,
Weihrauch, 85]: “satisfying the t-recursion theorem”,

• Too weak: does not imply the fixed-point property.

Definition (Kreitz, Weihrauch, 85)

A represented space X has the uniform fixed-point property
(UFPP) if given H : N → N , one can continuously find
some p ∈ N such that

δX(p) = δX ◦H(p).
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Uniform fixed-point property

• A uniform fixed-point property is defined in [Kreitz,
Weihrauch, 85]: “satisfying the t-recursion theorem”,

• Too weak: does not imply the fixed-point property.

Definition
A represented space X has the uniform fixed-point property
(UFPP) if given a partial H :⊆ N → N , one can continuously
find some p ∈ dom(δX) such that

x ∈ dom(δX ◦H) =⇒ δX(p) = δX ◦H(p).
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Uniform fixed-point property

Theorem

X has the uniform fixed-point property
⇐⇒

Every partial continuous function f :⊆ N → X has
a total continuous extension f̃ : N → X.

• This property is called multi-retraceability in [Brattka,
Gherardi, 2021]

• It is equivalent to the effective discontinuity of the
multifunction h(x) = X \ {x}, [Brattka, 2020].
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Uniform fixed-point property
Therefore, from the results in [Brattka, 2020]:

Corollary

Assuming the Axiom of Determinacy (AD),

FPP ⇐⇒ UFPP.
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Uniform fixed-point property
Therefore, from the results in [Brattka, 2020]:

Corollary

Assuming the Axiom of Determinacy (AD),

FPP ⇐⇒ UFPP.

Proof idea.
Game: Players I and II play x1, x2 ∈ X. Player II wins
if x2 ̸= x1.

• A winning strategy for Player II is a continuous
multifunction with no fixed-point.

• A winning strategy for Player I witnesses the uniform
fixed-point property.
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Uniform fixed-point property
Therefore, from the results in [Brattka, 2020]:

Corollary

Assuming the Axiom of Determinacy (AD),

FPP ⇐⇒ UFPP.

We will see that (AD) can be dropped for most natural spaces.
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Uniform fixed-point property

Theorem
Assuming the Axiom of Choice,

FPP ���⇐⇒ UFPP.

Proof.
Let X = {0, 1}, A ⊆ N and δ = 1A.
(X, δ) has the FPP ⇐⇒ A ≰Wadge A

c.
Build A by transfinite induction against all uniform procedures
(similar to the construction of a Bernstein set).

Open problem
Build an admissibly represented space satisfying the FPP, but
not the UFPP.
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Diagonal argument

Reminder
The spaces P(ω), [0, 1]<, ˜Σ0

n(N ) have the fixed-point property.
Proved using the diagonal argument.

Question
Is the diagonal argument the only way to prove the FPP?

Assuming (AD),

There is a continuous surjection ϕ : N → C (N ,X)
=⇒

X has the FPP.
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UFPP
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Countably-based T0-spaces

Let X be a T0 topological space with a countable basis (Bi)i∈N.
The standard representation: a name of a point x ∈ X is an
enumeration of

{i ∈ N : x ∈ Bi}.
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Countably-based T0-spaces

Let X be a countably-based T0-space with the standard
representation.

Theorem
The following statements are equivalent:

1. X has the FPP,
2. X has the UFPP,
3. X is a multi-valued retract of P(ω),
4. X is a pointed ω-continuous dcpo with the Scott topology.

We do not assume (AD).

Let’s see why FPP =⇒ ω-continuous

dcpo.
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Proof ideas

Let us illustrate why, for subsets of (P(ω),⊆):
• Not a dcpo =⇒ ∃ multifunction with no fixed-point,
• Not ω-continuous =⇒ ∃ multifunction with no fixed-point.

25 / 37



FPP UFPP Classes of spaces Base-complexity

Proof ideas: dcpo

The set X = P(ω) \ {ω} admits a continuous h : X → X with
no fixed-point:

h(A) = {0, . . . , n}, where n /∈ A is minimal.

What’s going on?
We are exploiting that X is not a dcpo: the set

D = {{0, . . . , n} : n ∈ ω}

is directed but has no sup.
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Proof ideas: ω-continuity

The set X = {∅} ∪ {A ⊆ ω : A is infinite} has a continuous
multifunction with no fixed-point:

• Given A ∈ X, we start producing ω,
• If we detect that A ̸= ∅, then we pause and find

some n ∈ A that we do not have enumerated yet,
• We then produce ω \ {n}.

What’s going on?
X is not ω-continuous: any infinite A has no finite
approximations.
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Countably-based spaces

• Multifunctions are much more flexible than functions,
• The single-valued FPP is much harder to understand, even

for finite spaces.

For finite T0-spaces,
• FPP ⇐⇒ It has a least element,
• Single-valued FPP ⇐⇒ Single-valued FPP for finite

posets, which is an open problem.
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Spaces of open sets

Let X be a topological space with an admissible representation.
The space O(X) of open sets has an admissible representation.

Theorem
The following statements are equivalent:

• X is countably-based,
• O(X) has the FPP,
• O(X) has the UFPP.

We do not assume (AD).

Knaster-Tarski or Kleene’s fixed-point theorems imply that
continuous functions O(X) → O(X) always have fixed-points.
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Spaces of open sets: proof idea

• In a countably-based space, enumerating an open set V
means producing a growing sequence of open sets V [s] such
that V =

⋃
s V [s],

• When the space is not countably-based, the sets V [s] are
not always open.

For simplicity, let’s work in a space where each V [s] has empty
interior.
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Spaces of open sets: proof idea

Opponent gives some U ∈ O(X), we produce some V ̸= U .

• Start enumerating
some V ̸= ∅,

• If we detect that U ̸= ∅,
then we pause,

• V [s] has empty interior,
so U ⊈ V [s],

• Produce some V ′ ⊇ V [s]
such that U ⊈ V ′.

V

V [0]
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then we pause,

• V [s] has empty interior,
so U ⊈ V [s],

• Produce some V ′ ⊇ V [s]
such that U ⊈ V ′.

V

V [s]

U

V ′
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Base-complexity

Definition ([de Brecht, Schröder, Selivanov, 2016])

A topological space X is Y-based if there is a continuous
indexing Y → O(X) of a basis.

A hierarchy can be obtained by using the Kleene-Kreisel
spaces Y = N⟨α⟩:

• N⟨0⟩ = N,
• N⟨1⟩ = NN = N ,
• N⟨2⟩ = NNN ,
• N⟨n+ 1⟩ = C (N⟨n⟩,N),
• Also N⟨α⟩ for countable ordinal α.
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Base-complexity

Examples

• Countably-based = N⟨0⟩-based,
• O(N ) is N⟨1⟩-based but not N⟨0⟩-based,
• N⟨α⟩ is N⟨α+ 1⟩-based.

Questions
Is the base-complexity hierarchy proper?
What is the exact base-complexity of N⟨α⟩?

Theorem
For α ≥ 2, N⟨α⟩ is not N⟨α⟩-based. Hence, the hierarchy is
proper.
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Base-complexity

Theorem
For α ≥ 2, N⟨α⟩ is not N⟨α⟩-based.

Some proof ingredients.

• O(N⟨α⟩) has a multifunction with no fixed-point,
because N⟨α⟩ is not countably-based,

• We apply the diagonal argument,
• However, we need some technical trick: it produces a

multifunction while we need a function.
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Question
An analogy

• The N-based spaces are the topological subspaces of O(N).
• The N -based spaces are the topological subspaces of O(N ).

[de Brecht, Schröder, Selivanov, 2016]

• For N-based spaces:

FPP ⇐⇒ UFPP
⇐⇒ retract of O(N)
⇐⇒ pointed ω-continuous dcpo

• For N -based spaces:

FPP ???⇐⇒ UFPP
⇐⇒ retract of O(N )
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