
A collisions attack on the 7-rounds Rijndael

Henri Gilbert and Marine Minier

Centre National d’Etudes des Télécommunications

38-40, rue du Général Leclerc

92794 Issy les Moulineaux Cedex 9 - France
email : henri.gilbert@cnet.francetelecom.fr

Abstract

Rijndael is one of the five candidate blockciphers selected by NIST for
the final phase of the AES selection process. The best attack of Rijndael
so far is due to the algorithm designers. This attack is based upon the
existence of an efficient distinguisher between 3 Rijndael inner rounds and
a random permutation, and it is limited to 6 rounds for each of the three
possible values of the keysize parameter (128 bits, 196 bits and 256 bits).
In this paper, we construct an efficient distinguisher between 4 inner
rounds of Rijndael and a random permutation of the blocks space, by
exploiting the existence of collisions between some partial functions in-
duced by the cipher. We present an attack based upon this 4-rounds
distinguisher that requires 232 chosen plaintexts and is applicable to up
to 7-rounds for the 196 keybits and 256 keybits version of Rijndael.
Since the minimal number of rounds in the Rijndael parameter settings
proposed for AES is 10, our attack does not endanger the security of the
cipher, indicate any flaw in the design or prove any inadequacy in selec-
tion of number of rounds. The only claim we make is that our results
represent improvements of the previously known cryptanalytic results on
Rijndael.

1 Introduction

Rijndael [DaRi98], a blockcipher designed by Vincent Rijmen and Joan Daemen,
is one of the 5 finalists selected by NIST in the Advanced Encryption Standard
competition [AES99]. It is a variant of the Square blockcipher, due to the same
authors [DaKnRi97]. It has a variable block length b and a variable key length
k, which can be set to 128, 192 or 256 bits. The recommended nr number of
rounds is determined by b and k, and varies between 10 and 14. In the sequel
we will sometimes use the notation Rijndael/b/k/nr to refer to the Rijndael
variant determined by a particular choice of the b, k and nr parameters.

1



The best Rijndael attack published so far is due to the algorithm designers
[DaRi98]. It is a variant of a the ”Square” attack, and exploits the byte-oriented
structure of Rijndael [DaKnRi97]. This attack is based upon an efficient dis-
tinguisher between 3 Rinjndael inner rounds and a random permutation. It is
stated in [DaRi98] that ”for the different block lengths of Rinjdael no extensions
to 7 rounds faster than exhaustive search have been found”.
In this paper we describe an efficent distinguisher beween 4 Rindael inner
rounds and a random permutation, and we present resulting 7-rounds attacks
of Rijndael/b=128 based on which are substantially faster than an exhaustive
key search for the k = 196 bits and k = 256 bits versions and marginally faster
than an exhaustive key search for the k = 128 bits version.

This paper is organised as follows. Section 2 provides an outline of the cipher.
Section 3 investigates ”partial functions” induced by the cipher and describes a
distinguisher for 4 inner rounds. Section 4 presents 7-rounds attacks based on
the 4-rounds distinguisher of Section 3. Section 5 concludes the paper.

2 An outline of Rijndael/b = 128

In this Section we briefly described the Rijndael algorithm. We restrict our
description to the b=128 bits blocksize and will consider no other blocksize in
the rest of this paper.
The algorithm consists of a key schedule and an iterated encryption fonction
with nr rounds. The key schedule derives nr+1 128-bit round keys K0 to Knr

from the k = 128, 196 or 256 bits long Rijndael key K. Since attacks presented
in the sequel do not use the details of the dependence between round keys, we
do not provide a description of the key schedule.
The encryption function is the composition of numerous elementary block per-
mutations. The current 128-bit block value B is represented by a 4× 4 matrix
:

B =

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

Rijndael uses four elementary mappings :

• the σ=ByteSub byte substitution transforms each of the 16 input bytes
under a fixed byte permutation P (the Rijndael S-box).

• the ρ=ShiftRow rows shift circularly shifts row i(i = 0to3) in the B matrix
by i bytes to the rigth.

• the µ=MixColumn is a matrix multiplication by a fixed GF(28) matrix

• the κr=KeyAddition is a bitwise addition with a 128-bit round key Kr.

2



The Rijndael cipher is composed by an initial round key addition κ0, nr− 1
inner rounds and a final transformation. The rth inner round (1 ≤ r ≤ nr − 1)
is defined as the κr ◦ µ ◦ ρ ◦ σ function. The final transformation at the round
nr is an inner round without Mixcolumn mapping : FinalRound = κnr ◦ ρ ◦ σ.
We can thus summarise the cipher as follows:

B:=κ0(B);
For r = 1 to nr − 1
B:=InnerRound(B);
FinalRound(B);

Remarks :

• σ is the single non GF (8)-linear function of the whole cipher.

• The Rijndael S-box P is the composition of the multiplicative in-
verse function in GF(8) (NB : ’00’ is mapped into itself) and a fixed
GF(2)-affine byte transformation. If the affine part of P was omit-
ted, algebraic methods (e.g. interpolation attacks) could probably
be considered for the cryptanalysis of Rijndael.

• The µ ◦ ρ linear part of Rijndael appears to have been carefully de-
signed. It achives a full diffusion after 2 rounds, and the Maximum
Distance Separability (MDS) property of µ prevents good differen-
tial or linear ”characteristics” since it ensures that two consecutive
rounds involve many active S-boxes.

3 Distinguishing 4 inner rounds of Rijndael/b=128

from a random permutation

3.1 Notation

Figure 1 represents 4 consecutive inner round functions of Rijndael associated
with any 4 fixed unknown 128-round keys. Y,Z,R, S represent the input blocks
of the 4 rounds and T represents the output of the 4th round. We introduce
short notations for some particular bytes of Y,Z,R, S, T , which play a particular
role in the sequel : y = Y0,0, z0 = Z0,0, z1 = Z1,0, z2 = Z2,0, z3 = Z3,0, and
so on. Finally we denote by c the (c0 = Y1,0, c1 = Y2,0, c2 = Y3,0) triplet of Y
bytes.
Let us fix all the Y bytes but y to any 11-uple of constant values. So the c

triplet is assumed to be equal to a constant (c0, c1, c2) triplet, and the 12 Yi,j ,
i=1 to 3, j=0 to 3 are also assumed to be constant. The 4 Rinjndael rounds
represented on Figure induce one byte to one byte functions that associate each
of the Z,R, S, T bytes introduced above with the y input byte. Thus we denote
by zc0[y] to z

c
3[y], r

c
0[y] to r

c
3[y], s

c[y], tc0[y] to t
c
3[y], the zi, ri, s, ti byte value

associated with a c constant and one y ∈ 0..255 value.

3



X y

c0
c1
c2

Y

↓ (4) key-dependent bytes

X z0
X z1
X z2
X z3

Z

↓ (4) c-dep and k-dep bytes

X r0
X r1

X r2
X r3

R

↓ (1) key-dependent byte

X s

S

↑

X t0
X t1
X t2
X t3

T

Figure 1: 4 inner rounds of Rijndael

4



3.2 The 3-rounds distinguisher used in the Rijndael/b=128
designers’ attack

The Rijndael designers’ attack is based upon the observations that : - z0 to z3
are one to one functions of y and the other Z bytes are constant - r0 to r3 bytes
are one to one functions of y (as well as the 12 other R bytes) - s is the XOR

of four one to one functions of y and thus
∑255

y=0 s[y] = 0.
Thus 3 consecutive inner rounds of Rijndael have the distinguishing property

that if all Y bytes but y are fixed and y is taken equal to each of the 256 possible
values, then the sum of the 256 resulting s values is equal to zero.
This leads to a 6-rounds attack (initial key addition followed by 5 inner

rounds followed by final round). Under an assumption on 4 initial key addition
key bytes, an initial round (initial key addition followed by 1 inner round can
be added on top) and two additional rounds can be added at the end (namely
one additional inner round followed by one final round).Under an assumption
on 5 additional keybytes (4 final round key bytes and one combination of the
additional inner round bytes), this attack need 232 plaintext with a complexity
equal to 280 encryption.

3.3 A 4-rounds distinguisher for Rijndael/b = 128

We now analyse in detail the dependency of the one byte to one byte functions
introduced in Section 3.1 in the c constant and the expanded key. We show
that the sc[y] function is entirely determined by a surprisingly small number of
unknown bytes, which either only depend upon the key or depend upon both
the key and the c value. This provides an efficient test for distinguishing 4 inner
rounds of Rijndael from a random permutation.
The construction of the proposed distinguisher is based upon the following

observations, which are illustrated in Figure 1.

Property 1 : At round 1, the y → zc0[y] one to one function is independent of
the value of the c triplet and is entirely determined by one key byte. The
same property holds for z1, z2, z3. This is because inside at the output of
the ShiftRow function inside the first inner round the c0 to c2 constants
only affect columns 1 to 3 of the current block value, whereas the z0 to z3
bytes entirely depend upon column 0.

Property 2 : At round 2, the r0[y] value is one to one function of z0[y], and
the r0[y] → z0[y] is entirely determined by one single unknown constant
byte that is entirely determined by c and the second inner round key .
For similar reasons, the one to one relation between r2[y] and z2[y] (resp.
r3[y] and z3[y]) is entirely determined by one single unknown constant
byte. Consequently, the r0[y] to r3[y] are one to one functions of y and
these four functions are entirely determined by the 4 c-independent and
key-dependent constant unknown bytes introduced in property (1) and
the 4 c- and k-dependent bytes.

5



Property 3 : At round 3, the s byte can be expressed as a function of the r0
to r3 bytes and one c-independent and key-dependent unkown constant.
Consequently, the sc[y] function is entirely determined by 5 c-ind and
key-dep constant and 4 key-dep and c-dep constants

Property 4 : Let us we consider the decryption of the fourth inner round : s
can be expressed as s = p−1[(0E.t0+0B.t1+0D.t2+09.t3)+ k5] where p
represents the single S-box. In other words 0E.t0 + 0B.t1 + 0D.t2 + 09.t3
is a one to one function of s, and that function is entirely determined by
1 single key byte k5. Thus 0E.t0+0B.t1+0D.t2+09.t3 is a function of y
that is entirely determined by 6 unknown bytes which only depend upon
the key and by 4 additional unknown bytes which depend both upon c

and the key.

Properties (3) and (4) provides an efficient 4-rounds distinguisher. We can
restate property (4) in saying thay the sc[y] function is entirely determined (in
a key-dependent manner) by 4 c-dependent bytes. Let us make the heuristic as-
sumption that these 4 unknown c-dependent bytes behave as a random function
of the c triplet of bytes. By the birthday paradox, given a C set of about 216 c
triplet values, there exist with a non negligible probability two distinct c′ and c′′

C such that the sc
′

[y] and sc
′′

[y] functions induced by c′ and c′′ are equal (i.e. in
other words such that the (sc

′

[y])y=0..255 and (s
c′′ [y])y=0..255 lists of 256 bytes are

equal). Property (4) provides a method to test such a ”collision”, using the t0 to
t3 output bytes of 4 inner rounds : c

′ and c′′ collide if and only if ∀y ∈ [0, ..., 255],
0E.tc

′

0 +0B.t
c′

1 +0D.t
c′

2 +09.t
c′

3 = 0E.t
c′′

0 +0B.t
c′′

1 +0D.t
c′′

2 +09.t
c′′

3 . Note that
it is sufficient to test the above equality on a limited number of y values (say 16
for instance) to know with a quite negligible ”false alarms” probability whether
c′ and c′′ collide.
The proposed 4-round distinguisher uses the above collision test is the fol-

lowing manner :

• select a C set of about 216c triplet values and a subset of 0..255, say for
instance a Λ subset of 16 y values.

• for each c triplet value, compute the Lc = (0E.tc0 + 0B.t
c
1 + 0D.t

c
2 +

09.tc3)y∈Λ. We claim that such a computation of 16 linear combinations
of the outputs represents substantially less than one single Rijndael oper-
ation.

• check whether two of the above lists, Lc′ and Lc′′ are equal. The 4 round
distinguisher requires about 220 chosen inputs Y , and since the collision
detection computations (based on the analysis of the corresponding T

values) require less operations than the 220 4-inner rounds computations,
the complexity of the distinguisher is less than 220 Rijndael encryptions.

Note that property (4) also provides a method to distinguish 4 inner round
from a random permutation, using N ≤ 256 plaintexts and 280 N operations
(note that a value such as N = 16 is far sufficient in practice). However, the
birthday paradox provides another, more efficient, distinguisher.

6



4 An attack of the 7-rounds Rijndael/b=128 ci-

pher with 232 chosen plaintexts

In this Section we show that the 4-inner round distinguisher of Section 3 pro-
vides attacks of the 7-rounds Rijndael for the b=128 blocksize and the various
keysizes. We present two slightly different attacks. The first one (cf Section 4.2
hereafter) is substantially faster than an exhaustive search for the k=196 and
k=256 keysizes, but slower than exhaustive search of the k=128 bits keysize.
The second attack (cf Section 4.2) is dedicated to the k=128 keysize, and is
marginally faster than an exhaustive search for that keysize.
The 7-rounds Rijndael is depicted at Figure 2. X represents a plaintext

block, and V represents a cipher block. In Figure 2 the 4 inner rounds of Figure
1 are surrounded by one initial X → Y round (which consists of an initial key
addition followed by one first inner round), and two final rounds (which consists
of one T → U inner round followed by an U → V final round).
Our attack method is basically a combination of the 4-round distinguisher

presented in Section 3 and an exhaustive search of some keybytes (or combina-
tions of keybytes) of the initial and the two final rounds. In the attack of Section
4.1 we are using the property that in the equations provided by the 4-rounds
distinguisher there is a variables separations in terms which involve one half of
the 2 last rounds keybytes and terms which involve a second half of the 2 last
round key bytes to save a 280 factor in the exhaustive search complexity. In
the attack of Section 4.2, we are using precomputations on colliding pairs of c
values to test each 128-bits key assumption with less operations than one single
Rijndael encryption.

4.1 An attack of the 7-rounds Rijndael/b=128/k=196 or
256 with 232 chosen plaintexts and a complexity of
about 2140

We now explain the attack procedure in some details, using the notation intro-
duced in Figure 2. We fix all X bytes but the four bytes x0 to x3 equal to 12
arbirary constant values. We encrypt the 232 plaintexts obtained by taking all
possible values for the x0 to x3 bytes, thus obtaining 2

32 V ciphertext blocks.
We are using the two following observations :

Property 5 : If 4 keybytes added with the x0 to x3 bytes in the initial key
addition are known (let us denote them by kini = (k0, k1, k2, k3), then it is
possible to partition the 232 plaintexts in 224 subsets of 256 plaintext values
satsifying the conditions of Section 3, i.e. such that the corresponding 256
Y values satisfy the following conditions :
- the y byte takes 256 distinct values (that are known up to an unknown
constant first round key byte which is not required for the attack).
- the c = (c0, c1, c2) triplet of bytes is constant ; moreover, each of the
224 subsets corresponds to a distinct c value (the c value corresponding to

7



X x0
X x1

X x2
X x3

X

↓

X y

c0
c1
c2

Y

↓

X z0
X z1
X z2
X z3

Z

↓

X r0
X r1

X r2
X r3

R

↓

X s

S

↑

X t0
X t1
X t2
X t3

T

↑

X X X X u0,0
X X X X ...
X X X X ...
X X X X u3,3

U

↑

X X X X v0,0
X X X X ...
X X X X ...
X X X X v3,3

V

Figure 2: 7-rounds Rijndael

8



each subset is known up to three constant first round keybytes which are
not required for the attack).
- the 12 other Y bytes are constant and their constant values Yi,j for i=1..3
and j=0..3 is the same for all subsets.
Note that the same property is used in the Rinjdael designers’ attack.

Property 6 : Each of the t0, t1, t2, t3 bytes can be expressed as a function of
four ciphertext bytes and five unknwon key bytes (i.e. 4 of the final round
key bytes and one linear combination of the penultimate round key bytes).
Therefore, we can ”split” the tc[y] =′ 0E′.tc0[y] +

′ 0B′.tc1[y] +
′ 0D′.tc2[y] +

′

09′.tc3[y] combination of the four t
c
i [y] bytes considered in the 4-rounds

distinguisher as the XOR of two terms τ c1 [y] and τ
c
2 [y] which can each be

expressed as a function of 8 ciphertext bytes and 10 unknown key bytes,
namely τ1 =

′ 0E′.tc0[y] +
′ 0B′.tc1[y] and τ2 =

′ 0D′.tc2[y] +
′ 09′.tc3[y]. We

denote in the sequel by kτ1 those 10 unknown keybytes which allow to
derive τ1 from 8 bytes of the V ciphertext, and by kτ2 those 10 keybytes
that allow to derive τ1 from 8 bytes of the V ciphertext.

We perform an efficient exhaustive search of the kini, kτ1 and kτ2 keys in the
following way :

• For each of the 232 possible kini assumptions, we can select 256
2 subsets

(of 256 X plaintexts each) associated with one distinct c constant each.
Note that the c value associated with a subset and the y values associated
with each of the X plaintexts of a subset are only known up to unknown
keybits, but this does not matter for our attack. We can denote by c∗
and y∗ the known values which only differ from the actual values by fixed
unknown key bits.

• Now for each subset associated with a c∗ constant triplet, based on the
say the 16 ciphertexts associated with the y∗ = 0 to y∗ = 15 values, we
can precompute the (τ c1 (y∗))y∗=0..15 16-tuple of bytes for each of the 2

80

possible kτ1 keys. We can also precompute the (τ
c
2 (y∗))y∗=0..15 16-tuple

for each of the 280 possible kτ2 keys.

Based on this precomputation, for each (c′∗, c′′∗) pair of distinct c* values :

• We precompute a (sorted) table the (τ c
′

1 (y∗) ⊕ τ c
′′

1 (y∗))y∗=0..15 16-tuple
of bytes for each of the 280 possible kτ1 keys (the computation of each
16-tuple just consists in xoring two precomputed values)

• For each of the 280 possible values of the kτ2 key, we compute the (τ
c′

2 (y)⊕
τ c

′′

2 (y))y=0..15 16-tuple of bytes associated with the observed ciphertext,
and check whether this t-uple belongs to the precomputed table of 16-
tuple (τ c

′

1 (y∗)⊕ τ
c′′

1 (y∗))y∗=0..15. If for a given kτ1 value there exists a kτ2
value such that (τ c

′

1 (y∗)⊕τ
c′′

1 (y∗))y∗=0..15 = (τ
c′

2 (y)⊕τ
c′′

2 (y))y∗=0..15, (i.e.

tc
′

[y] = tc
′′

[y] for each of the y values associated with y∗ = 0 to 16, this
represents an alarm). The equality between the t bytes associated with c′

9



and c′′ is checked for the other y∗ values. If the equality is confirmed, this
means that a collision between the sc[y] functions associated with c′ and
c′′. This provides 20 bytes of information on the last and penultimate key
values, since with overwhelming probability, the right values of kini, kτ1
and kτ2 have then been found.

Since a random subset 2562 of the 2564 possible sc[y] functions has been tested,
the probability of the above procedure to result in a collision, and thus to provide
kini, kτ1 and kτ2 is high (say about 1/2). In other words, the success probability
of the attack is about 1/2.
Once kini, kτ1 and kτ2 have been found, the 16-bytes final round key is

entirely determined and the final round can be decrypted, so one is left with the
problem of cryptanalysing the 6-round version of Rinjdael. One might object
that the last round of the left 6-round cipher is not a final round, but an inner
round. However, it is easy to see that by applying a linear one to one change of
variable to U and the 6th round key (i.e. replacing U by a U ′ linear function
of U and K6 by a linear function K

′ of K), the last round can be represented
as a final round (i.e. U ′ is the image of T by the final round associated with
K ′). Thus we have in fact left with the cryptanalysis of the 6-round Rijndael,
and the last round subkey is easy to derive. The process of deriving the subkeys
of the various rounds can then be continued (using a subset of the 232 chosen
plaintexts used for the derivation of kini, kτ1 and kτ2), with negligible additional
complexity, until the entire key has eventually been recovered.

4.2 An attack of the 7-rounds Rijndael/b=128/k=128 232

chosen plaintext

We now outline a variant of the former attack that is dedicated to the k=128
bits version of Rijndael and is marginally faster than an exhaustive search. This
attack requires a large amount of precomputations.

As a matter of fact, it can be shown that the 4 c-dependent bytes that de-
termine the mapping between four zci [y] bytes and the four r

c
i [y] are entirely

determined by 12 key-dependent (and c-independent) bytes. For each of the
25612 possible values of this φ(K) 12-tuple of bytes, we can compute colliding
c′ and c′′ triplets of bytes (this can be done performing about 2562 partial Ri-
jndael computations corresponding to say 2562 distinct c values and looking for
a collision. One can accept that no collision be found for some φ(K) values :
this just means that the attack will fail for a certain fraction (say 1/2) of the
key values). We store c′ and c′′ (if any) in a table of 25612 φ(K) entries.

Now we perform an exhaustive search of the K key. To test a key assump-
tion, we compute the kini, kτ1 , kτ2 and φ(K) values. Then we find the (c

′, c′′)
pair of colliding c values in the precomputed table, compute the two associ-
ated c′∗ and c′′ values, determine which two precomputed lists (V c′ [y])y∗=0..15
(V c′′ [y])y∗=0..15of 16 cipertext values each are associated with c

′∗ and c′′∗, and

10



finally compute the associated (tc
′

[y])y∗=0..15 and (t
c′′ [y])y∗=0..15 bytes by means

of partial Rijndael decryption. The two values associated with y∗ = 0 are first
computed and compared. The two values associated with y∗ = 1 are only com-
puted and compared if they are equal, etc, thus in average only two partial
decryption are performed. It the two lists of 16 t bytes are equal, then there is
an alarm, and the K is further tested with a few plaintexts and ciphertexts.

We claim than the complexity of the operations performed to test one K
key is marginally less than one Rijndael encryption.

5 Conclusion

We have shown existence of collisions on 4-rounds of Rijndael, that permit
us to create a distinguisher between 4-inner rounds of Rijndael and a random
permutation and to mount an attack on a 7-rounds version of Rijndael for any
key-lengths. This attack is not praticable because its complexity is very high
even if the number of plaintexts to cipher is small. The complete version of
Rijndael on ten rounds is not in danger.
Our future works concern performance of keyderivation : how to avoid test-

ing each (c′∗, c′′∗) pair separately or take opportunity of the keyschedule ? We
will investigate other block values. We will work too on an amelioration of the
extentions at end by using algebraic properties of S-box. This paper should not
be used as an argument against Rijndael in the AES competition.

References

[AES99] http://www.nist.gov/aes

[DaKnRi97] J. Daemen, L.R. Knudsen and V. Rijmen, “The Block Cipehr
Square”. In Fast Software Encryption - FSE’97 , pp. 149-165,
Springer Verlag, Haifa, Israel, January 1997.

[DaRi98] J. Daemen, V. Rijmen, ”AES Proposal : Rijndael”, The First Ad-

vanced Encryption Standard Candidate Conference, N.I.S.T., 1998.

11


