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Abstract

In this article, we apply the techniques developed in our previous article “Local
generation of tilings”, in which we introduced two definitions capturing the intuitive
idea that some subshifts admit a procedure that can generate any tiling and working
in a local way. We classify all the Wang tilesets with two colors in which each tile has
an even number of each color.
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1 Introduction

In [FH24], we have introduced two classes of subshifts, L 0 ⊆ L 1, that are intended to
capture the intuitive idea that certain subshifts admit a procedure that can generate all
their tilings in a local way.

In the present article, we classify all the Wang tilesets consisting of bicolor tiles having
an even number of each color, according to these classes. Although there are 255 such
non-empty tilesets, their symmetries reduce that number to 36 equivalence classes. We
find that 13 of them belong to L 0, 8 do not belong to L 0 and 7 do not belong to L 1

(the other 8 equivalence classes of tilesets contain a tile that cannot be used in a tiling,
therefore they induce the same subshift as a smaller tileset). We conjecture that the 8
classes of tilesets that do not belong to L 0 do not belong to L 1 either.

The article is organized as follows. In Section 2, we recall the notions of local generations
introduced in [FH24]. Section 3 gathers the tilesets that do not belong to L 0. The tilesets
that do not belong to L 1 are presented in Section 4. In Section 5, we show that all the
other tilesets belong to L 0. Section 6 summarizes the results by listing all the equivalence
classes of even bicolor Wang tilesets, and their classification w.r.t. the classes L 0 and L 1.

2 Background

Let us first recall the classical definitions needed for this article.

2.1 Group actions

For d ≥ 1, (Zd,+, 0) is an abelian group. A Zd-action on a set E is a homomorphism
from Zd to the group of bijections from E to E with the composition operation. We also say
that E is a Zd-set. The result of applying the image of p ∈ Zd under the homomorphism
to e ∈ E is written as p · e ∈ E. A continuous Zd-action on a topological space X
is a homomorphism from Zd to the group of homeomorphisms from X to X with the
composition operation. We also say that X is a Zd-space. A Zd-space Y is a factor of
a Zd-space X if there exists a continuous surjective map f : X → Y that commutes with
the actions: p · f(x) = f(p ·x). f is called a factor map. If f is a homeomorphism, then f
is a conjugacy and X and Y are conjugate.
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A Ze-space Y is a weak factor of a Zd-space X if there exists a continuous surjective
map f : X → Y and a group homomorphism φ : Ze → Zd such that p · f(x) = f(φ(p) · x).
If f is a homeomorphism and φ an isomorphism, then X and Y are weakly conjugate
(see [FH24, Definition 3.2]).

2.2 Symbolic dynamics

If A is a finite alphabet and E is countable, then AE is endowed with the Cantor topology,
which is the product of the discrete topology on A. This makes AE a compact metrizable
space. The shift action on AZd

is the continuous Zd-action defined, for p ∈ Zd and x ∈
AZd

, by p · x = y where y(q) = x(p+ q). A Zd-subshift is a compact set X ⊆ AZd
which

is shift-invariant, i.e. satisfies σp(X) = X for all p ∈ Zd. A Zd-fullshift is AZd
for some

finite alphabet A. If H is a subgroup of Zd, then a configuration x ∈ AZd
is H-periodic

if x(p + h) = x(p) for all p ∈ Zd and h ∈ H. The H-periodic shift over Σ is the

subshift XH ⊆ ΣZd
defined as the set of all the H-periodic configurations.

Let d ≥ 1 and Σ a finite alphabet. We endow Zd with the metric d(p, q) = maxi |pi−qi|,
where p = (p1, . . . , pd) and q = (q1, . . . , qd). For F ⊆ Zd, diam(F ) = maxp,q∈F d(p, q), which
is ∞ if F is infinite. For F,G ⊆ Zd, d(F,G) = minp∈F,q∈G d(p, q). We will often consider
the cubes Sn = [0, n− 1]d and Qn = [−n, n]d, for n ∈ N.

Let F ⊆ Zd be any set. An F -pattern is an element π ∈ ΣF . A pattern is an F -
pattern for some F , which is called the domain of π and is denoted by dom(π). A
pattern π′ extends a pattern π if dom(π) ⊆ dom(π′) and π′(p) = π(p) for all p ∈ dom(π).
A finite pattern is an F -pattern for some finite F ⊆ Zd. If π, π′ are patterns with disjoint
domains F, F ′ respectively, then π∪π′ is the pattern with domain F∪F ′ extending π and π′.
A configuration is an element x ∈ ΣZd

.
If π is a pattern, then [π] is the set of configurations extending π. The set ΣZd

is
endowed with the topology generated by the sets [π] where π is a finite pattern. As already

mentioned, the space ΣZd
is endowed with the shift action, which is the continuous Zd-

action p · x = y where y(q) = x(p + q). We will often write σp(x) := p · x. The shift also
acts on patterns: if π is an F -pattern, then σp(π) is the F ′-pattern π′ where F ′ = F − p
and π′(q) = π(p + q) for q ∈ F ′. If p ∈ Zd and x is a configuration, then we say that a
pattern π appears at position p in x if σp(x) extends π.

A subshift is a closed subset X of ΣZd
which is shift-invariant, i.e. satisfies σp(X) =

X for all p ∈ Zd. We fix a subshift X ⊆ ΣZd
. All the subsequent notions are relative

to X, but we do not mention X which will always be clear from the context. A valid
configuration is an element x ∈ X. A valid pattern is a pattern appearing in some valid
configuration, at any position or equivalently at the origin. Two disjoint regions F,G ⊆ Zd

are independent if for every valid F -pattern π and every valid G-pattern π′, π ∪ π′ is
valid.

A subshift of finite type (SFT) is the subshift induced by a finite set P of finite
patterns, called forbidden patterns, and defined as the set of configurations in which no π ∈
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P appears. Let C be a finite set of colors. A Wang tile over C associates to each edge of
the unit square a color in C. A Wang tileset over C is a set T of Wang tiles over C. It
induces a Z2-subshift of finite type XT ⊆ TZ2

which is the set of configurations in which
neighbor cells have the same color on their common edge.

2.3 Dynamical properties

We recall classical dynamical properties of subshifts, that can be found in [Fur67] or [dV13].

Definition 2.1. A subshift X ⊆ ΣZd
is transitive if for every pair of valid finite pat-

terns π, π′, there exists p ∈ Zd such that π ∪ σp(π′) is a valid pattern; in other words, π
and π′ appear in a common configuration.

A subshift X ⊆ ΣZd
is strongly irreducible if there exists n ∈ N such that all

regions F,G ⊆ Zd satisfying d(F,G) ≥ n are independent.

A subshift X ⊆ ΣZd
is mixing if for every m ∈ N there exists n ∈ N such that all

regions F,G ⊆ Zd satisfying diam(F ) ≤ m,diam(G) ≤ m and d(F,G) ≥ n are independent.

A subshift X ⊆ ΣZd
is weakly mixing if X × X is transitive, equivalently if for

every n ∈ N, there exists p ∈ Zd such that Qn and p+Qn are independent.

The equivalent definition of weak mixing was proved in [FH24].
One has the following chain of implications:

strongly irreducible =⇒ mixing =⇒ weakly mixing =⇒ transitive.

2.4 Local generation

We recall the notions of local generation introduced in [FH24].

Definition 2.2 (The class L 0). Let d ≥ 1. We define L 0
d as the smallest class of subshifts

containing the Zd-fullshifts, the periodic Zd-shifts and the countable Zd-subshifts, and
which is closed under finite products and factors. Let L 0 =

⊔
d≥1 L 0

d .

Let A,B be finite alphabets, E,F be countable sets and f : AE → BF be continuous
w.r.t. the product topologies. To each q ∈ F is associated Wf (q) ⊆ E, which is the minimal
region on which the values of any x ∈ AE determine the value of f(x) at q.

Definition 2.3 (Narrow function). Let r ∈ N. A continuous function f : AE → BF is
r-narrow if for all q ∈ F , |Wf (q)| ≤ r. We say that f is narrow if it is r-narrow for
some r ∈ N.

Note that a function is 0-narrow if and only if it is constant. The identity f : AE → AE

is 1-narrow. The composition of two narrow functions is narrow.
We come to the second notion of local generation. Let Σ be finite and F be countable.
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Definition 2.4 (The class L 1). A compact set X ⊆ ΣF belongs to L 1 if it is a countable
union of images of narrow functions, i.e. X =

⋃
n∈NXn where Xn = im(fn) and fn : AN

n →
X is rn-narrow.

The second notion of local generation is a relaxation of the first one [FH24, Propositions
2.4 and 4.10].

Proposition 2.1. One has L 0 ⊊ L 1.

2.5 Symmetry group

We are going to analyze bicolor Wang tilesets. There are 24 = 16 possible tiles, so 216−1 =
65535 possible tilesets (excluding the empty tileset). We can reduce the number of cases
by observing that there is a group of order 32 acting on bicolor tilesets, such that two
tilesets that are equivalent under this group action induce weakly conjugate subshifts, so
we only need to consider one representative for each equivalence class. A computer program
shows that there are 2890 equivalence classes. This number is still large for a systematic
classification, so in this article we only consider the even bicolor tilesets, which only
use tiles having an even number of edges of each color. There are 8 even tiles, which we
draw using wires instead of colors for aesthetic reasons: , , , , , , , .
There 28 − 1 = 255 even non-empty tilesets, and a computation shows that there are 36
equivalence classes under the symmetry group action.

Let us describe the symmetry group. It contains:

• Eight geometric transformations:

– Rotations by 0, 90, 180 or 270 degrees,

– Reflections accross the horizontal, vertical or one of the diagonal axes,

• Chromatic transformations:

– Complementation of the colors on the horizontal edges, or on the vertical edges,
or both,

• Combinaison of a geometric and a chromatic transformation.

The geometric transformations are elements of the dihedral group D4, which is the
symmetry group of the square. The chromatic transformations are elements of the Klein
group K4 = Z/2Z × Z/2Z. These two types of transformations do not commute, but K4

is a normal subgroup of G so G is a semidirect product K4 ⋊ϕ D4 for some homomor-
phism ϕ : D4 → Aut(K4), therefore G has order |D4| × |K4| = 8 × 4 = 32. The ho-
momorphism ϕ sends the rotation by 90 degrees to the permutation between horizontal
and vertical color complementations, and sends reflections to the identity. It corresponds
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to the fact that a rotation followed by a horizontal color complementation equals a ver-
tical color complementation followed by the rotation, and that a reflection and a color
complementation commute.

Proposition 2.2. For every bicolor tileset T and every g ∈ G, T and g · T induce weakly
conjugate subshifts.

Proof. Each geometric g transformation induces a geometric equivalence as in Example
3.2 in [FH24]. Each chromatic transformation induces a conjugacy. These two types of
transformations generate the group and weak conjugacy between subshifts is transitive, so
every group element induces a weak conjugacy between subshifts.

3 Subshifts that do not belong to L 0

We first recall the main technique developed in [FH24] to show that a two-dimensional
subshift does not belong to L 0, and then apply it to the even bicolor tilesets.

3.1 Ramified subshift

We recall the following notions introduced in [FH24], where they are discussed in more
details.

If F ⊆ Z2 and r ∈ N, then let N (F, r) = {p : ∃q ∈ F, d(p, q) ≤ r} be the r-neighborhood
of F .

Definition 3.1 (Graft). LetX be a Z2-subshift, F ⊆ Z2, π an F -pattern, x ∈ X and r ∈ N.
We say that π can be r-grafted into x at position p ∈ Z2 if there exists y ∈ X
that coincides with x outside N (p + F, r) and such that π appears at position p in y,
i.e. y(p+ q) = π(q) for q ∈ F .

Definition 3.2 (Ramification). Let X be a Z2-subshift. A ramification is a configura-
tion x ∈ X together with r ∈ N, u, v ∈ Z2 and F ⊆ Z2 such that for all λ, µ ∈ Z with µ > 0,
the F -pattern appearing at position µu+λv in x cannot be r-grafted into x at position λv.
We say that x is an (r, v)-ramification.

Say that two vectors v1, v2 ∈ Z2 are independent if λ1v1+λ2v2 = 0 implies λ1 = λ2 =
0, for λ1, λ2 ∈ Z.

Definition 3.3 (Ramified subshift). A Z2-subshift X is ramified if for every r ∈ N there
exist infinitely many pairwise independent vectors v such that X admits a ramification of
radius r and support v.

If r < r′, then an (r′, v)-ramification is also an (r, v)-ramification so, in order to show
that X is ramified, it is sufficient to build a sequence (vr)r∈N of pairwise independent
vectors such that X admits an (r, vr)-ramification for each r.
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Remark 3.1 (Subshift of a ramified subshift). As observed in [FH24, Remark 5.1] if T is
a Wang tileset and XT has ramifications that can all be built using a proper subset of
tiles R ⊊ T , then for each tileset S such that R ⊆ S ⊆ T , XS is ramified as well.

If a subshift is ramified, then it is not strongly irreducible. Actually, showing the lack
of strong irreducibility will always be the first step when building ramifications.

The main technique to prove that a subshift is not in L 0 is Theorem 5.1 in [FH24].

Theorem 3.1 (An obstruction to being in L 0). Let X be a Z2-subshift. If X is ramified
and weakly mixing, then X /∈ L 0.

3.2 Applications

There are exactly 8 equivalence classes of even bicolor tilesets to which Theorem 3.1 can
be applied.

Theorem 3.2. The subshifts induced by the following tilesets are ramified and mixing,
therefore do not belong to L 0:

T1 = (Class 6.4.7)

T2 = (Class 6.5.3)

T3 = (Class 6.5.5)

T4 = (Class 6.5.6)

T5 = (Class 6.6.2)

T6 = (Class 6.6.3)

T7 = (Class 6.6.4)

T8 = (Class 6.7.1)

We do not know whether these subshifts belong to L 1 and leave it as an open question
(see Section 4 for further discussion).

We do not need a specific argument for each one of the 8 tilesets listed above, but an
argument for the 2 tilesets T4 and T7 containing the corners , , and , and an
argument for the other 6.

3.3 First case: all the corners

We prove Theorem 3.2 for the following tilesets:

T4 = (Class 6.5.6)

T7 = (Class 6.6.4)
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We start by showing that the subshift XT7 is ramified.
First, XT7 is not strongly irreducible: a diagonal Dr := {(x, x) : 0 ≤ x ≤ r} filled with

the tile entirely determines the lower triangle {(x, y) : 0 ≤ x ≤ r, 0 ≤ y ≤ x} and in
particular the cell Cr := (r, 0) (see Figure 1). Therefore, Dr and Cr are not independent
and d(Dr, Cr) = ⌈ r2⌉ can be arbitrarily large.

Figure 1: XT7 is not strongly irreducible: the purple and green regions are not independent,
and can be taken arbitrarily far from each other.

We then create ramifications illustrated in Figure 2, showing that XT7 is ramified. It
is clear from the picture that (r, v)-ramifications can be built for any r and any v = (n, 1)
if n is sufficiently large. We assume that the picture is self-explanatory and does not need
a formal argument.

These ramifications do not use the tile , i.e. belong to XT4 which is therefore ramified
as well by Remark 3.1.

Figure 2: A ramification in XT4 and XT7 : the content of a red cell cannot be grafted in a
green cell without changing the content of the corresponding purple region. The distance r
between the purple and green regions can be made arbitrary large by increasing the number
of stairs. The vector v between two consecutive green cells can take value (n, 1) for any
sufficiently large n. One has u = (0,−1) and F = {(0, 0)}

We now prove that both subshifts are mixing, by showing that any finite pattern can
be extended to a finite pattern with white boundary.

Lemma 3.1. For both T4 and T7, any valid pattern on [0, n − 1]2 can be extended to a
valid pattern on [−2n, 2n− 1]2 whose boundary is completely white.
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Proof. Let us first show the result for XT4 . Let π be a valid [0, n − 1]2-pattern. We first
extend π to a valid [0, 2n− 1]2-pattern whose right and upper boundaries are white.

Let u0 ∈ {0, 1}n be the upper boundary of π. We inductively define ui, . . . , un ∈ {0, 1}n
as follows. Let i < n and assume that ui has been defined. Decompose ui as a concatenation
of the strings 11, 01 and 0, with possibly a single string 1 at the beginning, and note
that the decomposition is unique because these strings are not suffixes of each other, so
starting from the end of ui, the choice is alway unique. Then define ui+1 from ui by
replacing 11 with 00, 01 with 10, 0 with 0, and the possible 1 at the beginning with 0.
Several observations can be made: the string 11 can appear only in u0; the position of the
rightmost 1 in ui is strictly increasing in i, so un = 0n.

We can define a [0, n − 1] × [n, 2n − 1]-pattern whose lower boundary is u0, such that
row n+i has lower boundary ui and upper boundary ui+1 (in particular the upper boundary
of the pattern is un, i.e. it is white), and whose right boundary is white (see Figure 3).

1 1

0 0

0 1

1 0

0

0

1

0

Figure 3: Filling the row between ui and ui+1.

In the same way, we can define a [n, 2n− 1]× [0, n− 1]-pattern whose left-boundary is
the right-boundary of π and whose right and upper boundaries are white (apply the same
technique up to a symmetry accross the diagonal).

Then fill the rectangle [n, 2n − 1]2 with white tiles. We obtain a [0, 2n − 1]2-pattern
extending π, whose right and upper boundaries are white. We then copy symmetric versions
of this pattern to fill [−2n, 2n − 1]2 (see Figure 4), which is possible because applying a
symmetry to each tile yields a tile that belongs to the tileset.

π = P PP

PP

Figure 4: Extending π.

Observe that the same construction can be applied to XT7 , because T7 contains T4 and
has the same symmetries.

Finally, the following argument applies to bothXT4 andXT7 . Form ∈ N, let n = 4m+1.
Let F,G ⊆ Z2 be squares of side length m satisfying d(F,G) ≥ n. If π, π′ are valid
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patterns on F and G respectively, then by Lemma 3.1 they can be extended on the larger
squares N (F, 2m) and N (G, 2m) to valid patterns with white boundaries. These larger
squares are disjoint, so one can fill the rest of the plane with white cells, yielding a valid
configuration and shows that F and G are independent. Therefore, both tilesets are mixing.

3.4 Second case: missing corners

We now prove Theorem 3.2 for the other tilesets:

T1 = (Class 6.4.7)

T2 = (Class 6.5.3)

T3 = (Class 6.5.5)

T5 = (Class 6.6.2)

T6 = (Class 6.6.3)

T8 = (Class 6.7.1)

Note that all these tilesets contain T1 and are contained in T8.
Figure 5 illustrates that XT8 is not strongly irreducible. The only tile having a black

left edge and a white upper edge is , therefore a diagonal made of this tile forces the
lower triangle to be filled with the same tile.

Figure 5: The subshifts are not strongly irreducible: the purple diagonal and the green cell
are not independent.

This lack of strong irreducibility can be turned into ramifications, illustrated in Figure
6. These ramifications only use the tiles from T1, so all the tilesets are ramified by Remark
3.1.

We finally show that all these tilesets induce mixing subshifts. We need two different
arguments, depending on whether the tilesets contain , presented as Lemmas 3.2 and
3.3 below.

Lemma 3.2. The tilesets T1 = and T3 = induce mixing
subshifts.

Proof. Let Sn = [0, n− 1]2. We show that if |p| ≥ 7n, then Sn and p+Sn are independent.
Let p = (i, j), there are two cases: either |j| ≥ 3n or |j| < 3n. The argument is illustrated
in Figure 7.
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Figure 6: A ramification: the content of a red cell cannot be grafted in a green cell without
changing the content of the corresponding purple region. The distance r between the
purple and green regions can be made arbitrary large by increasing the number of stairs.
The vector v between two consecutive green cells can take value (n, 1) for any sufficiently
large n. One has u = (0,−1) and F = {(0, 0)}

π

(a) Horizontal extension

π

(b) Diagonal extension

Figure 7: Extending a pattern π from a square to an infinite strip with white boundaries

First assume that |j| ≥ 3n, i.e. p+Sn is vertically far from Sn. Any valid Sn-pattern π
can be extended to a valid pattern on the horizontal strip Z × [−n, 2n − 1] whose upper
and lower boundaries are white (see Figure 7a). An important point is that the two tilesets
considered here do not allow two adjacent horizontal edges to be black, because there is
no way of placing matching tiles above them. Therefore, the upper and lower boundaries
of π cannot contain two consecutive black edges, which enables one to make stairs grow
out of these boundaries. Therefore, any valid pattern π′ on p + Sn can be extended to
a valid pattern on Z × [j − n, j + 2n − 1] in a similar way. As |j| ≥ 3n, these strips are
disjoint and we can fill the other cells with the white tile, yielding a valid configuration
extending π ∪ π′, so Sn and p+ Sn are independent.

Now assume that |j| < 3n, which implies |i−j| ≥ |i|−|j| > 4n. Any valid Sn-pattern π
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can be extended to a valid pattern on the diagonal strip D = {(k, l) : |k − l| ≤ 2n} with
white boundaries (see Figure 7b). Therefore, any valid pattern π′ on p+Sn can be extended
to a valid pattern on p +D = {(k, l) : |k − i − l + j| ≤ 2n}. The strips D and p +D are
disjoint, because 4n < |i − j| ≤ |(k − i) − (l − j)| + |k − l|, so (k, l) cannot belong both
to D and p+D. Again, one can fill all the other cells with the white tile, yielding a valid
extension of π ∪ π′, so Sn and p+ Sn are independent.

Note that the extensions do not use the tile , so they apply to both tilesets.

We now give an argument for the tilesets containing .

Lemma 3.3. If a bicolor tileset contains T2 = , then it induces a mixing
subshift.

Proof. Let again Sn = [0, n−1]2. We show that if |p| ≥ 3n, then Sn and Sn are independent.
Let p = (i, j), there are two cases: |i| ≥ 3n or |j| ≥ 3n. The argument is illustrated in
Figure 8.

π

(a) Horizontal extension

π

(b) Vertical extension

Figure 8: Extending a pattern π from a square to an infinite strip with white boundaries

First assume that |j| ≥ 3n, i.e. that p+Sn is vertically far from Sn. A valid Sn-pattern π
can be first extended using T2 to a valid pattern on [0, n− 1]× [−n, 2n− 1]-pattern whose
upper and lower boundaries are white, and then extended using T2 to a valid pattern on the
horizontal strip Z× [−n, 2n− 1] whose upper and lower boundaries are white (see Figure
8a. Therefore, Sn and p + Sn are independent because valid patterns on these squares
can be extended to valid patterns on two disjoint horizontal strips, which can be jointly
extended by using the white tile on the other cells.

Now assume that |i| ≥ 3n, i.e. p + Sn is horizontally far from Sn. A symmetric con-
struction can be made to extend a valid Sn-pattern to a valid pattern on the vertical
strip [−n, 2n − 1] × Z with white left and right boundaries (consider a symmetry across
the diagonal and note that it preserves T2, see Figure 8b), so the same argument shows
that Sn and p+ Sn are independent.

13



4 Subshifts that do not belong to L 1

The main technique to prove that a subshift does not belong to L 1 is Theorem 6.1 from
[FH24]. It involves Z, which is the one-dimensional SFT on the alphabet { , } with
forbidden pattern .

Theorem 4.1 (An obstruction to being in L 1). Let X be a Zd-subshift. If X is weakly
mixing and Z is a weak factor of X, then X /∈ L 1.

Among the 36 equivalence classes of even bicolor tilesets, there are exactly 6 classes to
which Theorem 4.1 can be applied, and therefore do not belong to L 1. There is a 7th even
bicolor tileset to which Theorem 4.1 cannot be applied because it is not weakly mixing,
but which is not in L 1 by a similar argument (see below).

In Theorem 3.2 we identified tilesets that do not belong to L 0. We expect that they do
not belong to L 1 either, but have not been able to prove it so far. The technique used in
this section, namely Theorem 4.1, cannot be applied to them because they are all mixing
and Proposition 3.4 in [FH24] prevents Z from being a weak factor of a mixing subshift,
because Z is neither periodic nor mixing.

Theorem 4.2. The subshifts induced by the following tilesets are weakly mixing and weak
factor to Z; therefore, they do not belong to L 1:

T1 = (Class 6.4.2)

T2 = (Class 6.4.4)

T3 = (Class 6.5.1)

T4 = (Class 6.5.2)

T5 = (Class 6.5.4)

T6 = (Class 6.6.1)

The subshift induced by the following tileset does not belong to L 1:

T7 = (Class 6.4.3)

The proof is separated in several statements.

Lemma 4.1. The subshifts induced by tilesets T1 to T7 weak factor to Z.

Proof. Let T be one of those tilesets except T5. Let f : XT → { , }Z extract the first
row of a configuration and replace the tiles and by and the other tiles by (note
that T2 and T7 do not contain , in which case only is replaced by ). Let φ : Z → Z2

be the homomorphism sending p to (p, 0). One has σp ◦ f = f ◦σφ(p), so f is a weak factor
map. Its image is contained in XZ because the only tiles in T that can be put at the left
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of or is one of these two tiles, so in the output of f , the only tile that can be appear
on the left of the white tile is the white tile. Finally, f is surjective because there exists a
configuration in XT whose first row is:

or

and the image of such a configuration has a dense orbit in XZ (the first picture applies to
any T except T7, to which the second picture applies).

Let now T = T5. Let f : XT → { , }Z extract the diagonal and replace any non-
white tile by . Let φ : Z → Z2 send p to (p, p). One has σp ◦ f = f ◦ σφ(p) so f
is a weak factor map. Its image is contained in XZ, because one easily checks that in
a configuration x ∈ XT , if the white appears at position (p, p) then it also appears at
position (p− 1, p− 1), so f does not produce the forbidden pattern. Finally f is surjective
because XT contains the following configuration:

We now prove that T1, T3, T4 and T6 induce weakly mixing subshifts, because they
contain T1.

Lemma 4.2. Any bicolor tileset that contains T1 = induces a weakly mixing
subshift.

Proof. Any valid Sn-pattern can be extended to a valid pattern on [−n,+∞)2 \ [n,+∞)2

whose boundary is white, as illustrated in Figure 9. Let π and π′ be valid patterns on Sn

π

Figure 9: Extending a pattern π from Sn to [−n,+∞)2 \ [n,+∞)2.

and (2n, 2n) + Sn respectively. They can be extended to valid pattern ξ and ξ′ on the
disjoint regions [−n,+∞)2 \ [n,+∞)2 and [n,+∞)2 \ [3m,+∞)2 respectively, which have
white boundaries. The rest of the plane can be filled with white tiles, yielding a valid
configuration extending π and π′. Therefore, Sn and (2n, 2n) + Sn are independent.
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We briefly explain why T2 and T5 induce weakly mixing subshifts.
For T2 = , we claim that the lower half-plane A := Z × (−∞, 0] and the

upper half-plane B := Z × [3,+∞) are independent. Any valid pattern on either of these
regions has a boundary which contains at most one black edge. It can be extended to the
next row so that the extended pattern has a white boundary. The two extended patterns
match and cover Z2, yielding a common valid extension of the original patterns. It implies
that Sm and (0,m+2)+Sm are independent, because they are contained in (0,m− 1)+A
and (0,m− 1) +B respectively.

For T5 = , we claim that the lower-right half-plane A := {(i, j) : j ≤ i}
and the upper-left half-plane B := {(i, j) : j ≥ i+ 5} are independent. Any valid pattern
on A can be extended to a valid pattern on {(i, j) : j ≤ i + 2} with a white boundary,
using only the tiles , and . By symmetry of the tileset and of A and B across the
diagonal, any valid pattern on B can be extended to a valid pattern on {(i, j) : j ≥ i+ 3}
with a white boundary. These two patterns match and cover Z2, yielding a common valid
extension of the original patterns. It implies that Sm and (0, 2m+3)+Sm are independent,
because they are contained in (0,m− 1) +A and (0,m− 1) +B respectively.

The subshift induced by T7 = is not weakly mixing. We do not prove it
because we do not need it, but the problem is that in a valid configuration, either all the
occurrences of appear in even cells and all the occurrences of appear odd cells, or
the converse holds (the parity of a cell (i, j) is i+ j mod 2). Therefore, two different cells
are never independent.

However, XT7 weak factors to a Z2-subshift Y which is weakly mixing, and weak factors
to Z as well.

We could prove the result directly with the subshift X induced by T7, but it is much
easier to understand the argument on the following subshift Z which is conjugate to X. Z
is a subshift on { , } which has the white configuration, the black configuration and for
each sequence (nj)j∈Z satisfying |nj+1−nj | = 1, the configuration whose cell (i, j) is white
if i < nj and black otherwise. In other words, Z is the two-dimensional SFT on {0, 1} with
forbidden patterns 1 0 , 1 1

0 0 ,
0 0
1 1 and 0 1

0 1 , and a typical configuration is a zigzag separating
a black region on the right from a white region on the left. The conjugacy map F : Z → X
intuitively replaces each black square by a black boundary and shifts the configuration
by (12 ,

1
2). More formally, the rule underlying F is shown in Figure 10. We let the reader

a b

cd

a ∨ b

b
∨
c

c ∨ d

d
∨
a

Figure 10: A tile in T7 is determined by the 4 input bits assigned to its corners

check that this rule is correct, i.e. only outputs tiles in T7.
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As XT7 , Z is not weakly mixing. However, it weak factors to a weakly mixing Z2-
subshift Z0which itself weak factors to Z.

Let Z0 be obtained as Z, but using sequence (nj)j∈Z satisfying the relaxed condi-
tion |nj+1 − nj | ≤ 1. The weak factor map : Z → Z0 converts a sequence (nj)j∈Z to the
sequence n′

j = ⌊n2j

2 ⌋, and the homomorphism is φ(p) = 2p.

As in Lemma 4.1 the function g : Z0 → Z that extracts the first row is a weak factor
map via φ(p) = (p, 0).

Z0 is weakly mixing because Sm and (0, 2m − 1) + Sm are independent. If π and ξ
are valid patterns on these two regions and a ∈ [0,m] is the first positions of a black tile
on row m − 1 in π (a = m if there is no black tile) and b ∈ [0,m] is the first position
of a black tile on row 2m − 1 of ξ (b = m if there is no black tile), then we can define a
sequence ni for m − 1 ≤ i ≤ 2m − 1 with nm−1 = a, n2m− 1 = b and |ni+1 − ni| ≤ 1
for m − 1 ≤ i < 2m − 1, simply because |b − a| ≤ m = (2m − 1) − (m − 1). From this
sequence we can build a valid extension of π ∪ ξ.

5 Subshifts that belong to L 0

We now present the even bicolor tilesets that belong to L 0. We only give details for the
more difficult cases. The simpler ones will be briefly described in Section 6. For instance,
we will see that all the even bicolor tilesets of size at most 3 induce subshifts that belong
to L 0 (when they are non-empty).

We first recall Theorem 7.1 from [FH24], which will help establishing the results.

Theorem 5.1 (L 0 and higher power presentations). Let a ∈ Zd have positive coordinates
and X be a Zd-subshift. One has

X ∈ L 0 ⇐⇒ [X]a ∈ L 0.

5.1 Corners and 2 even tiles

There are two equivalence classes of tilesets consisting of the 4 corners and 2 even tiles. We
saw one of them (Class 6.6.4) in Theorem 3.2 where we showed that the induced subshift
is not in L 0. On the contrary, the other class induces a subshift in L 0. A representative
is shown in Figure 11 (Class 6.6.5).

Figure 11: The corners and 2 even tiles

Let T be the complete even bicolor tileset and let F : {0, 1}Z2 → XT be the factor map
from Section 7.3.1 in [FH24] (assign the input bits to the points of the grid, and if bits a
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and b are are assigned to the endpoints of an edge, then assign color a+ b mod 2 to that
edge). Let S ⊆ T be the tileset shown in Figure 11. Observe that it is obtained from T
by removing the tiles whose horizontal edges are both black. Therefore, XS is the image
by F of the SFT X ⊆ {0, 1}Z2

with 4 forbidden patterns a b
c d with a ̸= b and c ̸= d.

We show that X ∈ L 0, which implies that XS ∈ L 0 as XS is a factor of X. We define
a continuous function G : {0, 1}Z2 → X, which leaves every valid configuration unchanged,
and corrects the invalid ones (G is a retraction). The function G applies local rules that
are periodic with periods (4, 0) and (0, 5), so the (4, 5)-higher power presentation of X is a
factor of the (4, 5)-higher power presentation of the fullshift, which is a fullshift, implying
that X ∈ L 0 (Theorem 5.1).

Let R = [0, 4]× [0, 5] and ∂R = ({0, 4} × [0, 5]) ∪ ([0, 4]× {0, 5}) be its boundary. The
function G works in two steps, i.e., G is a composition G = G2 ◦G1:

1. First step: G1 replaces, at every position p = (4x, 5y), a possible pattern
b c
a a a a a

d e

with b ̸= c or d ̸= e by the pattern
b c
a a a a a

d e
(the box indicates the origin position

in the pattern, and a = 1− a),

2. Second step: G2 replaces, at every position p = (4x, 5y), a possible R-pattern π con-
taining a forbidden pattern, by a valid pattern that coincides with π on its bound-
ary ∂R.

The next result implies that G does not affect the valid configurations.

Lemma 5.1. The patterns
b c
a a a a a

d e
with b ̸= c or d ̸= e are invalid.

Proof. Assume that c ̸= b, the case e ̸= d is symmetric. For any pattern
x0 x1 x2 x3 x4

a a a a a

with x0 = b and x4 = c, there exists i < 4 such that xi ̸= xi+1, so it contains a forbidden
pattern xi xi+1

a a or xi xi+1

a a .

We now show that G2 is well-defined.

Lemma 5.2. Let π be an R-pattern such that no pattern b b
a a a a a appears in π at posi-

tion (0, 0) and no pattern
a a a a a

d d
appears in π at position (0, 5).

There exists a valid R-pattern π′ that coincides with π on its boundary ∂R.

Proof. For j ∈ {1, 2, 3}, let sj and tj be the starting symbol and ending symbol of row
number j in π. The row number j of π′ will be made of a block of sj ’s followed by a
block of tj ’s. We need to choose where the transition occurs (if sj = tj , then there is no
transition and the row is constant).

For j = 1, we choose a transition to avoid forbidden patterns in [0, 4]×[0, 1]: either s1 =
t1, in which case row 1 is constant and no forbidden pattern can appear, or s1 ̸= t1, in
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which case the assumption implies that there exists i < 4 such that π(i, 0) = π(i + 1, 0).
We then make the transition happen between i and i+ 1, i.e. the row 1 of π′ is si+1

i t4−i
i .

For j = 3, we apply a symmetric argument to avoid forbidden patterns in [0, 4]× [4, 5].
We finally fill row j = 2. If s2 = t2 then again, row 2 is constant. If s2 ̸= t2, then

we need to make the transition happen at a position which is different from the possible
transitions occurring in rows 1 and 3. It is always possible, because there are 3 possible
positions.

After applying G, the R-patterns appearing at positions (4x, 5y) contain no forbidden
pattern. In Z2, any 2 × 2 square is contained in some block (4x, 5y) + R because they
overlap, so the configuration G(x) does not contain any forbidden pattern.

A configuration obtained by applying this local generation procedure to a random grid
of bits is shown in Figure 12.

Figure 12: A random tiling using the even bicolor tiles except and

5.2 Corners and 3 even tiles

The tileset S containing all the even tiles except the black tile (Figure 13, Class 6.7.2),
induces a subshift that belongs to L 0:

Figure 13: The corners and 3 even tiles

As in the previous section, let T be the tileset containing all the even bicolor tiles.
Let R = [0, 2] × [0, 3] and [XS ](2,3) the (2, 3)-higher power presentation of XS . It turns
out that all the boundaries of the valid R-patterns from XT , which are exactly the ones
in which the black color appears an even number of times, are also boundaries of valid R-
patterns from XS . In other words, it is possible to change the content of an R-pattern
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from XT so that the new pattern has the same boundary, and does not contain the black
tile (see Lemma 5.3 below). Therefore, [XS ](2,3) is a factor of [XT ](2,3), with a factor

map that replaces each R-pattern containing by an R-pattern with the same boundary
and without the forbidden tile. Therefore, one has:

XT ∈ L 0 =⇒ [XT ](2,3) ∈ L 0 =⇒ [XS ](2,3) ∈ L 0 =⇒ XS ∈ L 0.

Lemma 5.3. Every R-pattern made of even bicolor tiles has the same boundary as a R-
pattern made of even bicolor tiles and avoiding the black tile .

Proof. As explained in Section 5.1, an R-pattern from the even tileset can be obtained
by assigning bits to the corners, which form a 4 × 5 grid. The tile corresponds to the
patterns 0 1

1 0 and 1 0
0 1 . There is a way to correct a 4 × 5 grid filled with bits in order to

remove these patterns while leaving the bits on the boundary unchanged, as illustrated in
Figure 14. The idea is that after correction, each 2 × 2 square will contain 2 horizontally
or vertically adjacent cells with the same bit. The corresponding R-pattern made of even
tiles will then have the same boundary as the original one and will not contain the tile .

Figure 14: Correction rule: copying the content of boundary cells to inner cells, as indicated
by the arrows, removes the forbidden patterns 0 1

1 0 and 1 0
0 1 .

A configuration obtained by applying the local generation procedure to a random grid
of bits is shown in Figure 15.

6 Classification of the even bicolor tilesets

We summarize the classification of the even bicolor tilesets.
We recall that there are 36 equivalence classes of such tilesets under the symmetry

group action, that 8 of them are not minimal, i.e. induce the same subshift as smaller
tileset, so only 28 equivalence classes of tilesets need to be considered. Table 1 shows a
tileset for each one of these 28 equivalence classes. Table 2 shows the 8 equivalence classes
of non-minimal tilesets, with one tileset per class.

For the subshifts that do not belong to L 0, we do not know whether they belong to L 1,
although we expect that it is not the case.
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Figure 15: A random tiling with the even bicolor tiles except

In L 0 Not in L 0 (not in L 1?) Not in L 1

Table 1: Classification of the even bicolor tilesets

In order to organize the classification, we will indicate the number of corner tiles of a
tileset, which are the tiles , , and . Note that this set of tiles is invariant under
all the symmetries, so the number of corners in a tileset is invariant under the equivalence
relation.
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Empty subshift Unused tile

Table 2: The other even bicolor tilesets

6.1 Even tilesets of size 1

There are 8 even tilesets of size 1, divided in 2 equivalence classes.

6.1.1 No corner

In L 0. There is one constant tiling.

6.1.2 One corner

There is no tiling.

6.2 Even tilesets of size 2

There are
(
8
2

)
= 28 even tilesets of size 2, divided in 5 equivalence classes.

6.2.1 No corner (first case)

In L 0. There are 2 tilings. It is conjugate to {0, 1} with the trivial action (i, j) · x = x.

6.2.2 No corner (second case)

In L 0. A configuration using the first tileset is a configuration of the Z-fullshift over {0, 1},
copied on each row. It is therefore conjugate to {0, 1}Z2/(0,1)Z.
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6.2.3 One corner + one even tile

In L 0. The corner cannot be used, the induced subshifts are the same as in Class 6.1.1.

6.2.4 Two opposite corners

In L 0. There are 2 configurations, the subshift is conjugate to Z2/H where H = {(x, y) ∈
Z2 : x+ y = 0 mod 2}, equivalently to {0, 1} with the action (i, j) · a = a+ i+ j mod 2.

6.2.5 Two adjacent corners

There is no tiling.

6.3 Even tilesets of size 3

There are
(
8
3

)
= 56 even tilesets of size 3, divided in 6 equivalence classes.

6.3.1 No corner

In L 0. The subshift is the union of two subshifts from Class 6.2.2.

6.3.2 One corner + two even tiles (first case)

In L 0. The subshift is countable: it contains the two uniform configurations made of
or and each other configuration is completely determined by one position of the tile .
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6.3.3 One corner + two even tiles (second case)

In L 0. The corner cannot be used, the induced subshifts are the same as in Class 6.2.2.

6.3.4 Two adjacent corners + one even tile

In L 0. The corners cannot be used, the induced subshifts are the same as in Class 6.1.1.

6.3.5 Two opposite corners + one even tile

In L 0. The configurations using the first tileset are (1,−1)-periodic, and the subshift is a
factor of the (1,−1)-periodic shift P over {0, 1}. The map f : P → X works in two steps.
First, the function f1 : P → P removes the pattern 11. It is defined by f1(x)i,j = 1 ⇐⇒
xi−1,jxi,j = 01. f1 is a factor map and im(f1) is the set of (1,−1)-periodic configurations
avoiding the pattern 11. Next, f2 : im(f1) → X assigns color xi,j to the left edge of
cell (i, j), which uniquely determines the configuration. The composition f = f2 ◦ f1 is the
sought factor map.

6.3.6 Three corners

In L 0. Only the two opposite corners can be used, the induced subshifts are the same as
in Class 6.2.4.

6.4 Even tilesets of size 4

There are
(
8
4

)
= 70 even tilesets of size 4, divided in 9 equivalence classes.
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6.4.1 No corner

In L 0. This tileset is the set of all tiles whose opposite edges have the same color. There
is a conjugacy f : {0, 1}Z2/(1,0)Z × {0, 1}Z2/(0,1)Z → X. On input (x, y), each cell (i, j) is
assigned color xi,j to its left and right edge and yi,j to its lower and upper edge. Note
that xi,j only depends on j and yi,j only depends on i.

6.4.2 One corner + three even tiles

Not in L 1 (Theorem 4.2)

6.4.3 Two adjacents corners + two even tiles (first case)

Not in L 1 (Theorem 4.2).

6.4.4 Two adjacent corners + two even tiles (second case)

Not in L 1 (Theorem 4.2).

6.4.5 Two adjacent corners + two even tiles (third case)

In L 0. The corners cannot be used, the induced subshifts are the same as in Class 6.2.2.
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6.4.6 Two opposite corners + two even tiles (first case)

In L 0. Let X be induced by the first tileset. Its configurations are (1, 1)-periodic and it
is a factor of the (1, 1)-periodic shift on {0, 1}. The factor map f : {0, 1}Z2/(1,1)Z → X on
input x assigns color xi,j to the left edge of cell (i, j), which uniquely determines the tiles.

6.4.7 Two opposite corners + two even tiles (second case)

Not in L 0 (Theorem 3.2).

6.4.8 Three corners + one even tile

In L 0. Only the two opposite corners can be used, the induced subshifts are the same as
in Class 6.3.5.

6.4.9 Four corners

In L 0 (Section 7.3.2 in [FH24]).

6.5 Even tilesets of size 5

There are
(
8
5

)
= 56 even tilesets of size 5, divided in 6 equivalence classes.

6.5.1 One corner + four even tiles

Not in L 1 (Theorem 4.2).
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6.5.2 Two adjacent corners + three even tiles

Not in L 1 (Theorem 4.2).

6.5.3 Two opposite corners + three even tiles

Not in L 0 (Theorem 3.2).

6.5.4 Three corners + two even tiles (first case)

Not in L 1 (Theorem 4.2).

6.5.5 Three corners + two even tiles (second case)

Not in L 0 (Theorem 3.2).
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6.5.6 Four corners + one even tile

Not in L 0 (Theorem 3.2).

6.6 Even tilesets of size 6

There are
(
8
6

)
= 28 even tilesets of size 6, divided in 5 equivalence classes.

6.6.1 Two adjacent corners + four even tiles

Not in L 1 (Theorem 4.2).

6.6.2 Two opposite corners + four even tiles

Not in L 0 (Theorem 3.2).

6.6.3 Three corners + three even tiles

Not in L 0 (Theorem 3.2).
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6.6.4 Four corners + two even tiles (first case)

Not in L 0 (Theorem 3.2).

6.6.5 Four corners + two even tiles (second case)

In L 0 (Section 5.2).

6.7 Even tilesets of size 7

There are
(
8
7

)
= 8 even tilesets of size 7, divided in 2 equivalence classes.

6.7.1 Three corners + four even tiles

Not in L 0 (Theorem 3.2).

6.7.2 Four corners + three even tiles

In L 0 (Section 5.2).

6.8 Even tileset of size 8

There is 1 even tileset of size 8.
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6.8.1 All the even tiles

In L 0 (Section 7.3.1 in [FH24]).
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