The fixed-point property for represented spaces

Mathieu Hoyrup

Loria - Inria, Nancy (France)

Fixed-point property

- Many mathematical fields have their fixed-point theorems: topology, order theory, convex analysis, etc.
- In computability theory: Kleene's Recursion Theorem, its extension by Ershov to numbered sets,
- In computable analysis: Kreitz, Weihrauch, 1985

Fixed-point property

- Many mathematical fields have their fixed-point theorems: topology, order theory, convex analysis, etc.
- In computability theory: Kleene's Recursion Theorem, its extension by Ershov to numbered sets,
- In computable analysis: Kreitz, Weihrauch, 1985

Computability theory	Computable analysis
Numbered sets	Represented spaces
Computable multi-valued	Continuous multi-valued
functions	functions

From numbered sets to represented spaces

Some results easily extend:

- Ershov: A total numbering satisfies the 2nd recursion theorem \iff it is precomplete,
- Weihrauch: Effective domains satisfy the 2nd recursion theorem.

From numbered sets to represented spaces

New characterizations become possible, because continuity is smoother than computability.

Problems

- Give characterizations of classes of spaces with the FPP,
- Why does the FPP usually hold *uniformly*?
- Is the diagonal argument the only way to prove the FPP?

Base-complexity

Represented spaces

- Baire space: $\mathcal{N} = \mathbb{N}^{\mathbb{N}}$,
- Represented space: pair $\mathbf{X} = (X, \delta_X)$, where $\delta_X :\subseteq \mathcal{N} \to X$ is surjective,
- A multifunction $f : \mathbf{X} \Rightarrow \mathbf{Y}$ is computable if it has a computable realizer $F :\subseteq \mathcal{N} \to \mathcal{N}$:

name of
$$x \longrightarrow F$$
 name of $y \in f(x)$

• *f* is **continuous** if it has a continuous realizer.

UFPP

Classes of spaces

Base-complexity

FPP

UFPP

Classes of spaces Countably-based spaces Spaces of open sets

Base-complexity

The fixed-point property

Definition

A represented space **X** has the **fixed-point property (FPP)** if every continuous multifunction $h : \mathbf{X} \rightrightarrows \mathbf{X}$ has a fixed-point, i.e. there exists $x \in \mathbf{X}$ such that $x \in h(x)$.

Equivalently, **X** does not have the FPP \iff the multifunction $x \mapsto \{x' : x' \neq x\}$ is continuous.

$$x \longrightarrow$$
 Algorithm $x' \neq x$

Base-complexity

Examples

- \mathbb{R}
- [0, 1]٠
- $[0,1]_{<}$
- $(0,1]_{<}$
- $[0,1)_{<}$
- $\mathcal{P}(\omega)$
- $\sum_{n=1}^{\infty} (\mathcal{N})$
- $\Delta_n^0(\mathcal{N})$

Examples

- \mathbb{R} No: h(x) = x + 1
- [0,1]
- $[0,1]_{<}$
- (0,1]<
- $[0,1)_{<}$
- $\mathcal{P}(\omega)$
- $\sum_{n=1}^{\infty} (\mathcal{N})$
- $\Delta_{\widetilde{\sim}}^0(\mathcal{N})$

FPP UFPI

PP

Classes of spaces

Base-complexity

Examples

- \mathbb{R} No: h(x) = x + 1
- [0,1] No: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$
- (0,1]<
- $[0,1)_{<}$
- $\mathcal{P}(\omega)$
- $\sum_{\widetilde{\sim}}^{0} (\mathcal{N})$
- $\Delta_{\widetilde{\sim}}^0(\mathcal{N})$

Examples

- \mathbb{R} No: h(x) = x + 1
- [0,1] No: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ Yes
- (0,1]<
- $[0,1)_{<}$
- $\mathcal{P}(\omega)$
- $\sum_{\widetilde{\sim}}^{0} (\mathcal{N})$
- $\Delta_{\widetilde{\sim}}^0(\mathcal{N})$

Base-complexity

Examples

- \mathbb{R} No: h(x) = x + 1
- [0,1] No: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ Yes
- $(0,1]_{\leq}$ No: h(x) = x/2
- $[0,1)_{<}$
- $\mathcal{P}(\omega)$
- $\Sigma_n^0(\mathcal{N})$
- $\Delta_n^0(\mathcal{N})$

Examples

- \mathbb{R} No: h(x) = x + 1
- [0,1] No: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ Yes
- $(0,1]_{\leq}$ No: h(x) = x/2
- $[0,1)_{<}$ No: h(x) = (x+1)/2
- $\mathcal{P}(\omega)$
- $\Sigma_n^0(\mathcal{N})$
- $\Delta_n^0(\mathcal{N})$

Examples

- \mathbb{R} No: h(x) = x + 1
- [0,1] No: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ Yes
- $(0,1]_{\leq}$ No: h(x) = x/2
- $[0,1)_{<}$ No: h(x) = (x+1)/2
- $\mathcal{P}(\omega)$ Yes
- $\Sigma_n^0(\mathcal{N})$
- $\Delta_n^0(\mathcal{N})$

Examples

- \mathbb{R} No: h(x) = x + 1
- [0,1] No: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ Yes
- $(0,1]_{\leq}$ No: h(x) = x/2
- $[0,1]_{<}$ No: h(x) = (x+1)/2
- $\mathcal{P}(\omega)$ Yes
- $\sum_{n=1}^{\infty} (\mathcal{N})$ Yes
- $\Delta_n^0(\mathcal{N})$

FPP UFPF

Classes of space

Base-complexity

Examples

- \mathbb{R} No: h(x) = x + 1
- [0,1] No: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ Yes
- $(0,1]_{<}$ No: h(x) = x/2
- $[0,1)_{<}$ No: h(x) = (x+1)/2
- $\mathcal{P}(\omega)$ Yes
- $\sum_{n=1}^{\infty} (\mathcal{N})$ Yes
- $\Delta_n^0(\mathcal{N})$ No: $h(A) = A^c$

UFPP

Classes of spaces

Base-complexity

Proofs

How to prove the FPP?

UFPP

Classes of spaces

Base-complexity

Proofs

How to prove the FPP?

Diagonal argument.

The spaces $[0,1]_{\leq}$, $\mathcal{P}(\omega)$ and $\sum_{n=0}^{\infty} (\mathcal{N})$ have the FPP.

Diagonal argument

If there is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$, then \mathbf{X} has the FPP.

The spaces $[0,1]_{\leq}$, $\mathcal{P}(\omega)$ and $\sum_{n=0}^{\infty} (\mathcal{N})$ have the FPP.

Diagonal argument

If there is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$, then **X** has the FPP.

Proof.

- Given $h : \mathbf{X} \rightrightarrows \mathbf{X}$,
- Let $f \in \mathscr{C}(\mathcal{N}, \mathbf{X})$ be such that $f(p) \in h(\phi(p)(p))$,
- One has $f = \phi(p_0)$ for some p_0 ,
- $\phi(p_0)(p_0)$ is a fixed-point of h.

The spaces $[0,1]_{\leq}$, $\mathcal{P}(\omega)$ and $\sum_{n=0}^{\infty} (\mathcal{N})$ have the FPP.

Diagonal argument

If there is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$, then \mathbf{X} has the FPP.

Proof.

- Given $h : \mathbf{X} \rightrightarrows \mathbf{X}$,
- Let $f \in \mathscr{C}(\mathcal{N}, \mathbf{X})$ be such that $f(p) \in h(\phi(p)(p))$,
- One has $f = \phi(p_0)$ for some p_0 ,
- $\phi(p_0)(p_0)$ is a fixed-point of h.

Key fact

Every continuous multifunction from ${\mathcal N}$ has a continuous single-valued selector.

	FPP?	Proof
\mathbb{R}	No	
[0,1]	No	
$[0,1]_{<}$	Yes	Diagonal argument
$(0,1]_{<}$	No	
$[0,1)_{<}$	No	
$\mathcal{P}(\omega)$	Yes	Diagonal argument
$\sum_{i=1}^{n} (\mathcal{N})$	Yes	Diagonal argument
${\displaystyle \mathop{\Delta}\limits_{\widetilde{\sim}}}^{0}({\mathcal N})$	No	

UFPP

Classes of spaces

Base-complexity

Proofs

How to disprove the FPP?

UFPP

Classes of spaces

Base-complexity

Proofs

How to disprove the FPP?

 $1. \ {\rm No} \ {\rm least} \ {\rm element}$

Let τ be the final topology of the representation. Let \leq be the specialization preorder:

 $x \leq y \iff$ every neighborhood of x contains y.

Proposition

If \mathbf{X} has the fixed-point property, then \mathbf{X} has a least element.

Let τ be the final topology of the representation. Let \leq be the specialization preorder:

 $x \leq y \iff$ every neighborhood of x contains y.

Proposition

If \mathbf{X} has the fixed-point property, then \mathbf{X} has a least element.

Proof.

X has no least element \iff there exists a proper open cover $(U_i)_{i \in \mathbb{N}}$:

- $X = \bigcup_i U_i$,
- $X \neq U_i$ for each *i*.

Let τ be the final topology of the representation. Let \leq be the specialization preorder:

 $x \leq y \iff$ every neighborhood of x contains y.

Proposition

If \mathbf{X} has the fixed-point property, then \mathbf{X} has a least element.

Proof.

X has no least element \iff there exists a proper open cover $(U_i)_{i \in \mathbb{N}}$:

- $X = \bigcup_i U_i$,
- $X \neq U_i$ for each *i*.

We build $h : \mathbf{X} \rightrightarrows \mathbf{X}$ with no fixed-point. Given x, find i such that $x \in U_i$, then output some $x' \notin U_i$.

Let τ be the final topology of the representation. Let \leq be the specialization preorder:

 $x \leq y \iff$ every neighborhood of x contains y.

Proposition

If \mathbf{X} has the fixed-point property, then \mathbf{X} has a least element.

In particular, the final topology is:

- Compact,
- Not T_1 (unless **X** is a singleton).

	FPP?	Proof
\mathbb{R}	No	No least element
[0,1]	No	No least element
$[0,1]_{<}$	Yes	Diagonal argument
$(0,1]_{<}$	No	No least element
$[0,1)_{<}$	No	
$\mathcal{P}(\omega)$	Yes	Diagonal argument
$\mathbf{\Sigma}_n^0(\mathcal{N})$	Yes	Diagonal argument
$\mathbf{\Delta}_n^0(\mathcal{N})$	No	

UFPP

Classes of spaces

Base-complexity

FPP

UFPP

Classes of spaces Countably-based spaces Spaces of open sets

Base-complexity

Base-complexity

Uniform fixed-point property

The spaces $\mathcal{P}(\omega)$, $[0,1]_{<}$, $\sum_{n=1}^{\infty} \mathcal{N}(\mathcal{N})$ have the fixed-point property.

Moreover, a fixed-point for $h : \mathbf{X} \rightrightarrows \mathbf{X}$ can be uniformly computed from h.

Uniform fixed-point property

The spaces $\mathcal{P}(\omega)$, $[0,1]_{\leq}$, $\sum_{n=1}^{\infty} (\mathcal{N})$ have the fixed-point property.

Moreover, a fixed-point for $h : \mathbf{X} \rightrightarrows \mathbf{X}$ can be uniformly computed from h.

Let-s formalize this...

Uniform fixed-point property

- A uniform fixed-point property is defined in [Kreitz, Weihrauch, 85]: "satisfying the *t*-recursion theorem",
- Too weak: does not imply the fixed-point property.

Uniform fixed-point property

- A uniform fixed-point property is defined in [Kreitz, Weihrauch, 85]: "satisfying the *t*-recursion theorem",
- Too weak: does not imply the fixed-point property.

Definition (Kreitz, Weihrauch, 85)

A represented space **X** has the **uniform fixed-point property** (UFPP) if given $H : \mathcal{N} \to \mathcal{N}$, one can continuously find some $p \in \mathcal{N}$ such that

$$\delta_X(p) = \delta_X \circ H(p).$$

Uniform fixed-point property

- A uniform fixed-point property is defined in [Kreitz, Weihrauch, 85]: "satisfying the *t*-recursion theorem",
- Too weak: does not imply the fixed-point property.

Definition

A represented space **X** has the **uniform fixed-point property** (UFPP) if given a partial $H :\subseteq \mathcal{N} \to \mathcal{N}$, one can continuously find some $p \in \text{dom}(\delta_{\mathbf{X}})$ such that

 $x \in \operatorname{dom}(\delta_X \circ H) \implies \delta_X(p) = \delta_X \circ H(p).$

Base-complexity

Uniform fixed-point property

Theorem

X has the uniform fixed-point property \iff Every partial continuous function $f :\subseteq \mathcal{N} \to \mathbf{X}$ has a total continuous extension $\tilde{f} : \mathcal{N} \to \mathbf{X}$.

Uniform fixed-point property

Theorem

X has the uniform fixed-point property \iff Every partial continuous function $f :\subseteq \mathcal{N} \to \mathbf{X}$ has a total continuous extension $\tilde{f} : \mathcal{N} \to \mathbf{X}$.

- This property is called **multi-retraceability** in [Brattka, Gherardi, 2021]
- It is equivalent to the effective discontinuity of the multifunction $h(x) = X \setminus \{x\}$, [Brattka, 2020].

Base-complexity

Uniform fixed-point property

Therefore, from the results in [Brattka, 2020]:

Corollary

Assuming the Axiom of Determinacy (AD),

 $FPP \iff UFPP.$

Base-complexity

Uniform fixed-point property

Therefore, from the results in [Brattka, 2020]:

Corollary

Assuming the Axiom of Determinacy (AD),

 $FPP \iff UFPP.$

Proof idea.

Game: Players I and II play $x_1, x_2 \in \mathbf{X}$. Player II wins if $x_2 \neq x_1$.

- A winning strategy for Player II is a continuous multifunction with no fixed-point.
- A winning strategy for Player I witnesses the uniform fixed-point property.

Base-complexity

Uniform fixed-point property

Therefore, from the results in [Brattka, 2020]:

Corollary

Assuming the Axiom of Determinacy (AD),

 $FPP \iff UFPP.$

We will see that (AD) can be dropped for most natural spaces.

Base-complexity

Uniform fixed-point property

Theorem

Assuming the Axiom of Choice,

FPP \iff UFPP.

Proof.

Let $X = \{0, 1\}, A \subseteq \mathcal{N} \text{ and } \delta = \mathbf{1}_A.$

 (X, δ) has the FPP $\iff A \not\leq_{\text{Wadge}} A^c$.

Build A by transfinite induction against all uniform procedures (similar to the construction of a Bernstein set).

Base-complexity

Uniform fixed-point property

Theorem

Assuming the Axiom of Choice,

FPP \iff UFPP.

Proof.

Let $X = \{0, 1\}, A \subseteq \mathcal{N}$ and $\delta = \mathbf{1}_A$. (X, δ) has the FPP $\iff A \not\leq_{\text{Wadge}} A^c$. Build A by transfinite induction against all uniform procedures (similar to the construction of a Bernstein set).

Open problem

Build an *admissibly* represented space satisfying the FPP, but not the UFPP.

Diagonal argument

Reminder

The spaces $\mathcal{P}(\omega)$, $[0,1]_{<}$, $\sum_{n=0}^{\infty} (\mathcal{N})$ have the fixed-point property. Proved using the diagonal argument.

Question

Is the diagonal argument the only way to prove the FPP?

Diagonal argument

Reminder

The spaces $\mathcal{P}(\omega)$, $[0,1]_{<}$, $\sum_{n=0}^{\infty} (\mathcal{N})$ have the fixed-point property. Proved using the diagonal argument.

Question

Is the diagonal argument the only way to prove the FPP?

There is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$ \Longrightarrow \mathbf{X} has the FPP.

Diagonal argument

Reminder

The spaces $\mathcal{P}(\omega)$, $[0,1]_{<}$, $\sum_{n=0}^{0} (\mathcal{N})$ have the fixed-point property. Proved using the diagonal argument.

Question

Is the diagonal argument the only way to prove the FPP?

Assuming (AD),

There is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$ \iff \mathbf{X} has the FPP.

UFPP

Classes of spaces

Base-complexity

FPP

UFPP

Classes of spaces Countably-based spaces Spaces of open sets

Base-complexity

Base-complexity

Countably-based T_0 -spaces

Let X be a T_0 topological space with a countable basis $(B_i)_{i \in \mathbb{N}}$. The **standard representation**: a name of a point $x \in X$ is an enumeration of

 $\{i \in \mathbb{N} : x \in B_i\}.$

Countably-based T_0 -spaces

Let **X** be a countably-based T_0 -space with the standard representation.

Theorem

The following statements are equivalent:

- 1. X has the FPP,
- 2. \mathbf{X} has the UFPP,
- 3. **X** is a multi-valued retract of $\mathcal{P}(\omega)$,
- 4. **X** is a pointed ω -continuous dcpo with the Scott topology.

We do not assume (AD).

Countably-based T_0 -spaces

Let **X** be a countably-based T_0 -space with the standard representation.

Theorem

The following statements are equivalent:

- 1. X has the FPP,
- 2. \mathbf{X} has the UFPP,
- 3. **X** is a multi-valued retract of $\mathcal{P}(\omega)$,
- 4. **X** is a pointed ω -continuous dcpo with the Scott topology.

We do not assume (AD). Let's see why FPP $\implies \omega$ -continuous dcpo.

Proof ideas

Let us illustrate why, for subsets of $(\mathcal{P}(\omega), \subseteq)$:

- Not a dcpo $\implies \exists$ multifunction with no fixed-point,
- Not ω -continuous $\implies \exists$ multifunction with no fixed-point.

Proof ideas: dcpo

The set $\mathbf{X} = \mathcal{P}(\omega) \setminus \{\omega\}$ admits a continuous $h : \mathbf{X} \to \mathbf{X}$ with no fixed-point:

 $h(A) = \{0, \dots, n\}$, where $n \notin A$ is minimal.

Proof ideas: dcpo

The set $\mathbf{X} = \mathcal{P}(\omega) \setminus \{\omega\}$ admits a continuous $h : \mathbf{X} \to \mathbf{X}$ with no fixed-point:

 $h(A) = \{0, \dots, n\}$, where $n \notin A$ is minimal.

What's going on?

We are exploiting that \mathbf{X} is not a dcpo: the set

$$D = \{\{0, \dots, n\} : n \in \omega\}$$

is directed but has no sup.

Proof ideas: ω -continuity

The set $\mathbf{X} = \{\emptyset\} \cup \{A \subseteq \omega : A \text{ is infinite}\}$ has a continuous multifunction with no fixed-point:

- Given $A \in \mathbf{X}$, we start producing ω ,
- If we detect that A ≠ Ø, then we pause and find some n ∈ A that we do not have enumerated yet,
- We then produce $\omega \setminus \{n\}$.

Proof ideas: ω -continuity

The set $\mathbf{X} = \{\emptyset\} \cup \{A \subseteq \omega : A \text{ is infinite}\}$ has a continuous multifunction with no fixed-point:

- Given $A \in \mathbf{X}$, we start producing ω ,
- If we detect that A ≠ Ø, then we pause and find some n ∈ A that we do not have enumerated yet,
- We then produce $\omega \setminus \{n\}$.

What's going on?

X is not ω -continuous: any infinite A has no finite approximations.

Countably-based spaces

- Multifunctions are much more flexible than functions,
- The *single-valued* FPP is much harder to understand, even for finite spaces.

For finite T_0 -spaces,

- FPP \iff It has a least element,
- Single-valued FPP \iff Single-valued FPP for finite posets, which is an open problem.

Spaces of open sets

Let \mathbf{X} be a topological space with an admissible representation. The space $\mathcal{O}(\mathbf{X})$ of open sets has an admissible representation.

Theorem

The following statements are equivalent:

- X is countably-based,
- $\mathcal{O}(\mathbf{X})$ has the FPP,
- $\mathcal{O}(\mathbf{X})$ has the UFPP.

We do not assume (AD).

Knaster-Tarski or Kleene's fixed-point theorems imply that continuous functions $\mathcal{O}(\mathbf{X}) \to \mathcal{O}(\mathbf{X})$ always have fixed-points.

- In a countably-based space, enumerating an open set V means producing a growing sequence of *open* sets V[s] such that $V = \bigcup_{s} V[s]$,
- When the space is not countably-based, the sets V[s] are not always open.

For simplicity, let's work in a space where each V[s] has empty interior.

Opponent gives some $U \in \mathcal{O}(\mathbf{X})$, we produce some $V \neq U$.

• Start enumerating some $V \neq \emptyset$,

Opponent gives some $U \in \mathcal{O}(\mathbf{X})$, we produce some $V \neq U$.

• Start enumerating some $V \neq \emptyset$,

- Start enumerating some $V \neq \emptyset$,
- If we detect that $U \neq \emptyset$, then we pause,

- Start enumerating some $V \neq \emptyset$,
- If we detect that $U \neq \emptyset$, then we pause,
- V[s] has empty interior, so $U \nsubseteq V[s]$,

- Start enumerating some $V \neq \emptyset$,
- If we detect that $U \neq \emptyset$, then we pause,
- V[s] has empty interior, so $U \nsubseteq V[s]$,

- Start enumerating some $V \neq \emptyset$,
- If we detect that $U \neq \emptyset$, then we pause,
- V[s] has empty interior, so $U \nsubseteq V[s]$,
- Produce some $V' \supseteq V[s]$ such that $U \nsubseteq V'$.

UFPP

Classes of spaces

Base-complexity

FPP

UFPP

Classes of spaces Countably-based spaces Spaces of open sets

Base-complexity

FPP UFPP

Classes of spaces

Base-complexity

Base-complexity

Definition ([de Brecht, Schröder, Selivanov, 2016])

A topological space \mathbf{X} is \mathbf{Y} -based if there is a continuous indexing $\mathbf{Y} \to \mathcal{O}(\mathbf{X})$ of a basis.

A hierarchy can be obtained by using the Kleene-Kreisel spaces $\mathbf{Y} = \mathbb{N}\langle \alpha \rangle$:

- $\mathbb{N}\langle 0 \rangle = \mathbb{N},$
- $\mathbb{N}\langle 1 \rangle = \mathbb{N}^{\mathbb{N}} = \mathcal{N},$
- $\mathbb{N}\langle 2 \rangle = \mathbb{N}^{\mathbb{N}^{\mathbb{N}}},$
- $\mathbb{N}\langle n+1\rangle = \mathscr{C}(\mathbb{N}\langle n\rangle, \mathbb{N}),$
- Also $\mathbb{N}\langle \alpha \rangle$ for countable ordinal α .

FPP UFPP

Base-complexity

Examples

- Countably-based = $\mathbb{N}\langle 0 \rangle$ -based,
- $\mathcal{O}(\mathcal{N})$ is $\mathbb{N}\langle 1 \rangle$ -based but not $\mathbb{N}\langle 0 \rangle$ -based,
- $\mathbb{N}\langle \alpha \rangle$ is $\mathbb{N}\langle \alpha + 1 \rangle$ -based.

Questions

Is the base-complexity hierarchy proper? What is the exact base-complexity of $\mathbb{N}\langle \alpha \rangle$? FPP UFPP

Base-complexity

Examples

- Countably-based = $\mathbb{N}\langle 0 \rangle$ -based,
- $\mathcal{O}(\mathcal{N})$ is $\mathbb{N}\langle 1 \rangle$ -based but not $\mathbb{N}\langle 0 \rangle$ -based,
- $\mathbb{N}\langle \alpha \rangle$ is $\mathbb{N}\langle \alpha + 1 \rangle$ -based.

Questions

Is the base-complexity hierarchy proper? What is the exact base-complexity of $\mathbb{N}\langle \alpha \rangle$?

Theorem

For $\alpha \geq 2$, $\mathbb{N}\langle \alpha \rangle$ is not $\mathbb{N}\langle \alpha \rangle$ -based. Hence, the hierarchy is proper.

Base-complexity

Theorem

For $\alpha \geq 2$, $\mathbb{N}\langle \alpha \rangle$ is not $\mathbb{N}\langle \alpha \rangle$ -based.

Some proof ingredients.

- $\mathcal{O}(\mathbb{N}\langle\alpha\rangle)$ has a *multifunction* with no fixed-point, because $\mathbb{N}\langle\alpha\rangle$ is not countably-based,
- We apply the diagonal argument,
- However, we need some technical trick: it produces a *multifunction* while we need a *function*.

UFPP

Question

An analogy

- The \mathbb{N} -based spaces are the topological subspaces of $\mathcal{O}(\mathbb{N})$.
- The N-based spaces are the topological subspaces of O(N).
 [de Brecht, Schröder, Selivanov, 2016]
- For ℕ-based spaces:

 $FPP \iff UFPP$

- \iff retract of $\mathcal{O}(\mathbb{N})$
- \iff pointed ω -continuous dcpo
- For \mathcal{N} -based spaces:

$$\begin{array}{rcl} \text{FPP} & \stackrel{???}{\longleftrightarrow} & \text{UFPP} \\ & \longleftrightarrow & \text{retract of } \mathcal{O}(\mathcal{N}) \\ & \longleftrightarrow & ??? \end{array}$$

FPP UF

UFPP

Classes of spaces

References

- Brattka and Gherardi, 2021. Completion of Choice. Ann. Pure Appl. Log. 172(3)
- Brattka, 2023. **The Discontinuity Problem**. J. Symb. Log. 88(3)
- de Brecht, Schröder, Selivanov, 2016. Base-complexity classification of qcb₀-spaces. Computability. 5(1):75-102
- Hoyrup, 2022. The fixed-point property for represented spaces. Ann. Pure Appl. Log. 173(5)
- Kreitz, Weihrauch, 1985. Theory of Representations. Theor. Comput. Sci. 38