The slinky

Djamel Eddine Amir and Mathieu Hoyrup September 29, 2025

Abstract

In this short note, we define a one-dimensional compact Hausdorff space called the slinky, which has strong computable type and properly contains a copy of itself. The previous example of such a space was infinite-dimensional.

1 Introduction

In [AH23], it is proved that if a space is minimal satisfying some Σ_2^0 invariant, then it has strong computable type. However the converse fails in general, and a counter-example is presented in [AH24]. That space is actually not minimal for *any* invariant, because it property contains a set that is homeomorphic to itself. This latter property is achieved by building the space so that it contains the Hilbert cube, which contains every compact Hausdorff space. Whether a finite-dimensional example exists was left open.

In this note, we give a positive answer by building a simple one-dimensional space which has strong computable type and properly contains a copy of itself. We call this space the *slinky*. It is depicted in Figure 1. An interactive model can be consulted at the address given in this footnote¹.

Figure 1: The slinky

¹https://members.loria.fr/MHoyrup/slinky.html

2 The slinky

We first set a family of vertical circles:

$$C_n^+ = \{(2^{-n}, y, z) : y^2 + z^2 = 1\}$$

$$C_n^- = \{(-2^{-n}, y, z) : y^2 + z^2 = 1\}$$

$$C_{\infty} = \{(0, y, z) : y^2 + z^2 = 1\}$$

and then join consecutive circles by spirals accumulating along them:

$$x_n(t) = 2^{-n-1}(1+t)$$

$$\theta(t) = \tan(\pi t - \frac{\pi}{2})$$

$$S_n^+ = \{(x_n(t), \cos(\theta(t)), \sin(\theta(t))) : t \in (0,1)\}$$

$$S_n^- = \{(-x_n(t), \cos(\theta(t)), \sin(\theta(t))) : t \in (0,1)\}.$$

Note that as t ranges from 0 to 1, $x_n(t)$ goes from 2^{-n-1} to 2^{-n} and $\theta(t)$ goes from $-\infty$ to $+\infty$. Finally, the slinky is

$$X = C_{\infty} \cup \bigcup_{n \in \mathbb{N}} (S_n^+ \cup C_n^+ \cup S_n^- \cup C_n^-).$$

This space embeds in the plane, because it embeds in the cylinder which embeds in the plane.

Theorem 2.1. The slinky has strong computable type.

Proof. We show that it has computable type. The proof holds relative to any oracle, showing that it has strong computable type. We recall that Q is the Hilbert cube.

Let $K \subseteq Q$ be homeomorphic to the slinky and be semicomputable. We still denote by C_0^+ and C_0^- the embedded versions of the two extremal circles.

Claim 2.1. The sets C_0^+ and C_0^- are c.e. closed, i.e. the sets $\{i \in \mathbb{N} : B_i \cap C_0^{\pm} \neq \emptyset\}$ are c.e.

Proof. By symmetry, it is sufficient to prove the result for C_0^+ .

Let W be a finite union of rational balls that contains all the circles except C_0^+ , and is disjoint from C_0^+ . Let $K' = K \setminus W$, and let $f: K' \to C_0^+$ be a retraction. Note that f is not null-homotopic. If a rational ball B does not intersect C^+ , then $f|_{K'\setminus B}$ is not null-homotopic. However, if a rational ball B intersects C_0^+ , then $f|_{K'\setminus B}$ is null-homotopic.

As a result, for a rational ball B, one has $K' \cap B \neq \emptyset \iff f|_{K' \setminus B}$ is null-homotopic. This condition is c.e. by Lemma 2.1, so C_0^+ is c.e. closed. \square

Let B be a rational ball. We claim that B intersects K if and only if there exist two rational open sets U, V such that:

$$\overline{U} \cap \overline{V} = \emptyset,$$

$$K \setminus B \subseteq U \cup V,$$

$$U \cap C_0^- \neq \emptyset,$$

$$V \cap C_0^+ \neq \emptyset.$$

Indeed, if U,V exist, then $K\setminus B$ is disconnected; as K is connected, B must intersect K. Conversely, if B intersects K, then B contains a cut-point x of K (the cut-points are the points belonging to the S_n^{\pm} 's, which are dense). The set $K\setminus\{x\}$ has two connected components, one containing C_0^- and the other containing C_0^+ . These components are open in K, so there exist disjoint open sets $U_0, V_0 \subseteq Q$ such that $K\setminus\{x\}\subseteq U_0\cup V_0$, $C_0^-\subseteq U_0$ and $C_0^+\subseteq V_0$. Therefore, $K\setminus B\subseteq K\setminus\{x\}\subseteq U_0\cup V_0$. As $K\setminus B$ is compact, one can replace U_0 and V_0 by finite unions of rational balls U and V, whose closures are disjoint, and satisfying the expected inclusions.

The existence of such U, V is c.e., so K is c.e. closed.

Lemma 2.1. Let $K \subseteq Q$ and $f: K \to S_1$ be continuous. The set

$$\{i \in \mathbb{N} : f|_{K \setminus B_i} \text{ is null-homotopic}\}$$

is c.e.

Proof. In [AH23] we show that to each $X \subseteq Q$ can be associated a partial numbering $\nu_{[X;S_1]}$ of the homotopy classes of continuous functions from X to S_1 . When X is semicomputable, the relation

$$\{(m,n) \in \mathbb{N}^2 : \nu_{[X;S_1]}(m) = \nu_{[X;S_1]}(n)\}$$

is c.e., uniformly in X. Moreover, if $X' \subseteq X$ and n is an index of the homotopy class of $f: X \to S_1$, then n is also an index of the homotopy class of $f|_{X'}: X' \to S_1$.

Let $n \in \mathbb{N}$ be an index of the homotopy class of f in $[K; S_1]$. Then n is also an index of $f|_{K \setminus B_i}$ in $[K \setminus B_i; S_1]$ for any i. Let m be an index of the homotopy class of some constant function $f_0: Q \to S_1$. Similarly, m is also an index of the the restriction of f_0 to $K \setminus B_i$ for any i. The function $f|_{K \cap B_i}$ is null-homotopic if and only if $\nu_{[K \setminus B_i; S_1]}(n) = \nu_{[K \setminus B_i; S_1]}(m)$, which is a c.e. relation, uniformly in i.

Finally, the proper subset of X obtained by removing one of the extremal sections, say $S_0^+ \cup C_0^+$, is homeomorphic to X, so X indeed properly contains a copy of itself.

References

- [AH23] Djamel Eddine Amir and Mathieu Hoyrup. Strong computable type. Computability, 12(3):227–269, 2023.
- [AH24] Djamel Eddine Amir and Mathieu Hoyrup. The surjection property and computable type. *Topology and its Applications*, 355:109020, 2024.