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Presentations
Let (X, τ) be a countably-based topological space.

Definition
A precomputable topological presentation of (X, τ) is an
indexed basis (Bi)i∈N together with a c.e. set E ⊆ N such that

Bi ∩Bj =
⋃

(i,j,k)∈E

Bk.

Definition
A computable topological presentation of (X, τ) is a
precomputable presentation (Bi)i∈N such that moreover the set

{i ∈ N : Bi ̸= ∅}

is c.e.
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Presentations

Computable presentations appear in several works:
• Grubba, Schröder, Weihrauch 2007,
• Korovina, Kudinov 2008,

in combination with other properties: computable regularity,
domain-theoretic properties, etc.

It is closely related to computable overtness, used in many
other works.
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Presentations

Every countably-based space X has a precomputable
presentation:

• (P(ω), τScott) has a (pre)computable presentation (Bi)i∈N,
• X embeds in P(ω),
• The induced presentation (Bi ∩X)i∈N is precomputable.

Note: the induced presentation is not computable in general.

4 / 15



Computable presentations

Theorem (Melnikov, Ng, 2023)

There is a Polish space which has a computable topological
presentation, but no arithmetical Polish presentation.

Theorem (Bazhenov, Melnikov, Ng, 2023)

Every 0′-computable Polish space has a computable topological
presentation.

How far can we extend the latter results? 0′′? beyond?

Theorem (H., Melnikov, Ng, 2023)

Actually, every countably-based space has a computable
topological presentation.
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Computable presentations

Before proving the result, let us illustrate how computable
presentations give little information about the space.
What properties of the space can be detected from a
computable presentation?

Dense subspace
A computable topological presentation of (X, τ) is also a
topological presentation of any dense subspace Y ⊆ X.
Therefore, most properties cannot be detected:

• Connectedness: [0, 1/2) ∪ (1/2, 1] is dense in [0, 1],
• Dimension: Q is dense in R.
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Compact Polish spaces

Let us assume that (X, τ) is compact Polish. The dense subset
trick does not apply anymore.
Can we detect:

• Connectedness?

No: [0, 1] ⊔ [0, 1] and [0, 1] share a top. presentation.
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Compact Polish spaces

Some invariants can be detected:
• Whether X has an isolated point:

∃i,∀j, k, [(Bi ∩Bj ̸= ∅ and Bk ∩Bi ̸= ∅) =⇒ Bj ∩Bk ̸= ∅]︸ ︷︷ ︸
Bi is a singleton

.

• Whether the isolated points are dense:

∀l,∃i, Bi ∩Bl ̸= ∅ and Bi is a singleton.
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Compact Polish spaces

Theorem
Every compact Polish space has a computable topological
presentation.
Moreover,

• All the perfect compact Polish spaces share a common
comp. top. pres.

• All the compact Polish spaces with an infinite dense set of
isolated points share a common comp. top. pres.
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Compact Polish spaces

Definition
A function f : X → Y is almost injective if the set{

x ∈ X : f−1(f(x)) = {x}
}

is dense.

Lemma
Let f : X → Y be continuous, almost injective, surjective.
Let (Bi)i∈N be a computable topological presentation of X, which
is closed under finite unions.
Define

Ci = {y : f−1(y) ⊆ Bi} = Y \ f(X \Bi).

Then (Ci)i∈N is a computable topological presentation of Y ,
formally equivalent to (Bi)i∈N.
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Compact Polish spaces

Lemma (Binary expansion)

Every perfect compact Polish space is the continuous image of
an almost injective function f : 2ω → X.

Let (Bi)i∈N be the family of clopen subsets of 2ω.

Corollary

The family (Bi)i∈N is a computable presentation of any perfect
compact Polish space.
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Compact Polish spaces

Figure: The space 2≤ω

Lemma
Every compact Polish space whose isolated are dense is the
continuous image of an almost injective function f : 2≤ω → X.

Let (Bi)i∈N be the family of clopen subsets of 2≤ω.

Corollary

The family (Bi)i∈N is a computable presentation of any compact
Polish space whose isolated points are dense.
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From compact Polish to metrizable

Corollary

Every separable metrizable space has a computable presentation.

Proof.
Compactification:

• Embed X in the Hilbert cube [0, 1]ω,
• cl(X) is compact Polish, so it has a computable

presentation,
• X is dense in cl(X).
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From metrizable to countably-based

Theorem
Every countably-based space has a computable presentation.

Proof.

• Embed X in P(ω),
• X is dense in cl(X),
• The space M = max(cl(X)) is zero-dimensional and

countably-based, hence metrizable, so M has a computable
presentation,

• Transfer the computable presentation of M to X.
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Conclusion

The notion of computable presentation is actually not
restrictive.
However, in combination with other computability properties it
is restrictive.

For instance: Grubba, Schröder, Weihrauch 2007:
• Computably topological + computably regular ⇐⇒

computable metric space

Assuming computable compactness,
• Strong1 computably topological ⇐⇒ Computably Polish

• Computably topological ?⇐⇒ Right-c.e. Polish

1Strong ≡ the set {i : Bi ̸= ∅} is computable
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