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CONTEXT

Entropies. Several notions of entropies have been defined along the twentieth century. The
role of an entropy is to quantify the uncertainty one has about the state of a – physical as
well as mathematical – system, whose states are modeled as points of a mathematical
space. The expression information content is also used in place of entropy, as uncertainty
can be thought as lack of information. The theories which deal with these quantities
are consequently called information theories. The space may be endowed with different
structures, which lead to different notions of entropy :

(1) The topological point of view: a topological entropy measures the size of the space,
i.e. the number of distinguishable points. This is the idea underlying the ε-entropy,
defined by Kolmogorov and Tikhomirov in 1959 ([KT59]).

(2) The probabilistic point of view: taking advantage of the non-uniformity of the
space modeled by probabilities, Shannon defined in 1948 his famous entropy. To
each point is actually attributed an individual information content, of which the
entropy is the mean. In the topological framework, which is blind to non-uniformity,
all points had the same information content.

(3) The algorithmic point of view: in 1965, Kolmogorov ([Kol65]) comes back to the
entropy notions mentioned above and makes use of computability theory in order
to define an algorithmic notion. The idea is simple: in each context, topological or
probabilistic, one can interpret information content of a point as its minimal de-
scription length, relative to some fixed description system; the entropy is then the
mean description length of points. Computability theory provides a very general
description system: universal Turing machines are able to simulate all effective
decoding procedures. The Kolmogorov complexity of a point is then its minimal de-
scription length by a universal machine, and is also called algorithmic information
content (see [LV93], [Cal94] for details on Kolmogorov complexity).

Entropies of dynamical systems. The situation described above is “static”: what is ob-
served is only the state of a system, not its evolution. Time evolution of systems is mainly
modeled by dynamical systems. The fact that such systems are deterministic does not
prevent randomness from appearing: randomness is indeed thought as unpredictabil-
ity (in classical mechanics). The ideas that underlie information theory, which attempt
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is to quantify uncertainty, have been applied to dynamical systems to quantify their de-
gree of unpredictability. Each static entropy has a dynamical version, which is its growth
rate along the time-evolution of the system. The dynamical versions of the ε-entropy, the
Shannon entropy and the Kolmogorov complexity are respectively:

(1) The topological entropy of a system (defined in 1965 by Adler, Konheim and
McAndrew),

(2) The Kolmogorov-Sinaï entropy (defined in 1958, 1959),
(3) The algorithmic complexity of the orbits of a system (defined in 1983 by Brudno,

[Bru83], improved later by Galatolo [Gal00]).
As in the static case, these different notions are strongly related. Let us remark that

the algorithmic approach gives an individual (attributed to each single orbit) and intrinsic
notion (independent of the measure for instance).

Probability theory1 is the natural framework to talk about randomness (note that this
theory is not concerned with the way randomness is generated). On the other hand, as
classical randomness is understood as deterministic unpredictability, the theory of dy-
namical systems provides another setting in which randomness can be investigated. A
very natural idea is to mix these two settings: this is the object of ergodic theory, which
deals with dynamical systems from a probabilistic point of view, studying them as par-
ticular stochastic processes (see [Pet83]).
Algorithmic randomness. Probability theory enables one to formulate and prove sen-
tences like “property P holds with probability one”, or “property P holds almost surely”.
An idea which was already addressed by Laplace, and later by Von Mises, is to iden-
tify the properties that an infinite binary sequence should satisfy to be qualified “ran-
dom”. Church and later Kolmogorov proposed a definition using computability theory,
but Martin-Löf ([ML66]) was the first one who defined a sound notion: a binary sequence
is random if it satisfies all properties of probability one which can be presented in an
algorithmic way. A characterization of Martin-Löf randomness in terms of Kolmogorov
complexity was later proved, conferring robustness to this notion.

Algorithmic randomness then provides a model which enables one to prove stronger
results than probability theory: as each single infinite binary sequence gets the attribute
“random” or “non-random”, classical theorems like:

property P holds for µ-almost every sequence
shall be converted into:

property P holds for every µ-random sequence
Algorithmic randomness theory was still recently restricted to the Cantor space of bi-

nary sequences (or sequences over a finite alphabet) (see [HW03], [Gác05] for extensions
to other spaces).
Results of the thesis. Our general goal is to establish a robust framework in order to han-
dle probability theory as well as ergodic theory from an algorithmic point of view. Much
work has previously been achieved on the Cantor space; but restricting oneself to this
space is very limitative, by comparison with the wide range of spaces in which prob-
abilistic and dynamical systems issues generally take place: a theory on more general
spaces is needed. We study computable metric spaces, which are metric spaces with a

1which axiomatization was achieved in 1933 by Kolmogorov
2



computability feature allowing one to talk about computable points, functions, subsets,
etc. On such spaces, we give different characterizations of computability for probability
measures, and extend algorithmic randomness. This work is an improvement of a recent
article ([Gác05]). We then establish strong relations between randomness, ergodic theo-
rems, orbit complexities and entropies. Our work is partially based on results which had
already been stated on the Cantor space (especially [V’y98]).

In what follows, we present the content of the chapters.

1. COMPUTABILITY

There are mainly two frameworks to carry out computability investigations over gen-
eral spaces. The one is domain theory, the other is representation theory. The first one (see
[Eda97] for instance) has nice categorical properties, but is less general than the second
one (see [Wei00]), which in turn uses a rather heavy language. In particular, everything
is expressed in terms of Turing machines and coding issues (representations are ways to
encode objects into symbolic sequences).

Introducing the notion of enumerative lattice, we propose an approach inspired from
both of these settings, as general as the second one but focusing more on structures than
on machines. The quite elementary enumerative lattice structure can be used to induce
all constructivity notions on general space. It enables one to express computability proofs
in a more algebraic fashion, freeing oneself from coding questions. The most interesting
feature of enumerative lattices is that they grasp the structure needed to construct effective
enumerations. Effective enumerations are recurrent in computer science (the first one being
the enumeration of Turing machines): we prove a general abstract result from which each
single effective enumeration shall be derived. In particular, we will use this result to
enumerate uniform randomness tests.

2. PROBABILITY MEASURES AND COMPUTABILITY

The Cantor space, or space of infinite binary sequences, is a friendly place for com-
putability. Its total disconnection has numerous consequences: cylinders are decidable
sets, their measure is computable, the space has open covers which are also partitions,
etc. General metric spaces do not share these features with the Cantor space, which raises
important problems when dealing with measures, or symbolic models of dynamical sys-
tems.

We study the computability of probability measures on a computable metric space,
seeing measures as points of a metric space, as valuations on open sets, as integration
operators. We show that these approaches are equivalent, which relates several works
previously achieved. We then introduce the computable version of probability spaces,
and show:

Theorem 1. Every computable probability space is isomorphic to the Cantor space endowed with
the uniform measure.

This result allows one to transfer algorithmic probability concepts (as algorithmic ran-
domness) from the Cantor space to any computable probability space. The computabil-
ity assumption on the measure is fundamental, as there are non-computable probability
measures for which the theorem does not hold.
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3. ALGORITHMIC RANDOMNESS

The preceding section directly provides a notion of algorithmic randomness on com-
putable probability spaces. However, following an approach by Levin, and later Gács
([Gác05]), we define randomness with respect to any probability measure (i.e. not neces-
sarily computable), and show that it coincides with the one induced by the isomorphism
with the Cantor space whenever the measure is computable. The probability measure is
not fixed anymore, but instead becomes a parameter, or argument of randomness tests,
which are then called uniform. We show two important results:

Theorem 2. Let X be a computable metric space.
(1) Let µ be a probability measure on X : every randomness test for µ can be extended to a

uniform test.
(2) There exists a universal randomness test.

The first point is important when one constructs a function and proves that it is a test for
some measure, using particular properties of this measure (invariant, ergodic, Bernoulli,
etc): as random points are those points which pass all uniform tests, it is not clear a priori
that random points pass this test, which is not uniform.

The second point extends the classical result proved by Martin-Löf on the Cantor space
endowed with a computable probability measure. It strengthens Gács result, which holds
for computable metric spaces which satisfy an additional computability condition. Our
construction is made very synthetic by the use of an appropriate enumerative lattice.

4. ALGORITHMIC ERGODIC THEORY

Ergodic theory provides many probability theorems. Let us recall two classical ones: let
(X, µ) be a probability space and T : X → X an endomorphism (or measure-preserving
map), (1) the Poincaré recurrence theorem states that the trajectory of µ-almost every
point returns arbitrarily close to its initial condition, (2) the Birkhoff ergodic theorem
states that for every integrable function f : X → R, the mean of f along the trajectory of
µ-almost every point converges. We say that a point is generic if this convergence holds
for every bounded continuous observable f .

We state their algorithmic counterpart:

Theorem 3. Let X be a computable metric space endowed with a (not necessarily computable)
probability measure µ. Every µ-random point is recurrent and generic for every endomorphism
T : X → X .

Part of the proof of the ergodic theorem for random points is an extension of a result
previously stated on the Cantor space with a computable measure and for computable
observables ([V’y98]).

We then study the following problem: the use of a computer is often necessary to catch
a glimpse of the behaviour of a dynamical system, when mathematical analysis reaches
its limits. But machines can only compute... computable objects, which constitute a tiny
subsystem (it is countable and has null measure). The question is then: are the trajec-
tories drawn on the screen representative of the system ? The problem is not related to
round-off errors: our computation model enables exact computations, so the trajectories
appearing on the screen are indeed trajectories of the system. But may it happen that
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every computable orbit is periodic ? or that no computable orbit satisfies the Birkhoff
ergodic theorem ? Let us call pseudo-random orbits those orbits which are computable and
typical in the sense of the Birkhoff ergodic theorem: they are generally not algorithmically
random, as they are computable, but they have statistical properties of typical orbits.

We give two positive answers:

Theorem 4. Let X be a computable metric space and T : X → X a computable map. If T has a
dense orbit, then T has a computable dense orbit.

Let (X,µ) be a computable probability space. Every mixing endomorphism T : X → X has a
pseudo-random orbit.

The mixing property is stronger than ergodicity: the state of the system at time t is
quasi-independent of the state at time 0, whenever t is sufficiently large. An immediate
corollary is the existence of computable real numbers which are normal in every base.
This result was already obtained in 2002, but in a rather technical way.

A question is still open: are there computable dynamical systems for which no pseudo-
random orbit exist ?

5. ENTROPY AND ORBIT COMPLEXITY

In 1998, V’yugin ([V’y98]) proved a version of the Shannon-McMillan-Breiman theorem
for random points on the Cantor space endowed with a computable probability measure.
This result can be easily transferred to computable probability spaces, using the isomor-
phism, and then strengthens Brudno’s result ([Bru83]): the complexity of the orbit of each
random point equals the Kolmogorov-Sinaï entropy of the system. To do this, we use two
notions of orbit complexity, the one using computable partitions, the other using the met-
ric, and prove that they coincide for random points. Using topological and algorithmic
arguments, we then prove:

Theorem 5. Let X be a compact computable metric space and T : X → X a computable map.
The supremum of the algorithmic complexity of orbits coincides with the topological entropy of the
system.

These two results put together are related to the variational principle: the topological
entropy is the supremum of Kolmogorov-Sinaï entropies, the measure varying among
invariant measures.
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