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Abstract. We explore the effect of dimensionality on the “nearest neigh-
bor” problem. We show that under a broad set of conditions (much
broader than independent and identically distributed dimensions), as di-
mensionality increases, the distance to the nearest data point approaches
the distance to the farthest data point. To provide a practical perspec-
tive, we present empirical results on both real and synthetic data sets
that demonstrate that this effect can occur for as few as 10-15 dimen-
sions.
These results should not be interpreted to mean that high-dimensional
indexing is never meaningful; we illustrate this point by identifying some
high-dimensional workloads for which this effect does not occur. How-
ever, our results do emphasize that the methodology used almost uni-
versally in the database literature to evaluate high-dimensional indexing
techniques is flawed, and should be modified. In particular, most such
techniques proposed in the literature are not evaluated versus simple lin-
ear scan, and are evaluated over workloads for which nearest neighbor
is not meaningful. Often, even the reported experiments, when analyzed
carefully, show that linear scan would outperform the techniques being
proposed on the workloads studied in high (10-15) dimensionality!

1 Introduction

In recent years, many researchers have focused on finding efficient solutions
to the nearest neighbor (NN) problem, defined as follows: Given a collection
of data points and a query point in an m-dimensional metric space, find the
data point that is closest to the query point. Particular interest has centered
on solving this problem in high dimensional spaces, which arise from tech-
niques that approximate (e.g., see [24]) complex data—such as images (e.g.
[15,28,29,21,29,23,25,18,3]), sequences (e.g. [2,1]), video (e.g. [15]), and shapes
(e.g. [15,30,25,22])—with long “feature” vectors. Similarity queries are performed
by taking a given complex object, approximating it with a high dimensional vec-
tor to obtain the query point, and determining the data point closest to it in the
underlying feature space.

This paper makes the following three contributions:
1) We show that under certain broad conditions (in terms of data and query dis-
tributions, or workload), as dimensionality increases, the distance to the nearest
neighbor approaches the distance to the farthest neighbor. In other words, the
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contrast in distances to different data points becomes nonexistent. The conditions
we have identified in which this happens are much broader than the indepen-
dent and identically distributed (IID) dimensions assumption that other work
assumes. Our result characterizes the problem itself, rather than specific algo-
rithms that address the problem. In addition, our observations apply equally to
the k-nearest neighbor variant of the problem. When one combines this result
with the observation that most applications of high dimensional NN are heuris-
tics for similarity in some domain (e.g. color histograms for image similarity),
serious questions are raised as to the validity of many mappings of similarity
problems to high dimensional NN problems. This problem can be further exac-
erbated by techniques that find approximate nearest neighbors, which are used
in some cases to improve performance.
2) To provide a practical perspective, we present empirical results based on syn-
thetic distributions showing that the distinction between nearest and farthest
neighbors may blur with as few as 15 dimensions. In addition, we performed
experiments on data from a real image database that indicate that these dimen-
sionality effects occur in practice (see [13]). Our observations suggest that high-
dimensional feature vector representations for multimedia similarity search must
be used with caution. In particular, one must check that the workload yields a
clear separation between nearest and farthest neighbors for typical queries (e.g.,
through sampling). We also identify special workloads for which the concept of
nearest neighbor continues to be meaningful in high dimensionality, to empha-
size that our observations should not be misinterpreted as saying that NN in
high dimensionality is never meaningful.
3) We observe that the database literature on nearest neighbor processing tech-
niques fails to compare new techniques to linear scans. Furthermore, we can
infer from their data that a linear scan almost always out-performs their tech-
niques in high dimensionality on the examined data sets. This is unsurprising
as the workloads used to evaluate these techniques are in the class of “badly
behaving” workloads identified by our results; the proposed methods may well
be effective for appropriately chosen workloads, but this is not examined in their
performance evaluation.

In summary, our results suggest that more care be taken when thinking of
nearest neighbor approaches and high dimensional indexing algorithms; we sup-
plement our theoretical results with experimental data and a careful discussion.

2 On the Significance of “Nearest Neighbor”

The NN problem involves determining the point in a data set that is nearest
to a given query point (see Figure 1). It is frequently used in Geographical
Information Systems (GIS), where points are associated with some geographical
location (e.g., cities). A typical NN query is: “What city is closest to my current
location?”

While it is natural to ask for the nearest neighbor, there is not always a
meaningful answer. For instance, consider the scenario depicted in Figure 2.
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Query Point

Nearest Neighbor

Fig. 1. Query point and its nearest neighbor.

Query Point

Center of Circle

Nearest Neighbor

Fig. 2. Another query point and its nearest neighbor.

Even though there is a well-defined nearest neighbor, the difference in distance
between the nearest neighbor and any other point in the data set is very small.
Since the difference in distance is so small, the utility of the answer in solving
concrete problems (e.g. minimizing travel cost) is very low. Furthermore, consider
the scenario where the position of each point is thought to lie in some circle with
high confidence (see Figure 3). Such a situation can come about either from
numerical error in calculating the location, or “heuristic error”, which derives
from the algorithm used to deduce the point (e.g. if a flat rather than a spherical
map were used to determine distance). In this scenario, the determination of a
nearest neighbor is impossible with any reasonable degree of confidence!

While the scenario depicted in Figure 2 is very contrived for a geographical
database (and for any practical two dimensional application of NN), we show
that it is the norm for a broad class of data distributions in high dimensionality.
To establish this, we will examine the number of points that fall into a query
sphere enlarged by some factor ε (see Figure 4). If few points fall into this
enlarged sphere, it means that the data point nearest to the query point is
separated from the rest of the data in a meaningful way. On the other hand, if
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Query Point

Fig. 3. The data points are approximations. Each circle denotes a region where
the true data point is supposed to be.
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Fig. 4. Illustration of query region and enlarged region. (DMIN is the distance
to the nearest neighbor, and DMAX to the farthest data point.)

many (let alone most!) data points fall into this enlarged sphere, differentiating
the “nearest neighbor” from these other data points is meaningless if ε is small.
We use the notion instability for describing this phenomenon.

Definition 1 A nearest neighbor query is unstable for a given ε if the distance
from the query point to most data points is less than (1 + ε) times the distance
from the query point to its nearest neighbor.

We show that in many situations, for any fixed ε > 0, as dimensionality rises,
the probability that a query is unstable converges to 1. Note that the points
that fall in the enlarged query region are the valid answers to the approximate
nearest neighbors problem (described in [6]).

3 NN in High-Dimensional Spaces

This section contains our formulation of the problem, our formal analysis of the
effect of dimensionality on the meaning of the result, and some formal implica-
tions of the result that enhance understanding of our primary result.
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3.1 Notational Conventions

We use the following notation in the rest of the paper:

A vector: x
Probability of an event e: P [e].
Expectation of a random variable X: E [X ].
Variance of a random variable X: var (X).
IID: Independent and identically distributed.

(This phrase is used with reference to the values assigned to a collection of
random variables.)

X ∼ F : A random variable X that takes on values following the distribution
F .

3.2 Some Results from Probability Theory

Definition 2 A sequence of random vectors (all vectors have the same arity)
A1, A2, . . . converges in probability to a constant vector c if for all ε > 0
the probability of Am being at most ε away from c converges to 1 as m → ∞.
In other words:

∀ε > 0 , lim
m→∞P [‖Am − c‖ ≤ ε] = 1

We denote this property by Am →p c. We also treat random variables that are
not vectors as vectors with arity 1.

Lemma 1 If B1, B2, . . . is a sequence of random variables with finite variance
and limm→∞E [Bm] = b and limm→∞ var (Bm) = 0 then Bm →p b.

A version of Slutsky’s theorem Let A1, A2, . . . be random variables (or
vectors) and g be a continuous function. If Am →p c and g(c) is finite then
g(Am) →p g(c).

Corollary 1 (to Slutsky’s theorem) If X1, X2, . . . and Y1, Y2, . . . are se-
quences or random variables s.t. Xm →p a and Ym →p b 6= 0 then Xm/Ym →p

a/b.

3.3 Nearest Neighbor Formulation

Given a data set and a query point, we want to analyze how much the distance
to the nearest neighbor differs from the distance to other data points. We do
this by evaluating the number of points that are no farther away than a factor
ε larger than the distance between the query point and the NN, as illustrated
in Figure 4. When examining this characteristic, we assume nothing about the
structure of the distance calculation.

We will study this characteristic by examining the distribution of the dis-
tance between query points and data points as some variable m changes. Note
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that eventually, we will interpret m as dimensionality. However, nowhere in the
following proof do we rely on that interpretation. One can view the proof as
a convergence condition on a series of distributions (which we happen to call
distance distributions) that provides us with a tool to talk formally about the
“dimensionality curse”.

We now introduce several terms used in stating our result formally.

Definition 3 :
m is the variable that our distance distributions may converge under (m ranges
over all positive integers).
F data1, F data2, . . . is a sequence of data distributions.
F query1, F query2, . . . is a sequence of query distributions.
n is the (fixed) number of samples (data points) from each distribution.
∀m Pm,1, . . . , Pm,n are n independent data points per m such that Pm,i ∼
F datam.
Qm ∼ F querym is a query point chosen independently from all Pm,i.
0 < p < ∞ is a constant.
∀m, dm is a function that takes a data point from the domain of F datam and a
query point from the domain of F querym and returns a non-negative real number
as a result.
DMINm = min {dm(Pm,i, Qm) |1 ≤ i ≤ n}.
DMAXm = max {dm(Pm,i, Qm) |1 ≤ i ≤ n}.

3.4 Instability Result

Our main theoretical tool is presented below. In essence, it states that assuming
the distance distribution behaves a certain way as m increases, the difference in
distance between the query point and all data points becomes negligible (i.e., the
query becomes unstable). Future sections will show that the necessary behavior
described in this section identifies a large class (larger than any other classes
we are aware of for which the distance result is either known or can be readily
inferred from known results) of workloads. More formally, we show:

Theorem 1 Under the conditions in Definition 3, if

lim
m→∞ var

(
(dm(Pm,1, Qm))p

E [(dm(Pm,1, Qm))p]

)
= 0 (1)

Then for every ε > 0

lim
m→∞P [DMAXm ≤ (1 + ε)DMINm] = 1

Proof Let µm = E [(dm(Pm,i, Qm))p]. (Note that the value of this expectation
is independent of i since all Pm,i have the same distribution.)
Let Vm = (dm(Pm,1, Qm))p/µm.
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Part 1: We’ll show that Vm →p 1.
It follows that E [Vm] = 1 (because Vm is a random variable divided by its
expectation.)
Trivially, limm→∞E [Vm] = 1.
The condition of the theorem (Equation 1) means that limm→∞ var (Vm) = 0.
This, combined with limm→∞E [Vm] = 1, enables us to use Lemma 1 to conclude
that Vm →p 1.

Part 2: We’ll show that if Vm →p 1 then

lim
m→∞P [DMAXm ≤ (1 + ε)DMINm] = 1.

Let Xm = (dm(Pm,1, Qm)/µm, . . . , dm(Pm,n, Qm)/µm) (a vector of arity n).
Since each part of the vector Xm has the same distribution as Vm, it follows
that Xm →p (1, . . . , 1).
Since min and max are continuous functions we can conclude from Slutsky’s
theorem that min(Xm) →p min(1, . . . , 1) = 1, and similarly, max(Xm) →p 1.
Using Corollary 1 on max(Xm) and min(Xm) we get

max(Xm)
min(Xm)

→p
1
1

= 1

Note that DMINm = µm min(Xm) and DMAXm = µm max(Xm). So,

DMAXm

DMINm
=

µm max(Xm)
µm min(Xm)

=
max(Xm)
min(Xm)

Therefore,
DMAXm

DMINm
→p 1

By definition of convergence in probability we have that for all ε > 0,

lim
m→∞P

[∣∣∣∣DMAXm

DMINm
− 1

∣∣∣∣ ≤ ε

]
= 1

Also,

P [DMAXm ≤ (1 + ε)DMINm]=P

[
DMAXm

DMINm
−1 ≤ ε

]
=P

[∣∣∣∣DMAXm

DMINm
−1

∣∣∣∣ ≤ ε

]

(P [DMAXm ≥ DMINm] = 1 so the absolute value in the last term has no effect.)
Thus,

lim
m→∞P [DMAXm ≤ (1 + ε)DMINm] = lim

m→∞P

[∣∣∣∣DMAXm

DMINm
− 1

∣∣∣∣ ≤ ε

]
= 1

In summary, the above theorem says that if the precondition holds (i.e., if the
distance distribution behaves a certain way as m increases), all points converge
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to the same distance from the query point. Thus, under these conditions, the
concept of nearest neighbor is no longer meaningful.

We may be able to use this result by directly showing that Vm →p 1 and using
part 2 of the proof. (For example, for IID distributions, Vm →p 1 follows readily
from the Weak Law of Large Numbers.) Later sections demonstrate that our
result provides us with a handy tool for discussing scenarios resistant to analysis
using law of large numbers arguments. From a more practical standpoint, there
are two issues that must be addressed to determine the theorem’s impact:

– How restrictive is the condition

lim
m→∞ var

(
(dm(Pm,1, Qm))p

E [(dm(Pm,1, Qm))p]

)
=

= lim
m→∞

var ((dm(Pm,1, Qm))p)
(E [(dm(Pm,1, Qm))p])2

= 0 (2)

which is necessary for our results to hold? In other words, it says that as
we increase m and examine the resulting distribution of distances between
queries and data, the variance of the distance distribution scaled by the
overall magnitude of the distance converges to 0. To provide a better under-
standing of the restrictiveness of this condition, Sections 3.5 and 4 discuss
scenarios that do and do not satisfy it.

– For situations in which the condition is satisfied, at what rate do distances be-
tween points become indistinct as dimensionality increases? In other words,
at what dimensionality does the concept of “nearest neighbor” become mean-
ingless? This issue is more difficult to tackle analytically. We therefore per-
formed a set of simulations that examine the relationship between m and the
ratio of minimum and maximum distances with respect to the query point.
The results of these simulations are presented in Section 5 and in [13].

3.5 Application of Our Theoretical Result

This section analyses the applicability of Theorem 1 in formally defined situ-
ations. This is done by determining, for each scenario, whether the condition
in Equation 2 is satisfied. Due to space considerations, we do not give a proof
whether the condition in Equation 2 is satisfied or not. [13] contains a full anal-
ysis of each example.

All of these scenarios define a workload and use an Lp distance metric over
multidimensional query and data points with dimensionality m. (This makes the
data and query points vectors with arity m.) It is important to notice that this is
the first section to assign a particular meaning to dm (as an Lp distance metric),
p (as the parameter to Lp), and m (as dimensionality). Theorem 1 did not make
use of these particular meanings.

We explore some scenarios that satisfy Equation 2 and some that do not. We
start with basic IID assumptions and then relax these assumptions in various
ways. We start with two “sanity checks”: we show that distances converge with
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IID dimensions (Example 1), and we show that Equation 2 is not satisfied when
the data and queries fall on a line (Example 2). We then discuss examples involv-
ing correlated attributes and differing variance between dimensions, to illustrate
scenarios where the Weak Law of Large Numbers cannot be applied (Examples
3, 4, and 5).

Example 1 IID Dimensions with Query and Data Independence.

Assume the following:

– The data distribution and query distribution are IID in all dimensions.
– All the appropriate moments are finite (i.e., up to the d2pe’th moment).
– The query point is chosen independently of the data points.

The conditions of Theorem 1 are satisfied under these assumptions. While this
result is not original, it is a nice “sanity check.” (In this very special case we
can prove Part 1 of Theorem 1 by using the weak law of large numbers. How-
ever, this is not true in general.) The assumptions of this example are by no
means necessary for Theorem 1 to be applicable. Throughout this section, there
are examples of workloads which cannot be discussed using the Weak Law of
Large Numbers. While there are innumerable slightly stronger versions of the
Weak Law of Large Numbers, Example 5 contains an example which meets our
condition, and for which the Weak Law of Large Numbers is inapplicable.

Example 2 Identical Dimensions with no Independence.

We use the same notation as in the previous example. In contrast to the previous
case, consider the situation where all dimensions of both the query point and
the data points follow identical distributions, but are completely dependent (i.e.,
value for dimension 1 = value for dimension 2 = . . .). Conceptually, the result
is a set of data points and a query point on a diagonal line. No matter how
many dimensions are added, the underlying query can actually be converted to
a one-dimensional nearest neighbor problem. It is not surprising to find that the
condition of Theorem 1 is not satisfied.

Example 3 Unique Dimensions with Correlation Between All Dimensions.

In this example, we intentionally break many assumptions underlying the IID
case. Not only is every dimension unique, but all dimensions are correlated with
all other dimensions and the variance of each additional dimension increases.
The following is a description of the problem.

We generate anmdimensional data point (or query point)Xm =(X1,. . ., Xm)
as follows:

– First we take independent random variables
U1, . . . , Um such that Ui ∼ Uniform(0,

√
i).

– We define X1 = U1.
– For all 2 ≤ i ≤ m define Xi = Ui + (Xi−1/2).

The condition of Theorem 1 is satisfied.
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Example 4 Variance Converging to 0.

This example illustrates that there are workloads that meet the preconditions of
Theorem 1, even though the variance of the distance in each added dimension
converges to 0. One would expect that only some finite number of the earlier
dimensions would dominate the distance. Again, this is not the case.

Suppose we choose a point Xm = (X1, . . . , Xm) such that the Xi’s are inde-
pendent and Xi ∼ N(0, 1/i). Then the condition of Theorem 1 is satisfied.

Example 5 Marginal Data and Query Distributions Change with Dimension-
ality.

In this example, the marginal distributions of data and queries change with di-
mensionality. Thus, the distance distribution as dimensionality increases cannot
be described as the distance in a lower dimensionality plus some new component
from the new dimension. As a result, the weak law of large numbers, which im-
plicitly is about sums of increasing size, cannot provide insight into the behavior
of this scenario. The distance distributions must be treated, as our technique
suggests, as a series of random variables whose variance and expectation can be
calculated and examined in terms of dimensionality.

Let the m dimensional data space Sm be the boundary of an m dimensional
unit hyper-cube. (i.e., Sm = [0, 1]m − (0, 1)m). In addition, let the distribution
of data points be uniform over Sm. In other words, every point in Sm has equal
probability of being sampled as a data point. Lastly, the distribution of query
points is identical to the distribution of data points.

Note that the dimensions are not independent. Even in this case, the condi-
tion of Theorem 1 is satisfied.

4 Meaningful Applications of High Dimensional NN

In this section, we place Theorem 1 in perspective, and observe that it should
not be interpreted to mean that high-dimensional NN is never meaningful. We
do this by identifying scenarios that arise in practice and that are likely to have
good separation between nearest and farthest neighbors.

4.1 Classification and Approximate Matching

To begin with, exact match and approximate match queries can be reasonable.
For instance, if there is dependence between the query point and the data points
such that there exists some data point that matches the query point exactly, then
DMINm = 0. Thus, assuming that most of the data points aren’t duplicates, a
meaningful answer can be determined. Furthermore, if the problem statement is
relaxed to require that the query point be within some small distance of a data
point (instead of being required to be identical to a data point), we can still call
the query meaningful. Note, however, that staying within the same small distance
becomes more and more difficult as m increases since we are adding terms to the
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Query Point

Nearest Cluster

Fig. 5. Nearest neighbor query in clustered data.

sum in the distance metric. For this version of the problem to remain meaningful
as dimensionality increases, the query point must be increasingly closer to some
data point.

We can generalize the situation further as follows: The data consists of a set of
randomly chosen points together with additional points distributed in clusters
of some radius δ around one or more of the original points, and the query is
required to fall within one of the data clusters (see Figure 5). This situation
is the perfectly realized classification problem, where data naturally falls into
discrete classes or clusters in some potentially high dimensional feature space.
Figure 6 depicts a typical distance distribution in such a scenario. There is a
cluster (the one into which the query point falls) that is closer than the others,
which are all, more or less, indistinguishable in distance. Indeed, the proper
response to such a query is to return all points within the closest cluster, not
just the nearest point (which quickly becomes meaningless compared to other
points in the cluster as dimensionality increases).

Observe however, that if we don’t guarantee that the query point falls within
some cluster, then the cluster from which the nearest neighbor is chosen is subject
to the same meaningfulness limitations as the choice of nearest neighbor in the
original version of the problem; Theorem 1 then applies to the choice of the
“nearest cluster”.

4.2 Implicitly Low Dimensionality

Another possible scenario where high dimensional nearest neighbor queries are
meaningful occurs when the underlying dimensionality of the data is much lower
than the actual dimensionality. There has been recent work on identifying these
situations (e.g. [17,8,16]) and determining the useful dimensions (e.g. [20], which
uses principal component analysis to identify meaningful dimensions). Of course,
these techniques are only useful if NN in the underlying dimensionality is mean-
ingful.
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Fig. 6. Probability density function of distance between random clustered data
and query points.

5 Experimental Studies of NN

Theorem 1 only tells us what happens when we take the dimensionality to in-
finity. In practice, at what dimensionality do we anticipate nearest neighbors to
become unstable? In other words, Theorem 1 describes some convergence but
does not tell us the rate of convergence. We addressed this issue through em-
pirical studies. Due to lack of space, we present only three synthetic workloads
and one real data set. [13] includes additional synthetic workloads along with
workloads over a second real data set.

We ran experiments with one IID uniform(0,1) workload and two different
correlated workloads. Figure 7 shows the average DMAXm/DMINm as dimen-
sionality increases of 1000 query points on synthetic data sets of one million
tuples. The workload for the “recursive” line (described in Example 3) has
correlation between every pair of dimensions and every new dimension has a
larger variance. The “two degrees of freedom” workload generates query and
data points on a two dimensional plane, and was generated as follows:

– Let a1, a2, . . . and b1, b2, . . . be constants in (-1,1).
– Let U1, U2 be independent uniform(0,1).
– For all 1 ≤ i ≤ m let Xi = aiU1 + biU2.

This last workload does not satisfy Equation 2. Figure 7 shows that the “two
degrees of freedom” workload behaves similarly to the (one or) two dimensional
uniform workload, regardless of the dimensionality. However, the recursive work-
load (as predicted by our theorem) was affected by dimensionality. More in-
terestingly, even with all the correlation and changing variances, the recursive
workload behaved almost the same as the IID uniform case!

This graph demonstrates that our geometric intuition for nearest neighbor,
which is based on one, two, and three dimensions, fails us at an alarming rate as
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dimensionality increases. The distinction between nearest and farthest points,
even at ten dimensions, is a tiny fraction of what it is in one, two, or three
dimensions. For one dimension, DMAXm/DMINm for “uniform” is on the order
of 107, providing plenty of contrast between the nearest object and the farthest
object. At 10 dimensions, this contrast is already reduced by 6 orders of mag-
nitude! By 20 dimensions, the farthest point is only 4 times the distance to the
closest point. These empirical results suggest that NN can become unstable with
as few as 10-20 dimensions.

Figure 8 shows results for experiments done on a real data set. The data
set was a 256 dimensional color histogram data set (one tuple per image) that
was reduced to 64 dimensions by principal components analysis. There were
approximately 13, 500 tuples in the data set. We examine k-NN rather than NN
because this is the traditional application of image databases.

To determine the quality of answers for NN queries, we examined the per-
centage of queries in which at least half the data points were within some factor
of the nearest neighbor. Examine the graph at median distance/k distance = 3.
The graph says that for k = 1 (normal NN problem), 15% of the queries had at
least half the data within a factor of 3 of the distance to the NN. For k = 10,
50% of the queries had at least half the data within a factor of 3 of the distance
to the 10th nearest neighbor. It is easy to see that the effect of changing k on
the quality of the answer is most significant for small values of k.
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Does this data set provide meaningful answers to the 1-NN problem? the 10-
NN problem? the 100-NN problem? Perhaps, but keep in mind that the data set
was derived using a heuristic that approximates image similarity. Furthermore,
the nearest neighbor contrast is much lower than our intuition suggests (i.e., 2
or 3 dimensions). A careful evaluation of the relevance of the results is definitely
called for.

6 Analyzing the Performance of a NN Processing
Technique

In this section, we discuss the ramifications of our results when evaluating tech-
niques to solve the NN problem; in particular, many high-dimensional indexing
techniques have been motivated by the NN problem. An important point that we
make is that all future performance evaluations of high dimensional NN queries
must include a comparison to linear scans as a sanity check.

First, our results indicate that while there exist situations in which high
dimensional nearest neighbor queries are meaningful, they are very specific in
nature and are quite different from the “independent dimensions” basis that most
studies in the literature (e.g., [31,19,14,10,11]) use to evaluate techniques in a
controlled manner. In the future, these NN technique evaluations should focus
on those situations in which the results are meaningful. For instance, answers
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are meaningful when the data consists of small, well-formed clusters, and the
query is guaranteed to land in or very near one of these clusters.

In terms of comparisons between NN techniques, most papers do not compare
against the trivial linear scan algorithm. Given our results, which argue that in
many cases, as dimensionality increases, all data becomes equidistant to all other
data, it is not surprising that in as few as 10 dimensions, linear scan handily
beats these complicated indexing structures. 1 We give a detailed and formal
discussion of this phenomenon in [27].

For instance, the performance study of the parallel solution to the k-nearest
neighbors problem presented in [10] indicates that their solution scales more
poorly than a parallel scan of the data, and never beats a parallel scan in any
of the presented data.

[31] provides us with information on the performance of both the SS tree and
the R* tree in finding the 20 nearest neighbors. Conservatively assuming that
linear scans cost 15% of a random examination of the data pages, linear scan
outperforms both the SS tree and the R* tree at 10 dimensions in all cases. In
[19], linear scan vastly outperforms the SR tree in all cases in this paper for the
16 dimensional synthetic data set. For a 16 dimensional real data set, the SR
tree performs similarly to linear scan in a few experiments, but is usually beaten
by linear scan. In [14], performance numbers are presented for NN queries where
bounds are imposed on the radius used to find the NN. While the performance in
high dimensionality looks good in some cases, in trying to duplicate their results
we found that the radius was such that few, if any, queries returned an answer.

While performance of these structures in high dimensionality looks very poor,
it is important to keep in mind that all the reported performance studies exam-
ined situations in which the distance between the query point and the nearest
neighbor differed little from the distance to other data points. Ideally, they should
be evaluated for meaningful workloads. These workloads include low dimensional
spaces and clustered data/queries as described in Section 4. Some of the existing
structures may, in fact, work well in appropriate situations.

7 Related Work

7.1 The Curse of Dimensionality

The term dimensionality curse is often used as a vague indication that high
dimensionality causes problems in some situations. The term was first used by
Bellman in 1961 [7] for combinatorial estimation of multivariate functions. An
example from statistics: in [26] it is used to note that multivariate density esti-
mation is very problematic in high dimensions.

1 Linear scan of a set of sequentially arranged disk pages is much faster than unordered
retrieval of the same pages; so much so that secondary indexes are ignored by query
optimizers unless the query is estimated to fetch less than 10% of the data pages.
Fetching a large number of data pages through a multi-dimensional index usually
results in unordered retrieval.
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In the area of the nearest neighbors problem it is used for indicating that a
query processing technique performs worse as the dimensionality increases. In
[11,5] it was observed that in some high dimensional cases, the estimate of NN
query cost (using some index structure) can be very poor if “boundary effects”
are not taken into account. The boundary effect is that the query region (i.e., a
sphere whose center is the query point) is mainly outside the hyper-cubic data
space. When one does not take into account the boundary effect, the query cost
estimate can be much higher than the actual cost. The term dimensionality curse
was also used to describe this phenomenon.

In this paper, we discuss the meaning of the nearest neighbor query and not
how to process such a query. Therefore, the term dimensionality curse (as used
by the NN research community) is only relevant to Section 6, and not to the
main results in this paper.

7.2 Computational Geometry

The nearest neighbor problem has been studied in computational geometry (e.g.,
[4,5,6,9,12]). However, the usual approach is to take the number of dimensions
as a constant and find algorithms that behave well when the number of points is
large enough. They observe that the problem is hard and define the approximate
nearest neighbor problem as a weaker problem. In [6] there is an algorithm that
retrieves an approximate nearest neighbor in O(log n) time for any data set. In
[9] there is an algorithm that retrieves the true nearest neighbor in constant
expected time under the IID dimensions assumption. However, the constants for
those algorithms are exponential in dimensionality. In [6] they recommend not
to use the algorithm in more than 12 dimensions. It is impractical to use the
algorithm in [9] when the number of points is much lower than exponential in
the number of dimensions.

7.3 Fractal Dimensions

In [17,8,16] it was suggested that real data sets usually have fractal properties
(self-similarity, in particular) and that fractal dimensionality is a good tool in
determining the performance of queries over the data set.

The following example illustrates that the fractal dimensionality of the data
space from which we sample the data points may not always be a good indicator
for the utility of nearest neighbor queries. Suppose the data points are sampled
uniformly from the vertices of the unit hypercube. The data space is 2m points
(in m dimensions), so its fractal dimensionality is 0. However, this situation
is one of the worst cases for nearest neighbor queries. (This is actually the IID
Bernoulli(1/2) which is even worse than IID uniform.) When the number of data
points in this scenario is close to 2m, nearest neighbor queries become stable,
but this is impractical for large m.

However, are there real data sets for which the (estimated) fractal dimension-
ality is low, yet there is no separation between nearest and farthest neighbors?
This is an intriguing question that we intend to explore in future work.
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We used the technique described in [8] on two real data sets (described in
[13]). However, the fractal dimensionality of those data sets could not be esti-
mated (when we divided the space once in each dimension, most of the data
points occupied different cells). We used the same technique on an artificial 100
dimensional data set that has known fractal dimensionality 2 and about the
same number of points as the real data sets (generated like the “two degrees of
freedom” workload in Section 5, but with less data). The estimate we got for
the fractal dimensionality is 1.6 (which is a good estimate). Our conclusion is
that the real data sets we used are inherently high dimensional; another possible
explanation is that they do not exhibit fractal behavior.

8 Conclusions

In this paper, we studied the effect of dimensionality on NN queries. In particular,
we identified a broad class of workloads for which the difference in distance
between the nearest neighbor and other points in the data set becomes negligible.
This class of distributions includes distributions typically used to evaluate NN
processing techniques. Many applications use NN as a heuristic (e.g., feature
vectors that describe images). In such cases, query instability is an indication
of a meaningless query. This problem is worsened by the use of techniques that
provide an approximate nearest neighbor to improve performance.

To find the dimensionality at which NN breaks down, we performed exten-
sive simulations. The results indicated that the distinction in distance decreases
fastest in the first 20 dimensions, quickly reaching a point where the difference
in distance between a query point and the nearest and farthest data points drops
below a factor of four. In addition to simulated workloads, we also examined two
real data sets that behaved similarly (see [13]).

In addition to providing intuition and examples of distributions in that class,
we also discussed situations in which NN queries do not break down in high
dimensionality. In particular, the ideal data sets and workloads for classifica-
tion/clustering algorithms seem reasonable in high dimensionality. However, if
the scenario is deviated from (for instance, if the query point does not lie in a
cluster), the queries become meaningless.

The practical ramifications of this paper are for the following two scenarios:

Evaluating a NN workload. Make sure that the distance distribution (be-
tween a random query point and a random data point) allows for enough
contrast for your application. If the distance to the nearest neighbor is not
much different from the average distance, the nearest neighbor may not be
useful (or the most “similar”).

Evaluating a NN processing technique. When evaluating a NN processing
technique, test it on meaningful workloads. Examples for such workloads are
given in Section 4. In addition, the evaluation of the technique for a particular
workload should take into account any approximations that the technique
uses to improve performance. Also, one should ensure that a new processing
technique outperforms the most trivial solutions (e.g., sequential scan).
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