Computable presentations of topological spaces

Mathieu Hoyrup, Alexander Melnikov, Keng Meng Ng

Inria Nancy

Presentations

Let (X, τ) be a countably-based topological space.

Definition

A precomputable topological presentation of (X, τ) is an indexed basis $(B_i)_{i \in \mathbb{N}}$ together with a c.e. set $E \subseteq \mathbb{N}$ such that

 $B_i \cap B_j = \bigcup_{(i,j,k) \in E} B_k.$

Definition

A computable topological presentation of (X, τ) is a precomputable presentation $(B_i)_{i \in \mathbb{N}}$ such that moreover the set

 $\{i \in \mathbb{N} : B_i \neq \emptyset\}$

is c.e.

Presentations

Computable presentations appear in several works:

- Grubba, Schröder, Weihrauch 2007,
- Korovina, Kudinov 2008,

in combination with other properties: computable regularity, domain-theoretic properties, etc.

It is closely related to **computable overtness**, used in many other works.

Presentations

Every countably-based space X has a **precomputable** presentation:

- $(\mathcal{P}(\omega), \tau_{\text{Scott}})$ has a (pre)computable presentation $(B_i)_{i \in \mathbb{N}}$,
- X embeds in $\mathcal{P}(\omega)$,
- The induced presentation $(B_i \cap X)_{i \in \mathbb{N}}$ is precomputable.

Note: the induced presentation is not **computable** in general.

Theorem (Melnikov, Ng, 2023)

There is a Polish space which has a computable topological presentation, but no arithmetical Polish presentation.

Theorem (Bazhenov, Melnikov, Ng, 2023)

Every 0'-computable Polish space has a computable topological presentation.

How far can we extend the latter results? 0''? beyond?

Theorem (Melnikov, Ng, 2023)

There is a Polish space which has a computable topological presentation, but no arithmetical Polish presentation.

Theorem (Bazhenov, Melnikov, Ng, 2023)

Every 0'-computable Polish space has a computable topological presentation.

How far can we extend the latter results? 0''? beyond?

Theorem (H., Melnikov, Ng, 2023)

Actually, every countably-based space has a computable topological presentation.

Before proving the result, let us illustrate how computable presentations give little information about the space. What properties of the space can be detected from a computable presentation?

Before proving the result, let us illustrate how computable presentations give little information about the space. What properties of the space can be detected from a computable presentation?

Dense subspace

A computable topological presentation of (X, τ) is also a topological presentation of any dense subspace $Y \subseteq X$. Therefore, most properties cannot be detected:

- Connectedness: $[0, 1/2) \cup (1/2, 1]$ is dense in [0, 1],
- Dimension: \mathbb{Q} is dense in \mathbb{R} .

Let us assume that (X, τ) is compact Polish. The dense subset trick does not apply anymore.

Can we detect:

• Connectedness?

Let us assume that (X, τ) is compact Polish. The dense subset trick does not apply anymore.

Can we detect:

• Connectedness?

No: $[0,1] \sqcup [0,1]$ and [0,1] share a top. presentation.

Let us assume that (X, τ) is compact Polish. The dense subset trick does not apply anymore.

Can we detect:

Connectedness?
No: [0,1] ⊔ [0,1] and [0,1] share a top. presentation.

Let us assume that (X, τ) is compact Polish. The dense subset trick does not apply anymore.

Can we detect:

• Dimension?

Let us assume that (X, τ) is compact Polish. The dense subset trick does not apply anymore.

Can we detect:

• Dimension?

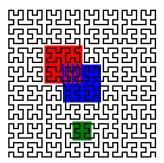
No: [0, 1] and $[0, 1]^2$ share a top. presentation.

Let us assume that (X, τ) is compact Polish. The dense subset trick does not apply anymore.

Can we detect:

• Dimension?

No: [0,1] and $[0,1]^2$ share a top. presentation.



Some invariants can be detected:

• Whether X has an isolated point:

 $\exists i, \underbrace{\forall j, k, [(B_i \cap B_j \neq \emptyset \text{ and } B_k \cap B_i \neq \emptyset) \implies B_j \cap B_k \neq \emptyset]}_{B_i \text{ is a singleton}}.$

• Whether the isolated points are dense:

 $\forall l, \exists i, B_i \cap B_l \neq \emptyset$ and B_i is a singleton.

Theorem

Every compact Polish space has a computable topological presentation.

Moreover,

- All the perfect compact Polish spaces share a common comp. top. pres.
- All the compact Polish spaces with an infinite dense set of isolated points share a common comp. top. pres.

Definition

A function $f: X \to Y$ is almost injective if the set

$$\left\{ x \in X : f^{-1}(f(x)) = \{x\} \right\}$$

is dense.

Lemma

Let $f : X \to Y$ be continuous, almost injective, surjective. Let $(B_i)_{i \in \mathbb{N}}$ be a computable topological presentation of X, which is closed under finite unions.

Define

$$C_i = \{y : f^{-1}(y) \subseteq B_i\} = Y \setminus f(X \setminus B_i).$$

Then $(C_i)_{i \in \mathbb{N}}$ is a computable topological presentation of Y, formally equivalent to $(B_i)_{i \in \mathbb{N}}$.

Lemma (Binary expansion)

Every perfect compact Polish space is the continuous image of an almost injective function $f: 2^{\omega} \to X$.

Let $(B_i)_{i \in \mathbb{N}}$ be the family of clopen subsets of 2^{ω} .

Corollary

The family $(B_i)_{i \in \mathbb{N}}$ is a computable presentation of any perfect compact Polish space.

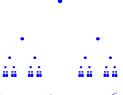


Figure: The space $2^{\leq \omega}$

Lemma

Every compact Polish space whose isolated are dense is the continuous image of an almost injective function $f: 2^{\leq \omega} \to X$.

Let $(B_i)_{i \in \mathbb{N}}$ be the family of clopen subsets of $2^{\leq \omega}$.

Corollary

The family $(B_i)_{i \in \mathbb{N}}$ is a computable presentation of any compact Polish space whose isolated points are dense.

Corollary

Every separable metrizable space has a computable presentation.

Corollary

Every separable metrizable space has a computable presentation.

Proof.

Compactification:

• Embed X in the Hilbert cube $[0, 1]^{\omega}$,

Corollary

Every separable metrizable space has a computable presentation.

Proof.

Compactification:

- Embed X in the Hilbert cube $[0, 1]^{\omega}$,
- cl(X) is compact Polish, so it has a computable presentation,

Corollary

Every separable metrizable space has a computable presentation.

Proof.

Compactification:

- Embed X in the Hilbert cube $[0,1]^{\omega}$,
- cl(X) is compact Polish, so it has a computable presentation,
- X is dense in cl(X).

Theorem

Every countably-based space has a computable presentation.

Theorem

Every countably-based space has a computable presentation.

Proof.

• Embed X in $\mathcal{P}(\omega)$,

Theorem

Every countably-based space has a computable presentation.

Proof.

- Embed X in $\mathcal{P}(\omega)$,
- X is dense in cl(X),

Theorem

 $\label{eq:every-countably-based-space-has-a-computable-presentation.$

Proof.

- Embed X in $\mathcal{P}(\omega)$,
- X is dense in cl(X),
- The space $M = \max(\operatorname{cl}(X))$ is zero-dimensional and countably-based, hence metrizable, so M has a computable presentation,

Theorem

 $\label{eq:every-countably-based-space-has-a-computable-presentation.$

Proof.

- Embed X in $\mathcal{P}(\omega)$,
- X is dense in cl(X),
- The space $M = \max(\operatorname{cl}(X))$ is zero-dimensional and countably-based, hence metrizable, so M has a computable presentation,
- Transfer the computable presentation of M to X.

Conclusion

The notion of computable presentation is actually not restrictive. However, in combination with other computability properties it is restrictive.

¹Strong \equiv the set $\{i : B_i \neq \emptyset\}$ is computable

Conclusion

The notion of computable presentation is actually not restrictive.

However, in combination with other computability properties it is restrictive.

For instance: Grubba, Schröder, Weihrauch 2007:

• Computably topological + computably regular \iff computable metric space

¹Strong \equiv the set $\{i : B_i \neq \emptyset\}$ is computable

Conclusion

The notion of computable presentation is actually not restrictive.

However, in combination with other computability properties it is restrictive.

For instance: Grubba, Schröder, Weihrauch 2007:

• Computably topological + computably regular \iff computable metric space

Assuming computable compactness,

- Strong¹ computably topological \iff Computably Polish
- Computably topological $\stackrel{?}{\iff}$ Right-c.e. Polish

¹Strong \equiv the set $\{i : B_i \neq \emptyset\}$ is computable