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Abstract

The strong relationship between topology and computations has played a central role in
the development of several branches of theoretical computer science: foundations of func-
tional programming, computational geometry, computability theory, computable analysis.
Often it happens that a given function is not computable simply because it is not contin-
uous. In many cases, the function can moreover be proved to be non-computable in the
stronger sense that it does not preserve computability: it maps a computable input to a
non-computable output. To date, there is no connection between topology and this kind of
non-computability, apart from Pour-El and Richards “First Main Theorem”, applicable to
linear operators on Banach spaces only.

In the present paper, we establish such a connection. We identify the discontinuity
notion, for the inverse of a computable function, that implies non-preservation of com-
putability. Our result is applicable to a wide range of functions, it unifies many existing ad
hoc constructions explaining at the same time what makes these constructions possible in
particular contexts, sheds light on the relationship between topology and computability and
most importantly allows us to solve open problems. In particular it enables us to answer the
following open question in the negative: if the sum of two shift-invariant ergodic measures
is computable, must these measures be computable as well? We also investigate how generic
a point with computable image can be. To this end we introduce a notion of genericity of
a point w.r.t. a function, which enables us to unify several finite injury constructions from
computability theory.

1 Introduction

Many problems in classical computability theory [Rog87] and computable analysis [PER89,
Wei00] amount to studying the computability of some function f defined on continuous spaces
such as the Cantor space or the space of real numbers. One is usually interested in three
increasingly stronger notions of computability for f :

(i) f(x) is computable for every computable x;

(ii) f(x) is computable relative to x for every x;

(iii) f(x) is computable relative to x for every x, uniformly in x.

In the first case we say that f is computably invariant (terminology introduced in [Bra99]).
In the third case we simply say that f is computable. It happens that many interesting functions
are not computable and even not computably invariant. For instance Braverman and Yampolsky
proved in [BY06] that the function mapping a parameter to the corresponding Julia set does
not satisfy (ii); they later strengthened that result in [BY07] by proving that it does not satisfy
(i) either. By contrast, the function mapping a parameter to the corresponding filled Julia set
does satisfy condition (ii), while it does not satisfy (iii) because it is discontinuous [BY08].
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While functions that are not computable often fail to be computably invariant, the proof
of the former is usually much simpler than the proof of the latter. Indeed, it is often based on
the fundamental result that a computable function must be continuous. Hence proving that a
function is not computable is often a purely topological argument.

However proving that a function is not computably invariant is usually much more chal-
lenging, as a counterexample must be constructed, by encoding the halting set or by using
more involved computability-theoretic arguments based on priority methods, e.g. Our point is
that topology is still at play in many computability-theoretic constructions1. Usually the con-
struction of a computable element whose image is not computable implicitly makes use of the
discontinuity of the function. Of course mere discontinuity is not sufficient in general to carry
out such a construction: there exist discontinuous functions that are computably invariant, such
as the floor function or the function that maps a real number to its binary expansion. More is
needed and our question is: what discontinuity property is needed to make such a construction
possible?

Such discontinuity properties have already been sought by several authors. Pour-El and
Richards “First Main Theorem” [PER89] shows that in the case of linear operators with c.e.
closed graph, if the operator is unbounded (i.e., discontinuous) then it is not computably in-
variant (it is actually an equivalence). Their result subsumes many ad hoc constructions, such
as Myhill’s differentiable computable function whose derivative is not computable [Myh71]. As
part of their open problem no. 7, Pour-El and Richards ask whether their First Main Theorem
can be extended to nonlinear operators. A generalization of their theorem to certain algebraic
structures was proved by Brattka [Bra99], applicable to operators on the set of compact subsets
of R.

In these results, the underlying algebraic structures enable the authors to provide counterex-
amples via explicit expressions (such as linear combinations of basic elements with well-chosen
weights) by encoding the halting set, which contrasts with many situations in computability
theory where explicit constructions are rarely possible and priority methods are often needed to
build counterexamples (Friedberg-Muchnik construction of Turing incomparable c.e. sets, e.g.).
This observation allows one to hope for stronger results whose proofs involve more complicated,
non-explicit constructions.

In this paper we present such a result, applicable to inverses of computable functions. We
work on effective topological spaces and effective Polish spaces without additional structure,
which makes our result applicable in many situations. We introduce a topological notion,
irreversibility of a function, whose effective version entails the existence of a non-computable
point whose image is computable. We think that this notion is rather simple to verify on
particular instances. The proof of the result implicitly uses the priority method with finite
injury. We think that our discontinuity notion is rather natural and, in concrete situations, much
easier to verify than constructing a computable element whose pre-image is not computable.
In other words, our result is not merely an abstract generalization of existing constructions,
but a powerful theorem that provides insight into computability theory, as illustrated by the
numerous examples we give.

This work was originally motivated by the following question, left open in [Hoy11]: are
there two non-computable shift-invariant ergodic measures whose sum is computable? As an
application of our main result, we positively answer this question.

We push our investigation further by studying the following question: how non-computable
can a point with a computable image be? We introduce a notion of genericity of a point w.r.t. a
function and prove that generic points with computable images exist. The construction unifies

1for instance the role of Baire category in computability theory has been revealed by several authors (see
[Myh61] e.g.)
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several finite injury arguments.
The paper is organized as follows: in Section 2 we introduce basic notions of computable

analysis; in Section 3 we introduce a notion of continuous invertibility at a point and prove
that for “almost” every point, if a function is computably invertible at that point then it is
continuously invertible there (Theorem 3.1). In Section 4 we introduce the notion of an irre-
versible function, which in substance expresses that a function is topologically hard to inverse.
In Section 5 we present our main result: a function that is topologically hard to inverse is com-
putably hard to inverse, in particular it maps a non-computable point to a computable image.
In Section 5.1 we present an application of our main result to the non-computability of the
ergodic decomposition. In Section 6 we introduce a notion of genericity w.r.t. a function which
unifies several finite injury constructions.

2 Background and notations

We assume familiarity with basic computability theory on the natural numbers. We implicitly
use Weihrauch’s notions of computability on effective topological spaces, based on the standard
representation (see [Wei00] for more details), however we do not express them in terms of
representations.

2.1 Notations

In a metric space (X, d), if x ∈ X and r ∈ (0,+∞) then we denote the open ball with center x
and radius r by B(x, r) = {x′ ∈ X : d(x, x′) < r}. We denote the corresponding closed ball by
B(x, r) = {x′ ∈ X : d(x, x′) ≤ r}. The Cantor space of infinite binary sequences, or equivalently
subsets of N, is denoted by 2N. The halting set, denoted ∅′, is the set of numbers of Turing
machines that halt. It is a noncomputable set that is computably enumerable (c.e.).

2.2 Effective topology

An effective topological space (X, τ,B) consists of a topological space (X, τ) together with a
countable basis B = {B0, B1, . . .} numbered in such a way that the finite intersection operator
is computable. An open subset U ⊆ X is effectively open if U =

⋃
k∈W Bk for some c.e. set

W ⊆ N.
To a point x ∈ X we associate N(x) = {n ∈ N : x ∈ Bn}. By an enumeration of N(x)

we mean a total function f : N→ N whose range is N(x). A point x is computable if N(x) is
c.e., i.e. if N(x) has a computable enumeration.

Given points x, y in effective topological spaces X,Y respectively, we say that y is com-
putable relative to x if there is an oracle Turing machine M that, given any enumeration of
N(x) as oracle, outputs an enumeration of N(y). We denote it by Mx = y. In other words,
y is computable relative to x if N(y) is enumeration reducible to N(x). As proved by Selman
[Sel71] and pointed out by Miller [Mil04], y is computable relative to x if and only if every
enumeration of N(x) computes an enumeration of N(y) (uniformity is not explicitly required,
but is a consequence).

A (possibly partial) function f : X → Y is computable if there is a machine M such that
for every x ∈ dom(f), Mx = f(x). A computable function is always continuous.

2.3 Effective Polish spaces

An effective Polish space is a topological space such that there exists a dense sequence
s0, s1, . . . of points, called simple points and a complete metric d inducing the topology, such
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that all the reals numbers d(si, sj) are computable uniformly in (i, j). Every effective Polish
space can be made an effective topological space, taking as canonical basis the open balls B(s, r)
with s simple point and r positive rational together with a standard effective numbering.

In an effective Polish space, a point x is computable if and only if for every ε > 0 a simple
point s can be computed, uniformly in ε, such that d(s, x) < ε.

We will be concerned with computability and Baire category, so we will naturally meet the
notion of a 1-generic point: a point that does not belong to any “effectively meager set” in the
following sense.

Definition 2.1. x ∈ X is 1-generic if x does not belong to the boundary of any effective open
set. In other words, for every effective open set U , either x ∈ U or there exists a neighborhood
B of x disjoint from U .

By the Baire category theorem, every Polish space is a Baire space so 1-generic points exist
and form a co-meager set.

3 A non-uniform result

Let X be an effective Polish space, Y an effective topological space and f : X → Y a (total)
computable function.

To introduce informally the results of this section, assume temporarily that f is one-to-
one. If f−1 is computable, i.e. if every x is computable relative to f(x) uniformly in x, then
f−1 is continuous. As mentioned earlier uniformity is crucial here: that some x is computable
relative to f(x) does not imply in general that f−1 is continuous at f(x). Theorem 3.1 below
surprisingly shows that a non-uniform version can still be obtained, valid at most points.

Let us now make it precise and formal. We do not assume anymore that f is one-to-one.
When focusing on the problem of inverting a function, one comes naturally to the following

basic notions:

• f is invertible at x if x is the only pre-image of f(x),

• f is locally invertible at x if x is isolated in the pre-image of f(x).

If one has access to x via its image only, then x is determined unambiguously in the first case,
with the help of a discrete advice (a basic open set isolating x) in the second case. However,
“being uniquely determined” is not sufficient in practice: physically or computationally, one
cannot know entirely f(x) in one step, but progressively as a limit of finite approximations. We
need to consider stronger, topological versions of the two basic notions of invertibility, expressing
that x can be recovered from the knowledge of its image given by finer and finer neighborhoods.

Definition 3.1. Let f : X → Y be a function.
We say that f is continuously invertible at x if the pre-images of the neighborhoods

of f(x) form a neighborhood basis of x, i.e. for every neighborhood U of x there exists a
neighborhood V of f(x) such that f−1(V ) ⊆ U .

We say that f is locally continuously invertible at x if there exists a neighborhood B of
x such that the restriction of f to B is continuously invertible at x, i.e. for every neighborhood
U of x there exists a neighborhood V of f(x) such that B ∩ f−1(V ) ⊆ U .

Observe that these notions are very natural when investigating the problem of inverting a
function: we think that they are not technical ad hoc conditions.

Every effective topological space Y has a countable basis hence is sequential, i.e. continuity
notions can be expressed in terms of sequences, which may be more intuitive. We will be
particularly interested in the negations of these notions, which we characterize now.
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Proposition 3.1. f is not continuously invertible at x if and only if there exist δ > 0 and a
sequence xn such that d(x, xn) > δ and f(xn) converges to f(x).

f is not locally continuously invertible at x if and only if for every ε > 0 there exist δ > 0
and a sequence xn such that ε > d(x, xn) > δ and f(xn) converges to f(x).

Let us illustrate these notions on a few examples.

Example 1. If f is one-to-one then f is continuously invertible at x if and only if f−1 is continuous
at f(x).

Example 2. The real function f(x) = x2 is continuously invertible exactly at 0, and locally
continuously invertible everywhere (for x 6= 0 take for B an open interval avoiding 0).

Example 3. The projection π1 : 2N → 2N which maps A1⊕A2 = {2n : n ∈ A1}∪{2n+1 : n ∈ A2}
to A1 is not locally continuously invertible anywhere. Indeed, given A1, A2 ∈ 2N, A1⊕A2 is not
isolated in the pre-image by π1 of A1 = π1(A1 ⊕A2).

Example 4. Let X be the Cantor space 2N with the product topology τ generated by the
cylinders [u], u ∈ 2∗, Y be the Cantor space with the positive topology τScott generated by the
sets {A ⊆ N : F ⊆ A} where F varies among the finite subsets of N. The computable elements
of the two effective topological spaces are the computable sets and the c.e. sets respectively.
Consider the enumeration operator Enum := id : X → Y . Enum is computable and one-to-one
but its inverse is discontinuous. More precisely, (i) it is continuously invertible exactly at N, (ii)
it is locally continuously invertible exactly at the co-finite sets: if A is co-finite then let B be
a cylinder specifying all the 0’s in A, every cylinder containing A is the intersection of a Scott
open set with B.

In general continuous invertibility at a point is strictly stronger than local continuous in-
vertibility. This is not the case for linear operators, where a dichotomy appears. Following
Pour-El and Richards [PER89], by a linear operator T : X → Y between Banach spaces we
mean a linear function T : D(T )→ Y where D(T ) is a subspace of X.

Proposition 3.2. Let X,Y be Banach spaces and T : X → Y a one-to-one linear operator.

• If T−1 is bounded then T is continuously invertible everywhere.

• If T−1 is unbounded then T is nowhere locally continuously invertible.

Proof. The first point simply follows from the fact that T−1 is continuous. Assume that T−1

is unbounded. There exists a sequence an ∈ X such that ‖an‖ = 1 and ‖T (an)‖ → 0. Let
x ∈ X and ε > 0. Take δ = ε/3 and define xn = x + 2δan: T (xn) converges to T (x) and
ε > ‖x− xn‖ > δ for all n.

Observe that in the case when T is not one-to-one, T is also nowhere locally continuously
invertible, with exactly the same proof (one can take an = a for some a with ‖a‖ = 1 and
‖T (a)‖ = 0).

We now come to our first result.

Theorem 3.1. Let f : X → Y be a computable function and x ∈ X a 1-generic point.
If x is computable relative to f(x) then f is locally continuously invertible at x.

Proof idea. Assume that f is not locally continuously invertible at x and that there is a Turing
machine M that computes x on oracle f(x). We show that x belongs to the boundary of an
effective open set U , i.e. that x is not 1-generic.

Given a point y, there are two possible ways in which a machine may fail to compute y from
f(y): either it diverges, or it outputs something that is incompatible with y. The latter can be
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recognized in finite time: we then say that Mf(y) positively fails to compute y. Our effective
open set U is the set of points y such that Mf(y) positively fails to compute y.

First, if f is not continuously invertible at x, there exists δ > 0 and a sequence xn such that
d(xn, x) > δ and f(xn) converges to f(x). If n is sufficiently large then f(xn) is arbitrarily close
to f(x) so Mf(xn) computes an arbitrarily refined approximation of x. If we take n so large
that Mf(xn) computes x at precision < δ/2, then Mf(xn) positively fails to compute xn so xn
belongs to U .

Now, if f is not locally continuously invertible at x then xn can be taken arbitrarily close to
x, so x belongs to the closure of U .

In the sequel we introduce a condition on f which roughly means that f is “almost nowhere”
locally continuously invertible and that entails (i) the existence of an x that is not computable
relative to f(x) (Theorem 4.1) and, better, (ii) the existence of a non-computable x such that
f(x) is computable (Theorem 5.1).

4 Reversibility

We define two dual notions for a function: reversibility (Section 4.1) and irreversibility (Section
4.2). In the sense of Baire category, a reversible function is continuously invertible almost
everywhere; an irreversible function is almost nowhere locally continuously invertible.

4.1 Reversible functions

Let X,Y be T0 topological spaces. For a continuous function f : X → Y , the following are
equivalent:

• f is one-to-one and f−1 : f(X)→ X is continuous,

• the initial topology of f is the topology of X, i.e. for every open set U ⊆ X there exists
an open set V ⊆ Y such that U = f−1(V ).

A function satisfying these conditions can be reversed in the sense that x can be recovered
from f(x) for every x: x is not only uniquely determined by f(x), but a neighborhood basis of
x can be progressively constructed from a neighborhood basis of f(x).

We first consider a slight weakening of this notion.

Definition 4.1. We say that f is reversible if for every non-empty open set U ⊆ X there is
an open set V ⊆ Y such that ∅ 6= f−1(V ) ⊆ U .

We say that f is effectively reversible if V = VU can moreover be computed from U (basic
open set).

Proposition 4.1. If f is continuous and reversible then it is continuously invertible at every
point in a dense Gδ-set.

If f is computable and effectively reversible then there is a dense effective Gδ-set D such
that f|D is one-to-one and its inverse is computable on f(D), i.e. x is uniformly computable
from f(x) when x ∈ D.

Proof. Assume that f is reversible. For each basic ball U ⊆ X there exists VU ⊆ Y such that
∅ 6= f−1(VU ) ⊆ U . Let Wn be the union of f−1(VU ) over all basic balls U of radius < 2−n. Wn

is a dense open set. If x ∈Wn for all n then f is continuously invertible at x. Indeed, for every
n there exists a ball U of radius < 2−n such that x ∈ f−1(VU ) ⊆ U .

6



If f is effectively irreversible then the sets are Wn are uniformly effective open sets and if
x ∈

⋂
nWn then for each n there exists a basic ball U of radius < 2−n such that f(x) ∈ VU ,

which can be found from any enumeration of N(f(x)). It gives an approximation of x within
2−n.

In particular if x is 1-generic then x is computable relative to f(x).

4.2 Irreversible functions

We now consider the dual notion: an irreversible function is a function that is not reversible,
not even locally.

Definition 4.2. f is irreversible if for every open set B ⊆ X the restriction f|B : B → f(B)
is not reversible.

Formally, f is irreversible if for every non-empty open set B there exists a non-empty open
set UB ⊆ B such that there is no open set V satisfying ∅ 6= f−1(V ) ∩B ⊆ UB.

In other words, each pre-image of an open set that intersects B does so outside UB. If
x ∈ UB then we will never know it from f(x), even with the help of the advice x ∈ B.

Observe that one can assume w.l.o.g. that f−1(V ) ∩ B * UB. Indeed, one can replace UB
by some ball B(s, r) such that B(s, r) ⊆ UB.

An application of an irreversible function f to x comes with a loss of information about
x, that can hardly be recovered. Being irreversible is orthogonal to not being one-to-one: the
function x 7→ x2 is not one-to-one but not irreversible: x can be (continuously or computably)
recovered from x2; a one-to-one function can be irreversible if its inverse is dramatically discon-
tinuous (examples of such functions will be encountered in the sequel).

In terms of sequences, f is irreversible if and only if for every B there exists a non-empty
open set UB ⊆ B such that for every x ∈ UB there is a sequence xn ∈ B \ UB such that f(xn)
converges to f(x).

As announced, the set of points at which an irreversible function is locally continuously
invertible is small in the sense of Baire category.

Proposition 4.2. Let f be irreversible. There is a dense Gδ-set D such that f is not locally
continuously invertible at any x ∈ D.

Proof. Let Wn be the union of UB for all basic open sets B of radius < 2−n. Wn is a dense
open set. Let x ∈

⋂
nWn. For each n there is a ball of radius < 2−n such that x ∈ UB. For

every neighborhood V of f(x), x ∈ f−1(V ) ∩B 6= ∅ so f−1(V ) ∩B * UB.

In other words, for almost every x the application of f to x comes with a “topological
information” loss.

The preceding proposition does not rule out the possibility that the restriction of f to a
“large” set be continuously invertible (for instance, the characteristic function of the rational
numbers is nowhere continuous, but its restriction to the co-meager set of irrational numbers is
continuous). The next assertion shows that this is not possible.

Proposition 4.3. Let f be irreversible and C ⊆ X be such that f|C : C → f(C) is an homeo-
morphism. Then C is nowhere dense.

Proof. Assume the closure of C contains a ball B. UB ∩C is non-empty. Let x ∈ UB ∩C. There
exists a sequence xn ∈ B \UB such that f(xn) converges to f(x). By density of C in B, xn can
be taken in C. As f|C is an homeomorphism and f(xn) converges to f(x), xn should converges
to x and eventually enter UB, which gives a contradiction.
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Example 5. Let f be a constant function defined on the Polish space X. f is irreversible if and
only if X is perfect, i.e. has no isolated point.

Example 6. The first projection π1 : 2N → 2N from Example 3 is irreversible. Indeed, to B = [w],
associate UB = [w00]. The intersection with [w] of the pre-image of any cylinder cannot be
contained in [w00]: knowing arbitrarily many bits of π1(A) and the first |w| bits of A does not
give any information about the next odd bit of A, so it does not enable one to guess that A
belongs to [w00].

In the definition of an irreversible function (Definition 4.2), B and UB can be assumed
w.l.o.g. to be basic balls.

Definition 4.3. f is effectively irreversible if UB can be computed from B.

The following result is the effective version of Proposition 4.3.

Theorem 4.1. If f is effectively irreversible then for every 1-generic x, x is not computable
relative to f(x).

Proof. The dense Gδ-set provided by Proposition 4.2 is effective when f is effectively irreversible
so it contains every 1-generic point. Hence for every 1-generic x, f is not locally continuously
invertible at x. We now apply Theorem 3.1.

In other words, if x is 1-generic then the application of f to x comes with an “algorith-
mic information” loss. So if f is effectively irreversible then there exists some x that is not
computable relative to f(x).

4.3 Examples

Several well-known results in computability theory can be interpreted using Theorem 4.1 as
consequences of the effective irreversibility of some computable function.

Example 7. Consider the enumeration operator of Example 4. Enum is effectively irreversible:
to each cylinder B = [w] associate UB = [w0].

Applying Theorem 4.1 then gives: if A is 1-generic then A and N \ A have incomparable
enumeration degrees. Such an A was first proved to exist by Selman [Sel71].

Example 8. The projection π1 : 2N → 2N from Examples 3 and 6 is effectively irreversible.
Applying Theorem 4.1 to π1 and symmetrically to the second projection π2 gives Jockush and
Posner’s result [JP78] that if A = A1⊕A2 is 1-generic then A1 and A2 are Turing incomparable,
which implies Kleene-Post theorem, taking a ∅′-computable 1-generic set.

Example 9. Jockush [Joc80] proved that every 1-generic A ∈ 2N is c.e.a., i.e. A computes some
B such that A is c.e. relative to B but not computable relative to B. The proof goes as
follows: let f(A) = {〈i, j〉 : i ∈ A ∧ 〈i, j〉 /∈ A} (where 〈〉 is a computable one-to-one pairing
function such that 〈i, j〉 > i). f is computable, if A is 1-generic then A is c.e. in f(A) as
i ∈ A ⇐⇒ ∃j, 〈i, j〉 ∈ f(A). We show that f is effectively irreversible, which by Theorem 4.1
implies that if A is 1-generic then A �T f(A).

First observe that f is not one-to-one: given A and i such that i /∈ A and 〈i, 0〉 /∈ A, there
exists Â 6= A such that f(Â) = f(A). Add 〈i, 0〉 to A, and each time some k is added, add
all the pairs 〈k, j〉 that are not already in. One easily checks that f(Â) = f(A). As a result,
given a cylinder B = [u], let UB = [u] ∩ {A : i /∈ A and 〈i, 0〉 /∈ A}. For every A ∈ UB there
is Â ∈ B \ UB such that f(Â) = f(A), so f−1f(A) intersects B \ UB: knowing f(A) and that
A ∈ B does not enable one to know that A ∈ UB.
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Again, linear operators provide a large class of examples. An effective Banach space is a
Banach space which is an effective Polish space with the metric induced by the norm, such that 0
is a computable point and the vector space operations are computable functions. Many classical
Banach spaces R, C [0, 1] (with the uniform norm) or L1[0, 1] are effective Banach spaces.

Proposition 4.4. Let X,Y be effective Banach spaces and T : X → Y a computable linear
operator. Assume that either T is not one-to-one or T is one-to-one and T−1 is unbounded.
Then T is effectively irreversible.

Proof. To a ball B = B(s, r) associate UB = B(s, r/2). According to the assumption about
T , for every ε there exists a such that ‖a‖ = r/2 and ‖T (a)‖ < ε. For every x ∈ UB and
ε > 0 there exists λ ∈ {−1, 1} such that r/2 ≤ d(x + λa, s) < r, i.e. x + λa ∈ B \ UB. Indeed,
d(x+ a, s) + d(x− a, s) ≥ 2‖a‖ = r and d(x± a, s) < r. Moreover, d(T (x± λa), T (x)) < ε.

Example 10. Applying Proposition 4.4 and Theorem 4.1 to the integration operator that maps
f ∈ C [0, 1] to F : x 7→

∫ x
0 f(t) dt gives that if f ∈ C [0, 1] is 1-generic then f is not computable

relative to its primitive F that vanishes at 0.

Example 11. Applying Proposition 4.4 and Theorem 4.1 to the canonical injection from C [0, 1]
to L1[0, 1] gives that if f ∈ C [0, 1] is 1-generic then it is not computable relative to itself, as
an element of L1[0, 1]. In other words, the description of f as an element of L1[0, 1] contains
strictly less algorithmic information than the description of f as an element of C [0, 1].

Example 12. A function f : N→ N can be described by enumerating its graph or by enumerating
the complement of its graph. The former alternative gives in general strictly more information
about the function than the latter. Let us make it precise.

Every function F with finite domain induces the cylinder [F ] of functions f : N → N ex-
tending F . The product topology on the Baire space B is generated by the cylinders. The
negative topology is generated by the complements of the cylinders, as a subbasis. The identity
id : (B, τ) → (B, τneg) is computable: from f one can enumerate the cylinders that are incom-
patible with f , but the converse cannot be done. id is effectively irreversible: to a cylinder
B = [F ], associate UB = [F ] ∪ {n 7→ 0}] where n is fresh, i.e. not in the domain of F .

By Theorem 4.1, if f : N → N is 1-generic then it is not computable relative to every
co-enumeration of its graph.

5 The constructive result

We now present the main result of the paper. It is the constructive version of Theorem 4.1 as
it makes f(x) computable. The construction uses a priority argument with finite injury.

Theorem 5.1. If f is effectively irreversible then there exists a non-computable x such that
f(x) is computable.

The proof is given in the appendix. The proof uses the priority method with finite injury,
which can be seen as a game between a player, computing f(x), and infinitely many opponents
(all the Turing machines) trying to compute x.

5.1 Application to the ergodic decomposition

We now present an application of Theorem 5.1. Let P be a Borel probability measure P over
the Cantor space. P is computable if the real numbers P [w] are uniformly computable. P is
shift-invariant if P [w] = P [0w] + P [1w] for each finite string w. P is ergodic if it cannot be
written as P = 1

2(P1 + P2) with P1 6= P2 both shift-invariant.
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The ergodic decomposition theorem says that every shift-invariant measure can be uniquely
decomposed into a convex combination (possible uncountable) of ergodic measures. Our ques-
tion is: given a computable shift-invariant measure, can we compute in a sense its ergodic
decomposition? This question was implicitly addressed by V’yugin [V’y97] who constructed a
counter example: a countably infinite combination of ergodic measures which is computable
but not effectively decomposable. In [Hoy11] we raised the following question: does the ergodic
decomposition become computable when restricting to finite combinations? As an application
of Theorem 5.1, we solve the problem and prove that it is already non-effective in the finite
case:

Theorem 5.2. There exist two ergodic shift-invariant measures P and Q such that neither P
nor Q is computable but P +Q is computable.

The strategy is as follows: the mapping (P,Q) 7→ P + Q is computable, two-to-one on the
space E× E of pairs of ergodic measures and we prove

Theorem 5.3. The function (P,Q) 7→ P +Q defined on E× E is effectively irreversible.

which implies Theorem 5.2 applying Theorem 5.1. The proof of Theorem 5.3 is given in the
appendix.

6 Genericity

Given an effectively irreversible function f ,

• Theorem 4.1 tells us that if x is 1-generic then x is not computable relative to f(x),

• Theorem 5.1 tells us that there exist non-computable x such that f(x) is computable.

The two results are “disjoint” in the sense that in general a single x cannot at the same time
be 1-generic and have a computable image, except for some particular functions like constant
functions. We raise the following question: is it possible to bring the two results closer together?
How far can x be from being computable, given that f(x) is computable? How generic can x
be?

We now give an answer to that question. We recall that a topological space always comes
with an order called the specialization order : x ≤ y iff every neighborhood of x is also a
neighborhood of y. x ≤ y means that if one describes x by listing its basic neighborhoods then
one can never distinguish x from y. When the space is Hausdorff, the specialization order is
trivial. Here ≤ denotes the specialization order on the target space Y of f .

Definition 6.1. x is f-generic if x is 1-generic in the subspace ↑f x := {x′ : f(x) ≤ f(x′)}.
In other words, x is f -generic if for every effective open set U , either x ∈ U or there exists a
neighborhood B of x such that B ∩ U ∩ ↑f x = ∅.

For instance, taking the first projection π1 : 2N → 2N of Example 8, A = A1⊕A2 is π1-generic
iff A1 is 1-generic relative to A2.

Here we focus on a few particular instances of this notion, when f is the identity from a
space to itself with two different topologies. We will consider

1. the enumeration operator Enum = id : (2N, τprod)→ (2N, τScott) (Examples 4 and 7),

2. id : (2N, τprod)→ (2N, τlex) where τlex is generated by the sets {y ∈ 2N : x <lex y} and

10



3. id : (CL(2N), τhit-or-miss) → (CL(2N), τmiss). Here, CL(2N) is the set of non-empty closed
subsets of the Cantor space. τmiss is generated by the sets Uu = {P ∈ CL(2N) : P∩[u] = ∅}
where u ∈ 2∗. τhit-or-miss is generated by the sets Uu together with their complements.

Definition 6.1 is instantiated as follows:

Definition 6.2. 1. A generic c.e. set x is a c.e. set that is 1-generic in the subspace {y ∈
2N : x ⊆ y}.

2. A generic left-c.e. real x is a left-c.e. real that is 1-generic in the subspace {y ∈ 2N : x ≤lex

y}.

3. A generic Π0
1-class P is a Π0

1-class that is 1-generic in the subspace {Q ∈ CL(2N) : Q ⊆ P}.

Informally, a generic element belongs to every effective open set that is dense above it, for
the corresponding specialization order (while a 1-generic elements belongs to every effective
open set that is dense along it). The next result is the sought combination of Theorems 4.1 and
5.1.

Theorem 6.1. There exists a co-infinite generic c.e. set, a co-infinite generic left-c.e. real and
a generic Π0

1-class without isolated points.

Proof idea (detailed in the appendix). Kurtz built a left-c.e. weakly 1-generic real (see [Nie09]
for a proof). The construction actually gives a generic left-c.e. real. The construction of a generic
c.e. set and of a generic Π0

1-class are exactly the same, replacing the lexicographic order ≤lex

by inclusion ⊆ of sets and reverse inclusion of classes respectively, which are the specialization
orders of the corresponding topologies.

Theorem 6.1 is indeed a strengthening of Theorem 5.1: in Theorem 3.1, the 1-genericity
assumption can actually be weakened to f -genericity (at least in the particular functions under
consideration).

Proposition 6.1. In each one of the three cases, if x is generic inside ↑f x and f is not locally
continuously invertible at x then x is not computable.

Proof. Using compactness of the space, one can show that f is not locally continuously invertible
at x iff x is not isolated in ↑f x, i.e. x belongs to the closure of ↑f x \ {x}. If x is computable
then the complement of {x} is an effective open set, so x cannot be generic inside ↑f x.

Let us illustrate the three notions on a few examples.

Generic c.e. set. As the next result shows, Theorem 6.1 embodies simple finite injury argu-
ments as Friedberg-Muchnik theorem, e.g.

Proposition 6.2. Let A be a co-infinite generic c.e. set. A is hypersimple, A = A1⊕A2 where
A1 and A2 are Turing incomparable, A is not autoreducible.

Proof. Same argument as for 1-generic sets, observing that the involved open set is not only
dense along A, but even above A. For instance, to prove that A2 �T A1, given a Turing
functional φ, let U = {A1 ⊕ A2 : ∃n, φA1(n) = 0 ∧ A2(n) = 1}. If φA1 = A2 then replacing a 0
in A2 by a 1 arbitrarily far gives an element of U arbitrarily close to A1⊕A2 that is above (i.e.
is a superset of) A1 ⊕A2.

It happens that the co-infinite generic c.e. sets are exactly the p-generic sets defined by
Ingrassia [Ing81].
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Generic left-c.e. real. Downey and LaForte [DL02] proved the existence of non-computable
left-c.e. reals x all of whose presentations are computable: each prefix-free c.e. set A of finite
binary strings satisfying

∑
w∈A 2−|w| = x is actually a computable set. A corollary of a result

of Stephan and Wu [SW05] is that any such real is weakly 1-random. It must even be a generic
left-c.e. real.

Proposition 6.3. If x is a non-computable left-c.e. real all of whose presentations are com-
putable then x is a generic left-c.e. real.

Proof. Let U be an effective open set that does not contain x: we must find y > x such that
[x, y) is disjoint from U . First replace U by V = U ∪ [0, x). Let A be a prefix-free c.e. set
such that V =

⋃
w∈A[w]. The set A<x = {w ∈ A : w <lex x} is a presentation of x hence it

is computable, so A>x = {w ∈ A : w >lex x} = A \ A<x is c.e. hence y := inf
⋃
w∈A>x

[w] is
right-c.e. As x is not computable and x ≤ y, one has x < y and we get the result as [x, y) is
disjoint from U .

Generic Π0
1-class.

Proposition 6.4. A generic Π0
1-class without isolated point has no computable member.

Proof. Let x be computable. Consider the collection U = {P : x /∈ P}. U is an effective open
set in the space (CL(2N), τhit-or-miss) (and even in the topology τmiss). U is dense and better:
for every P without isolated point, there exist Q ⊆ P in U arbitrarily close to P , so U is dense
below P (here the specialization order is the reverse inclusion). As a result, if P is a generic
Π0

1-class without isolated point then P belongs to U, i.e. x /∈ P .
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A Proof of Theorem 5.1

We fix a one-to-one computable enumeration n0, n1, . . . of the halting set ∅′. We construct
x ∈ X such that f(x) is computable and ∅′ is computable relative to x. We construct a
shrinking sequence of balls Bn and define x as the unique member of their intersection. Of
course, Bn must not be computable otherwise x would be computable. The sequence Bn is
constructed in stages: at stage s we define Bn[s] and for each n the sequence Bn[s] is stationary,
with limit Bn. For each s, the sequence Bn[s] is shrinking, so the limiting sequence Bn will be
shrinking as well. One may imagine, for each s, the sequence Bn[s] as an infinite path in a tree.
At stage s+ 1, ns is enumerated into A′ and the current path branches at depth ns.

In order to make f(x) computable we enumerate along the construction all its basic neigh-
borhoods into a list L. L is the union of a computable growing sequence of finite lists Ls. At
stage s, the current neighborhood of f(x), denoted Vs is the (finite) intersection of the members
of Ls. As Ls ⊆ Ls+1, Vs+1 ⊆ Vs.

In order to construct the list L, we start with a technical point: in the space X, we make an
effective change of simple points and basic open sets. We can assume w.l.o.g. that the radius of

UB is at most half the radius of B. Given a basic ball B, consider the computable sequence U
(n)
B

defined inductively by U
(0)
B = B and U

(n+1)
B = U

U
(n)
B

. U
(n)
B is a computable shrinking sequence

and the unique member a of
⋂
n U

(n)
B is computable, uniformly in B. The canonical enumeration

Bj of basic balls induces a computable dense sequence aj , which will serve as simple points.
We then change the basic open subsets of X. Let (Vk)k∈N be the canonical enumeration of

the basic open subsets of Y .

Lemma A.1. There is a double-sequence of open sets Ok,i ⊆ X such that

• Ok,i ⊆ Ok,i+1,

• f−1(Vk) =
⋃
i∈NOk,i,

• the predicate aj ∈ Ok,i is decidable.

Proof. By a standard diagonalization argument (computable Baire theorem on the real num-
bers), there exists a computable dense sequence of positive real numbers rn such that d(si, aj) 6=
rn for all i, j, n. The metric balls B(si, rn) form an effective basis and the predicate aj ∈ B(si, rn)
is decidable. f−1(Vk) can be expressed as an effective union of such balls. Define Ok,i as the
union of the first i balls enumerated into f−1(Vk).

We now proceed to the construction of the sequence Bn[s] for each stage s. For each s, Bn[s]
will be a shrinking sequence, x[s] will be defined as the unique member of their intersection and
will be one of the points {aj : j ∈ N}.
Stage 0. We start with a ball B0[0] of radius 1, Bn+1[0] = UBn[0] and {x[0]} =

⋂
nBn[0]. Start

with L0 = ∅ and V0 = Y . Observe that for each n, Bn[0]∩ f−1(V0) is non-empty as it contains
x[0].

Stage s+1. First, Ls+1 is obtained by adding to Ls all the numbers k ≤ s such that x[s] ∈ Ok,s.
Let Vs+1 be the intersection of the open sets Vk with k ∈ Ls+1.

Let n = ns be the next element enumerated into the halting set. Let Bn+1[s+ 1] be a ball
satisfying Bn+1[s+ 1] ⊆ f−1(Vs+1)∩Bn[s] \Bn+1[s]. Such a ball exists: f−1(Vs+1)∩Bn+1[s] is
non-empty as it contains x[s], f is irreversible and Bn+1[s] = UBn[s]. For n′ ≤ n, let Bn′ [s+1] =
Bn′ [s]. For n′ > n define by induction Bn′+1[s+ 1] = UBn′ [s+1]. Let {x[s+ 1]} =

⋂
nBn[s+ 1].
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Verification. By construction one has Bn+1[s] ⊆ Bn[s] and Bn+1[s] = UBn[s] for sufficiently
large n so Bn[s] is a shrinking sequence.

We call the settling time of n the minimal number s such that ns′ ≥ n for all s′ ≥ s.
We say that n ∈ ∅′ is a forward element if no element m < n is enumerated into ∅′ after the

enumeration stage of n: in other words, the settling time of n coincides with its enumeration
stage. As ∅′ is infinite, it has infinitely many forward elements.

Claim. For each n, Bn[s] is a stationary sequence.

Proof. Let s be the settling time of n: Bn[s] = Bn[s0] for all s ≥ s0.

Let Bn be its limit. Bn is a shrinking sequence as well, let x be the member of its intersection.
Observe that the sequence x[s] converges to x: given ε, let n be such that Bn has radius < ε
and s0 be the settling time n: for all s ≥ s0, x[s] ∈ Bn[s] = Bn so d(x[s], x) < ε.

Claim. f(x) is computable.

Proof. We prove that a basic open set Vk contains f(x) if and only if k is enumerated into the
list L =

⋃
s Ls.

If k ∈ Ls for some s, let n be a forward element which is enumerated at some stage s′ ≥ s.
x ∈ Bn+1 = Bn+1[s

′ + 1] ⊆ f−1(Vs′+1) ⊆ f−1(Vs) ⊆ f−1(Vk).
Now let Vk be a basic neighborhood of f(x). Let i0 be such that x ∈ Ok,i0 . As x[s] converges

to x there is s such that x[s] ∈ Ok,i0 for all s′ ≥ s. Let t = max(s, i0): x[t] ∈ Ok,i0 ⊆ Ok,t so k
must be added to the list at stage t+ 1 or earlier.

Claim. ∅′ is computable relative to x.

Proof. Let pi be the increasing sequence of forward elements. ∅′ can be computed from the
sequence pi and the (computable) enumeration of ∅′.

From x one can inductively compute the sequence pi. First, p0 is the minimal n such that
x /∈ Bn+1[0]. Once pi is known, let s be the stage at which pi is enumerated into ∅′, i.e. ns = pi.
pi+1 is the minimal n > pi such that x /∈ Bn+1[s+ 1].

B Proof of Theorem 5.3

Before proving the theorem, we need some preliminaries so show that E×E is an effective Polish
space.

Let X be an effective Polish space. X ′ ⊆ X is an effective Polish subspace if it is an
effective Polish space with the induced topology and such that the canonical injection from X ′

to X to be a computable homeomorphism. Alexandrov theorem gives a way to obtain Polish
subspaces of a Polish space, and has an effective version, which we present now.

A set A is an effective Gδ-set if there exists a family of uniformly effective open sets Un
such that A =

⋂
n Un. Such a set is c.e. if it contains a dense computable sequence. Examples

of such sets are given by the computable Baire theorem [YMT99, Bra01]: any dense effective
Gδ-set is a c.e. effective Gδ-set.

Proposition B.1 (Effective Alexandrov Theorem). Every c.e. effective Gδ-set is an effective
Polish subspace of X.
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We consider the space P(2N) of Borel probability measures over the Cantor space together
with the complete metric

d(P,Q) =
∑

w∈{0,1}∗
2−|w||P [w]−Q[w]|.

The finite rational combination of Dirac measures are dense in P(2N) and d is computable over
them, so P(2N) is an effective Polish space. The subset I of shift-invariant measures is closed so
d is complete over I as well. I easily contains a dense computable sequence, so I is an effective
Polish subspace of P(2N). Let E ⊆ I be the set of ergodic shift-invariant measures. d is no more
complete over E, but Proposition B.1 implies that E is an effective Polish subspace. We work
with the basis given by the intersection of the canonical basis of I with E.

We now present the proof of Theorem 5.3. Let B ⊆ I× I be an open set and (P0, Q0) ∈ B
with P0 6= Q0. Let ε > 0 be such that d(P0, Q0) > ε and B(P0, ε)×B(Q0, ε) ⊆ B. Let δ = ε/4
and UB = B(P0, δ)× B(Q0, δ) ⊆ B. Observe that UB can be effectively obtained from B. We
now show how a pair (P1, Q1) ∈ UB can be moved outside UB, but still inside B, nearly without
changing its sum. By the choice of δ, if (P1, Q1) ∈ UB then d(P1, Q1) > 2δ. For λ ∈ [0, 1], define

P (λ) = λP1 + (1− λ)Q1,

Q(λ) = λQ1 + (1− λ)P1.

Observe that P (λ) +Q(λ) = P1 +Q1 and

d(P1, P (λ)) = d(Q1, Q(λ)) = (1− λ)d(P1, Q1).

As d(P1, Q1) > 2δ there exists λ ∈ (0, 1) such that (1− λ)d(P1, Q1) = 2δ. One has

d(P0, P (λ)) ≤ d(P0, P1) + d(P1, P (λ)) < 3δ < ε

and
d(P0, P (λ)) ≥ d(P1, P (λ))− d(P0, P1) > δ,

and similarly δ < d(Q0, Q(λ)) < ε so (P (λ), Q(λ)) ∈ B \ UB.
Observe that the shift-invariant measures P (λ) and Q(λ) are not ergodic. As the ergodic

measures are dense in the set of shift-invariant measures, there exist two sequences Pn, Qn of
ergodic measures converging to P (λ) and Q(λ) respectively. As (P (λ), Q(λ)) belongs to the
open set B \ UB, we can assume w.l.o.g. that (Pn, Qn) ∈ B \ UB for all n. The mapping
(P,Q) 7→ P +Q is continuous so Pn +Qn converges to P (λ) +Q(λ) = P1 +Q1.

C Proof of Theorem 6.1

Let us slightly reformulate the three results in a unified way.
Let X = 2N or the space CL(2N) of non-empty compact subsets of 2N. Both are effective

Polish spaces with the usual topologies. Let ≤ be an ordering: inclusion or lexicographic
ordering on 2N, reverse inclusion on CL(2N). Let X0 be the sequence of simple points. ≤ is
computable on X0. It is important to observe that given a clopen set C ⊆ X and s ∈ X0, it is
decidable whether C intersects ↑ s.

We say that x ∈ X is ≤-c.e. if the set {s ∈ X0 : s < x} is c.e., or equivalently x is
the supremum of a computable increasing sequence of simple points. We say that x is ≤-
generic if for every effective open set W ⊆ X, either x ∈ W or there exists ε > 0 such that
B(x, ε) ∩W ∩ ↑x = ∅.
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Theorem C.1. Let Un ⊆ X be uniformly effective dense open sets. There exists x ∈
⋂
n Un

which is ≤-c.e. and ≤-generic.

The notions of generic c.e. set, generic left-c.e. real and generic Π0
1-class correspond to the

notions of ≤-c.e. and ≤-generic points, when ≤ is the corresponding ordering. Being a co-infinite
subset of N or being a closed set without isolated points can both be expressed as an intersection
of dense effective open sets in the corresponding space.

Proof. The proof is a finite injury argument. We want to satisfy the requirements

Re : x ∈We or ∃ε, B(x, ε) ∩We ∩ ↑x = ∅,

where We is the effective open set with number e (in the sequel, We,s will be computable growing
clopen sets with union We). At stage s, each requirement Re is assigned a ball Be[s]. They
satisfy Be+1[s] ⊆ Be[s] ∩Ue. For each e, the sequence Be[s] is stationary when s grows. At the
same time, a computable sequence xs ≤ xs+1 is built. The requirement Re tests whether Be[s]
intersects We ∩ ↑xs.

Stage 0. Start with any ball for B0[0] and inductively choose Be+1[0] ⊆ Be[0]∩Ue of radius
< 2−e. x0 is the center of B0[0].

Stage s. Let e ≤ s be minimal such that Be[s] ∩ We,s ∩ ↑xs 6= ∅, if it exists (decidable
property). Let Be[s + 1] ⊆ We,s ∩ ↑xs ∩ Ue−1 and xs+1 be the center of Be[s + 1]. Define
inductively Be′+1[s+ 1] ⊆ Be′ [s+ 1] ∩ Ue′ of radius < 2−e

′
for e′ ≥ e.

If e does not exist then let Be[s+ 1] = Be[s] for all e and xs+1 = xs.
Verification. By the usual analysis of finite injury arguments, each requirement acts finitely

many times, so for each e there is s0 such that Be[s] = Be[s0] for all s ≥ s0. Let Be = Be[s0].
One has Be+1 ⊆ Be. Let x be the unique member of

⋂
eBe.

Claim. x is c.e. and belongs to
⋂
e Ue.

By construction, x ∈ Be+1 ⊆ Ue so x ∈
⋂
e Ue. The sequence xs converges to x. As

xs ≤ xs+1, xs also converges to sups xs, so x = sups xs. As the sequence xs is computable, x is
c.e.

Claim. x is ≤-generic.

Assume x /∈ We. Given e, let s be such that no requirement e′ < e acts from stage s
on. Re cannot act at a stage s′ ≥ s, otherwise x ∈ Be = Be[s

′ + 1] ⊆ We which contradicts
the assumption about x. As Re never acts after stage s, it means that x ∈ Be = Be[s] and
Be[s] ∩We ∩ ↑x = ∅, otherwise there exists s′ ≥ s such that Be[s] ∩We,s′ ∩ ↑x 6= ∅, hence
Be[s

′] ∩We,s′ ∩ ↑xs′ 6= ∅ as Be[s
′] = Be[s] and xs′ ≤ x, and then Re must act at stage s′ which

is impossible.
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