Products do not preserve computable type

Djamel Eddine Amir, Mathieu Hoyrup

Inria, Loria Nancy (France)

Computability in Europe 2023

Computability of compact sets

- A compact set $K\subseteq \mathbb{R}^n$ is:
 - Computable if the set of rational balls intersecting K is decidable,
 - Semicomputable if the set of rational balls that are disjoint from K is recursively enumerable (r.e.).

Computability of compact sets

A compact set $K\subseteq \mathbb{R}^n$ is:

- Computable if the set of rational balls intersecting K is decidable,
- Semicomputable if the set of rational balls that are disjoint from K is recursively enumerable (r.e.).

Example

There is a semicomputable disk in \mathbb{R}^2 which is not computable. Center (0,0), radius $1 - \sum_{n \in \text{halting set}} 2^{-n}$.

Computability of compact sets

A compact set $K\subseteq \mathbb{R}^n$ is:

- Computable if the set of rational balls intersecting K is decidable,
- Semicomputable if the set of rational balls that are disjoint from K is recursively enumerable (r.e.).

Example

There is a semicomputable disk in \mathbb{R}^2 which is not computable. Center (0,0), radius $1 - \sum_{n \in \text{halting set}} 2^{-n}$.

Question

Is there a semicomputable *circle* which is not computable?

Spheres

Theorem ([Miller 2002])

If $X \subseteq \mathbb{R}^m$ is homeomorphic to the *n*-dimensional sphere \mathbb{S}_n , then

X is semicomputable \iff X is computable.

Manifolds

Theorem ([Iljazović 2013]) If $X \subseteq \mathbb{R}^m$ is a closed manifold, then

 $X \text{ is semicomputable } \iff X \text{ is computable.}$

Definition

A compact space X has **computable type** if for every set $K \subseteq \mathbb{R}^m$ that is homeomorphic to X,

K is semicomputable $\iff K$ is computable.

Let X be a finite simplicial complex.

Theorem (Amir, H, 2022)

Let X be a finite simplicial complex.

Theorem (Amir, H, 2022)

Let X be a finite simplicial complex.

Theorem (Amir, H, 2022)

Let X be a finite simplicial complex.

Theorem (Amir, H, 2022)

Let X be a finite simplicial complex.

Theorem (Amir, H, 2022)

Question [Čelar, Iljazović 2021]

If X and Y both have computable type, does $X \times Y$ have computable type?

Question [Čelar, Iljazović 2021]

If X and Y both have computable type, does $X \times Y$ have computable type?

Answer [Amir, H. 2023]

No. There exists X that has computable type, but $X \times S_1$ does not.

Roadmap

- 1. For a family of spaces, we reduce computable type to **homotopy** properties of certain functions,
- 2. For a smaller family of spaces, these functions are between **spheres**,
- 3. We then apply results about homotopy groups of spheres.

A family of spaces

The **suspension** of a space X is the space ΣX obtained as follows:

- Add two points a, b to X,
- For each $x \in X$, add a segment from x to a, and a segment from x to b.

The suspension of a sphere is a sphere:

 $\Sigma \mathbb{S}_n = \mathbb{S}_{n+1}.$

The suspension of a function $f: X \to Y$ is $\Sigma f: \Sigma X \to \Sigma Y$.

When X is nice¹, we obtain a further characterization of the X's such that ΣX has computable type.

 $^{^{1}}$ simplicial complex

• Let X be a space,

 $\bigcirc \bigcirc \bigcirc$

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,

$$\bigcirc \frac{1}{x} \bigcirc$$

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

Let X be a simplicial complex.

Theorem

 ΣX has computable type \iff no quotient map $q_x: X \to \mathbb{S}_n$ is homotopic to a constant.

(homotopic to a constant: $\exists h_t : X \to \mathbb{S}_n$ with $h_0 = q_x$ and h_1 constant)

Examples

- The suspension of $\bigcirc -\bigcirc$ does **not** have computable type.
- The suspension of A has computable type.

A family of spaces

• The boundary of the ball \mathbb{B}_{n+1} is \mathbb{S}_n .

- The boundary of the ball \mathbb{B}_{n+1} is \mathbb{S}_n .
- Let $f : \mathbb{S}_n \to \mathbb{S}_p$. We attach \mathbb{B}_{n+1} to \mathbb{B}_{p+1} along their boundaries using f: each $x \in \mathbb{S}_n$ is glued to $f(x) \in \mathbb{S}_p$.

- The boundary of the ball \mathbb{B}_{n+1} is \mathbb{S}_n .
- Let $f : \mathbb{S}_n \to \mathbb{S}_p$. We attach \mathbb{B}_{n+1} to \mathbb{B}_{p+1} along their boundaries using f: each $x \in \mathbb{S}_n$ is glued to $f(x) \in \mathbb{S}_p$.
- We obtain the space $X_f = \mathbb{B}_{p+1} \cup_f \mathbb{B}_{n+1}$ (click on the picture below to launch animation)

Figure: X_f where $f : \mathbb{S}_1 \to \mathbb{S}_1$ is the doubling map

Theorem

 ΣX_f has computable type $\iff \Sigma f$ is not homotopic to a constant. $\Sigma X_f \times \mathbb{S}_1$ has computable type $\iff \Sigma^2 f$ is not homotopic to a constant.

Theorem

 ΣX_f has computable type $\iff \Sigma f$ is not homotopic to a constant. $\Sigma X_f \times S_1$ has computable type $\iff \Sigma^2 f$ is not homotopic to a constant.

From the literature on homotopy groups of spheres (Freudenthal, Whitehead, Toda), there exists $f: S_7 \to S_3$ such that:

- $\Sigma f : \mathbb{S}_8 \to \mathbb{S}_4$ is not homotopic to a constant,
- $\Sigma^2 f : \mathbb{S}_9 \to \mathbb{S}_5$ is homotopic to a constant.

Theorem

 ΣX_f has computable type $\iff \Sigma f$ is not homotopic to a constant. $\Sigma X_f \times S_1$ has computable type $\iff \Sigma^2 f$ is not homotopic to a constant.

From the literature on homotopy groups of spheres (Freudenthal, Whitehead, Toda), there exists $f : S_7 \to S_3$ such that:

- $\Sigma f : \mathbb{S}_8 \to \mathbb{S}_4$ is not homotopic to a constant,
- $\Sigma^2 f : \mathbb{S}_9 \to \mathbb{S}_5$ is homotopic to a constant.

Corollary

 ΣX_f and \mathbb{S}_1 have computable type, but $\Sigma X_f \times \mathbb{S}_1$ does not.

• ΣX has computable type \iff no quotient map $q_x : X \to \mathbb{S}_n$ is homotopic to a constant,

- ΣX has computable type \iff no quotient map $q_x : X \to \mathbb{S}_n$ is homotopic to a constant,
- For $f: \mathbb{S}_n \to \mathbb{S}_p$,

- ΣX has computable type \iff no quotient map $q_x : X \to \mathbb{S}_n$ is homotopic to a constant,
- For $f: \mathbb{S}_n \to \mathbb{S}_p$,
 - ΣX_f has computable type $\iff \Sigma f$ is not homotopic to a constant,

- ΣX has computable type \iff no quotient map $q_x : X \to \mathbb{S}_n$ is homotopic to a constant,
- For $f: \mathbb{S}_n \to \mathbb{S}_p$,
 - ΣX_f has computable type $\iff \Sigma f$ is not homotopic to a constant,
 - $\Sigma X_f \times \mathbb{S}_1$ has computable type $\iff \Sigma^2 f$ is not homotopic to a constant,

- ΣX has computable type \iff no quotient map $q_x : X \to \mathbb{S}_n$ is homotopic to a constant,
- For $f: \mathbb{S}_n \to \mathbb{S}_p$,
 - ΣX_f has computable type $\iff \Sigma f$ is not homotopic to a constant,
 - $\Sigma X_f \times \mathbb{S}_1$ has computable type $\iff \Sigma^2 f$ is not homotopic to a constant,
- There exists $f : \mathbb{S}_7 \to \mathbb{S}_3$ such that Σf is not homotopic to a constant, but $\Sigma^2 f$ is.

The counter-example ΣX_f has dimension 9. Can it be lowered?

We know that if X, Y are simplicial complexes of dimensions ≤ 4 , then X, Y have computable type $\iff X \times Y$ has computable type. This is because for dimension ≤ 4 , computable type can be characterized using homology, which behaves well w.r.t. products.