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Mean Shift, Mode Seeking, and Clustering 
Yizong Cheng  

Abstract-Mean shift, a simple iterative procedure that shifts 
each data point to the average of data points in its neighborhood, 
is generalized and analyzed in this paper. This generalization 
makes some k-means like clustering algorithms its special cases. It 
is shown that mean shift is a mode-seeking process on a surface 
constructed with a “shadow” kernel. For Gaussian kernels, mean 
shift is a gradient mapping. Convergence is studied for mean shift 
iterations. Cluster analysis is treated as a deterministic problem 
of finding a fixed point of mean shift that characterizes the data. 
Applications in clustering and Hough transform are demon- 
strated. Mean shift is also considered as an evolutionary strategy 
that performs multistart global optimization. 

Index Terms-Mean shift, gradient descent, global optimiza- 
tion, Hough transform, cluster analysis, k-means clustering. 

I. INTRODUCTION 

L ET data be  a  finite set S embedded  in the n-dimensional 
Eucl idean space,  X. Let K be  aflat kernel that is the char- 

acteristic function of the L-ball in X, 

K(x) =  1 1  ifllxll5 il 
0  ifllxll >  il’ (1) 

The sample mean at x E X is 

c K(s-x)s 

44 = $g K(s-x) . (2) 

sd 

The difference m(x) - x is called mean shift in Fukunaga 
and  Hostetler [ 11. The  repeated movement  of data points to the 
sample means  is called the mean shzji algorithm [l], [2]. In 
each  iteration of the algorithm, s t m(s) is performed for all 
s  E S simultaneously. 

The  mean  shift algorithm has  been  proposed as a  method for 
cluster analysis [l], [2], [3]. However,  the intuition that mean  
shift is gradient ascent, the convergence of the process needs  
verification, and  its relation with similar algorithms needs  
clarification. 

In this paper,  the mean  shift algorithm is general ized in 
three ways. First, nonflat kernels are allowed. Second,  points 
in data can be  weighted. Third, shift can  be  performed on  any  
subset  of X, while the data set S stay the same. 

In Section II, kernels with five operat ions are defined. A 
specific weight function unifying certain fuzzy clustering al- 
gorithms including the “maximum-entropy” clustering algo- 
rithm will be  discussed. It will be  shown that the k-means 
clustering algorithm is a  limit case of mean  shift. 
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A relation among  kernels called “shadow” will be  def ined in 
Section III. It will be  proved that mean  shift on  any  kernel is 
equivalent to gradient ascent  on  the density est imated with a  
shadow of its. Convergence and  its rate is the subject of Sec- 
tion IV. Section V shows some peculiar behaviors of mean  
shift in cluster analysis, with application in Hough  transform. 
Section VI shows how, with a  twist in weight assignment, the 
deterministic mean  shift is t ransformed into a  probabilistic 
evolut ionary strategy, and  how it becomes a  global optimiza- 
tion algorithm. 

II. GENERALIZING MEAN SHIFT 

In Section II, we first define the kernel, its notation, and  
operations. Then  we define the general ized sample mean  and  
the general ized mean  shift algorithm. W e  show how this al- 
gorithm encompasses some other familiar clustering algo- 
rithms and  how k-means clustering becomes a  limit instance of 
mean  shift. 

A. Kernels 

DEFINITION 1. Let X be the n-dimensional Euclidean space, R”. 

Denote the ith component of x E X by xi. The norm of x E X 

is a nonnegative number IhI/ such that llxl12 = $1~~1~ . The 
i=l 

inner product of x  and y in X is (x, y) = 2 xi yi . A function 
i=l 

K : X -+ R is said to be a kernel if there exists a profile, 
k : [O,w] + R, such that 

m = k(llxll”) 
and 

1) k is nonnegative. 

(3) 

2) k is nonincreasing: k(a) 2 k(b) if a  <  b. 

3) k is piecewise cont inuous and  jr k(r)dr < m  . 

Let a > 0. If K is a kernel, then aK, K,, and K” are kernels 
defined, respectively, as 

(aK)(x) = aK(x), 

K,(x) =K;, 
0 

(Kq4 = (K(#. 
if K and H are kernels, then K + H is a kernel defined as 
(K + H)(x) = K(x) + H(x) and KH is a kernel defined as 

0162-8828/9.5$04.00 0  1995 IEEE 



CHENG: MEAN SHIm, MODE SEEKING, AND CLUSTERING 

(KH)(x) = K(x)H(x). These five operators can be ordered in 
descending precedence as K=, K*, aK, KH, and K + H. 0 

CLAIM 1. W e  have  
a(KH) = (aK)H = K(aH) 
a(K+H)=aK+aH 
WWa=  KJ& 
(K + H)== Ka+ H, 
(KH)“= K”H” 0 

EXAMPLE 1. Two kernels frequently used  in this paper  are the 
unit flat kernel 

(5) 

and  the unit Gaussian kernel 

G(x) = e+I~ . (6) 

These kernels are shown in Fig. 1. Clearly, the characteristic 
function of the L-ball, (l), is Fr Also notice that 
GB = Gpmvz . 

(a) (b) 
Fig. 1. (a) The flat kernel F  and  (b) the Gaussian kernel G. 

A kernel can  be  “truncated” by being multiplied by  a  flat 
kernel. For example, a  truncated Gaussian kernel is 

e 4btr if llxll I il 
0  if [[xl/ >  A 

(7) 

Notice that (GF), = GA-’ FL. Fig. 2  shows some of the 

truncated Gaussian kernels. 

(a) (b) 
Fig. 2. Truncated Gaussian kernels (a) GF and (b) @ ‘F. 

0 

B. Mean  Shift Algorithms 
Now we redefine the mean  shift algorithm based  on  our  

DEFINITION 2. Let S c X be a finite set (the “data” or 
“sample”). Let K be a kernel and w : S + (0, -) a weight 

function. The sample mean  with kernel K at x  E X is defined 
as 

c K(s-x)w(s)s 

m(x) = “5 K(s- x)w(s) ’ (8) 

ES 

Let T  c  X be a finite set (the “cluster centers”). The evolu- 
tion of T  in the form of iterations T  t m(T) with 
m(T) = {m(t); t E T) is called a mean shift algorithm. For 
each t E T, there is a sequence t, m(t), m(m(t)),-.., that is 
called the trajectory of t. The weight w(s) can be either 
fixed throughout the process or re-evaluated after each it- 
eration. It may  also be a function of the current T. The al- 
gorithm halts when it reaches afixed point (m(T) = T). 

When T  is S, the mean shift algorithm is called a blurring 
process, indicating the successive blurring of the data set, S.0 

REMARK 1. The  original mean  shift process proposed in [I], 
[3] is a  blurring process, in which T = S. In Definition 2, it 
is general ized so that T and  S may be  separate sets with S 
fixed through the process, a l though the initial T may be  a  
copy of S. Notice that in (8), kernel K can be  replaced with 
kernel aK for any  a > 0, without generat ing any  difference. 

This is the reason why we did not insist that jx K(x)& = 1, 

which will attach a  factor to K that is related to n, the di- 
mensionality of X. Similarly, the weights w(s) can  be  nor- 
malized so that c w(s) =  1. Because of the inconsequen- 

.ES 

tiality of these factors, we will use  the simplest possible ex- 
pressions for the kernel and  the weights. W e  also have  to 
assume that T is initialized such that c K(s- t)w(s) > 0 

SES 

for all t E T. Also notice that this is a  parallel algorithm, in 
the sense that all t E Tare simultaneously updated based  on  
the previous t and  w(s) values. 
0  

EXAMPLE 2. The  “maximum entropy” clustering algorithm of 
Rose, Gurewitz, and  Fox [4] is a  mean  shift algorithm when  
T and  S are separate sets, GP is the kernel, and  

(9) 

These authors also mention that when  p  approaches infinity, 
the algorithm degenerates to k-means clustering, which is 
often descr ibed as  an  optimizing Picard iterative routine [7]: 

1) Randomly initialize “cluster centers,” T. 
2) Compute the following function on  T x S: 

1, 
V f,S = 

if t = argmin,ls- tl* 
0, otherwise 

(10) 

general izations summarized in the introduction. 



792 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 8, AUGUST 1995 

3) Update “cluster centers:” 

c vt,.2 
scs 

yy rET* 
SCS 

Go to 2. 
Indeed, when  the profile k is strictly decreasing, 

Kp(s-t) 
c~+) +vr,sp a++-. 

tsT 

Thus, k-means clustering is the limit of the mean  shift al- 
gorithm with a  strictly decreasing kernel p  when  p  +=. n  

(11) 

(12) 

III. MEAN SHIFT AS GRADIENT MAPPING 

It has  been  pointed out in [l] that mean  shift is a  “very in- 
tuitive” estimate of the gradient of the data density. In this 
section, we give a  more r igorous study of this intuition. Theo-  
rem 1  relates each  kernel to a  “shadow” kernel so  that mean  
shift using a  kernel will be  in the gradient direction of the 
density estimate using the corresponding “shadow” kernel. 

A. Shadow of a  Kernel 

DEFINITION 3. Kernel H is said to be a shadow of kernel K, if 
the mean shift using K, 

c  K(s- x)w(s)s 
m(x) - x =  scs 

c K(s-x)w(s) -” 
(13) 

ES 

is in the gradient direction at x  of the density estimate using 
H, 

q(x) = gw~(s). (14) 

Cl 

THEOREM 1. Kernel H is a shadow of kernel K if and only if 
their PROFILES, h and k, satisfy the following equation. 

h(r) = f(r)+cJrmk(t)dt, (15) 

where c > 0 is a constant and f is a piecewise constant 
function. 

PROOF. The  mean  shift using kernel K can be  rewritten as  

(16) 

with p(x) = zk( - ) ( ) h  d  s x w s , t e  ensity estimate using K. 
sss 

The gradient of (14) at x is 

Vq(x) =  -2~h’(lls-x1\*)(s-x)w(s). (17) 
S&S 

To have  (16) and  (17) point to the same direction, we need  
h’(r) = - ck(r) for all r and  some c > 0. By the fundamental  

theorem of calculus and  the requirement that 

J (1 whrdr< 
0 

m, (15) is the only solution. In this case, we 

have  

-(x)-x=%, (18) 

or, the magni tude of mean  shift is in proport ion to the ratio 
of the gradient and  the local density estimate using kernel K. 
When  a  discont inuous point z is al lowed in h, a  constant can  
be  added  to the h from 0  to z, and  h’(r) = - ck(r) is still sat- 
isfied except  when  r = z. q 

CLAM 2. Suppose kernel H is a  shadow of K, and  a > 0. The 
following are true. 
1) aH is a  shadow of K. 
2) Ha is a  shadow of K,. 
3) If L is a  shadow of M, then H + L is a  shadow of K + M. 
4) A truncated kernel KF, may not be  cont inuous at IHI =  a. 

If the shadow is also al lowed to be  discont inuous at the 
same points, then HFn is a  shadow of KF,. 0 

EXAMPLE 3. Using (15) we find that the Epanechnikov kernel 

K(x) = 
1 

(I-Iklty 4 l4l~l (19) 
0 ifllxll >  1  

is a  shadow of the flat kernel, (5), and  the biweight kernel 

K(x) = (l- t~xl12)2 

i 

ifllxll ’ ‘. Gm 
0  if/xl] >  1  

is a  shadow of the Epanechnikov kernel. These kernels are 
so named in [2] and  they are shown in Fig. 3. q 

(a) (b) 
Fig. 3. (a) The  Epanechnikov kernel and  (b) the biweight kernel. 

B. Gaussian Kernels 

THEOREM 2. The only kernels that are their own shadows are 
the Gaussian kernel GP and its truncated version GBFX In 
this case, the mean shif is equal to 

m(x)-x=-$Vlogq(x), (21) 

where q is the data density estimate using the same kernel. 

PROOF. From Theorem 1  we know that kernel K is its own 
shadow if and  only if k’(r) = -ck(r). Using the method of 
separat ion of variables, we have  



CHENG: MEAN SHIFT, MODE SEEKING, AND CLUSTERING 

This gives us  k(r) =  k(0)eyr, which makes K the Gaussian 
kernel. If discontinuities are al lowed in k, then we have  the 
truncated Gaussian kernel. When  K is its own shadow, p  in 
(18) is equal  to q, and  (Vq(x))/q(x) = V log q(x). 0 

REMARK 2. A mapping f : R”+ R” is said to be  a  gradient 
mapping if there exists a  function g  : R” + R such that 
f(x) =  Vg(x) for all x  161.  Theorem 2  is a  corollary of a  more 
general  result from the symmetry principle: f is a  gradient 
mapping if and  only if the Jacobian matrix off is symmetric. 
In our  case, f(x) =  m(x) - x and  by  equat ing aflaxj and  
afjaxi for all i and  j, one  obtains the necessary and  sufficient 
condit ion that k’(r) =  -ck(r) for any  mean  shift to be  a  gra- 
dient mapping. 0  

C. Mode  Seeking 

Suppose an  idealized mode  in the density surface also has  a  
Gaussian shape,  which, without loss of generality, centers at 
the origin: 

(22) 

The mean  shift is now 

-%w(x) y  m(x)-x=--&Vlogq(x)=- 
-2&(x) =-p"* (23) 

Because the density surface is est imated with the kernel G’, 
any  mode  approximated by  super imposing G’ will have  a  
y <  p. The  mean  shift (23) will not cause overshoots in this 
case. 

Mean  shift is steepest ascent  with a  varying step size that is 
the magni tude of the gradient. A notorious problem associated 
with steepest ascent  with fixed step size is the slow movement  
on  plateaus of the surface. For a  density surface, large plateaus 
happen  only at low density regions and  after taking logarithm, 
the inclination of a  plateau is magnif ied. Combined with the 
preceding result about  overshoot  avoidance, mean  shift is well- 
adjusted steepest ascent. 

IV. CONVERGENCE 

Theorem 1  says that the mean  shift algorithm is steepest as- 
cent over the density of S. Each T point climbs the hill in the 
density surface independently.  Therefore, if S or its density 
does  not change  during the execut ion of the algorithm, the 
convergence of the evolution of T is a  consequence of the con- 
vergence of steepest ascent  for individual T points. 

However,  in a  blurring process, T is S, and  S and  its density 
change  as the result of each  iteration. In this case, convergence 
is not as  obvious as  steepest ascent. The  main results of this 
section are two convergence theorems about  the blurring proc- 
ess. The  concepts of radius and  diameter of data, def ined be-  
low, will be  used  in the proofs. 

A. Radius and  Diameter of Data 

DEFINITION 4. A direction in X is a point on the unit sphere. 
That is, a E X is a direction if and only if llall = 1. We  call 
the mapping J& : X + R with z~(x) =  (x, a) the projection in 
the direction of a. Let n*(S) = {z”(s); s  E S). The convex 
hull of a set Y c X is defined as 

h(Y)=,,Q{~tX;minn,(Y)~s,(x)~max~,(Y)}. (24) 
(1 1  

0 
CLAIM 3. The  following are true. 

1) min Z&S) I min n,(m(T)) I max 7cU(m(r)) I max n,(S). 
2) m(T) c h(m(T)) G h(S). 
3) In a  blurring process, we have  h(S) a h(m(S)) 2 

h(m(m(S))). . . . There exists an  x E X that is in all the 
convex hulls of data. It is possible to make a  translation 
so that the origin is in all the convex hulls of data. 0  

DEFINITION 5. Suppose after a translation, the origin is in all 
the convex hulls of data during a blurring process. Then, 
p(S) = max { Isl; s  E S) is said to be the radius of data. The 
diameter of data is defined as 

d(S) = ,g$ maxa, (S) - m in c  (S)). (25) 

0  
It should be  clear that p(S) <  d(S) I 2&S). Because the 

convex hulls of data form a  shrinking inclusion sequence,  the 
radius or diameter of data also form a  nonincreasing non-  
negat ive sequence,  which must approach a  nonnegat ive limit. 
Theorem 3  says that this limit is zero when  the kernel in the 
blurring process has  a  support  wide enough  to cover the data 
set. 

B. Blurring W ith Broad Kernels 

THEOREM 3. Let k  be the profile of the kernel used in a blur- 

ring process, and S, the initial data. If k(d’(S,,)) 2 IC for 

some K > 0, then diameter of data approaches zero. The 
convergence rate is at least as fast as 

44s)) 

4s) ’ ’ - 4k;O) 
(26) 

PROOF. Let z be  a  projection, u  =  min n(S), v =  max Z(S), and  
z =  (u +  v)/2. Suppose 

(27) 

Then,  for s E S, 
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,-.(,( ))= CK(s’-s)w(s’)(v-n(s’)) 
S 

S’ES 

c K(s’- s)w(s’) 
S’ES 

CK+‘)(v-4 

2 y;;y- s)w(s,) 

S’ES (28) 

K(V - U) 
=- 

4k(O) . 

Clearly, we have  

max7r(m(S))-min7r(m(S))$maxx(m(S))-u 

=(v-u)-(v-maxz(m(S)))<(v-u)-f$$ (29) 

The  same result can  be  obtained when  the inequality in (27) 
is reversed. Therefore, the result holds for all projections, 
and  because v - u  I d(S), we completed the proof. q 

EXAMPLE 4. As the simplest example, let X be  the real line and  
S = {x, y) with x <  y. Let k be  the profile of the kernel with 
k(lx-yl’) > 0. If the weights on  x and  y are the same, a  blur- 
ring process will make them converge to (x +  y)/2 with the 
rate 

m(y)- ( )= k(“~-k(~x-yi’)(y~x) 
mx k(O)+k(lx-yl’) ’ 

(30) 

The  difference between the two points will not become zero 
at any  iteration, unless the kernel is flat in the range contain- 
ing both points. When  the weights are different, x and  y 
converge to a  point that may not be  the weighted average of 
the initial x and  y with the same weights. 

Now assume that S is fixed through the process while T is 
initialized to S. Because this is no  longer a  blurring process, 
the result in Theorem 3  does  not apply. That is, T may con- 
verge to more than one  point. The  two T points converge to 
(x +  y)/2 when  the density of S is unimodal. Otherwise, they 
will converge to the two modes  of the bimodal density. 
When  G, is used  as  the kernel, and  x =  0, y =  1, the density 
is 

2  -z -(z_l)z 
q(z)=e p +e nz . (31) 

The  first derivative of q(z) always has  a  zero at z =  l/2. But 
the second derivative of q(z) at z =  l/2 is 

(321 

which is negat ive when  A > l/A and  positive when  

;1< l/& . Thus l/A is a  critical a  value. When  J. is 
larger than this critical value, the density is unimodal and  
the two T points will converge to l/2. When  a  is smaller 
than l/A , they will approach two distinct limit points. 0  

C. Blurring with Truncated Kernels 

When  truncated kernels are used  in the blurring process, S 
may converge to many  points. In fact, if the kernel is t runcated 
so that it will not cover more than one  point in S, then S will 
not change  in the process. The  result of Theorem 3  applies to 
an  isolated group of data points that can  be  covered by  a  trun- 
cated kernel. In this case, they eventually converge to one  
point, a l though the rest of the data set may converge to other 
cluster centers. Again, when  the kernel is not ‘flat, no  merger 
will take place after any  finite number  of iterations. (Flat ker- 
nels generate a  special case where merger is possible in finite 
number  of steps. See [8].) 

When  the blurring process is simulated on  a  digital com- 
puter, points do  merge in finite number  of steps, due  to the 
limits on  floating-point precision. In fact, there is a  minimum 
distance between data points that can  be  maintained. Theorem 
4  below shows that under  this condition, the blurring process 
terminates in finite number  of steps. 
LEMMA 1. Suppose X = R” and r(S) is the radius of data in a 

blurring process. If the min imum distance between data 
points is 6, then for any direction a, there cannot be more 
than one data point s  E S with no(s) > r(S) - h, where h is a 
function of r(S), 6, and n. 

PROOF. Suppose there is a  direction a such that there are 
s, t E S with ZJS) > r(S) - h and  na(t) > r(S) - h. Let b be  a  
direction perpendicular to a and  dt, = I?%(s) - %(t)l. Because 
both s and  t are at least r(S) - h away from the origin in di- 
rection a  and  one  of them must also be  dd2 away from the 
origin in direction b, the square of the radius of data cannot  

be  smaller than (r(S)-h)* +dt/4. It follows that 

di I 8r(S)h-4h*. The distance between s and  t, IIs - tl(, 
must satisfy 

6* <I/s-t/* _<(n-1)(8r(S)h-4h*)+h*. 

If 

(n-1)(8r(S)h-4h*)+h* >6*, 

then these s and  t cannot  exist. This condit ion is satisfied when  

h < h,,, = 4(n-l)r(S)- 16(n-l)*r*(S)-(4n-5)6* (4n-5) 
I/ 
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LEMMA 2. In a blurring process, suppose the min imum dis- 
tance between data points is 6, K > 0 is a constant such that 
when K(x) > 0, K(x) > Kk(O), and 

m inses 4s) w= C W (S) 
SCS 

(33). 

The radius of data, r(S), reaches its final value in no more 
than r(S)/( K W  h,) steps, where h, is defined in Lemma 1. 

PROOF. Let SE S be  a  data point that moves during an  iteration. 
Then  there must have  been  another data point S’E S such 
that K(s - s’) >  k%(O). Let a be  a  direction. Lemma 1  says 
that at least one  of these two points, s or s’, denoted with s”, 
must have  n,(s”) I r(S) - h,. Hence,  

CK(t-s)w(t)(r(S)-n,(t)) 
4s) - ru (44) = ‘eS c K(t _  s)w(t) 

Id 

> K(s” - +w)(r(s) - Eu (4) - c k(OM) 
KS 

2 KWh. 

(34) 

This shows that all moving points in S moves in one  itera- 
tion to a  position at least K Wh, away from the current r(S). 
Therefore, if r(S) changes  during an  iteration, its change  
must be  at least K Wh,. 0 

THEOREM 4. If data points cannot move arbitrarily close to 
each other, and K(x) is either zero or larger than a fixed 
positive constant, then the blurring process reaches a fixed 
point infinitely many iterations. 

PROOF. Lemma 2  says that the radius of data reaches its final 
value in finite number  of steps. Lemma 2  also implies that 
those points at this final radius will not affect other data 
points or each  other. Hence,  they can be  taken out from 
considerat ion for further process of the algorithm. The  same 
argument  can be  appl ied to the rest of data. Since S is finite, 
by  induction on  the size of S, a  fixed point must be  reached 
in finitely many  iterations. More precisely, the blurring 
process halts in no  more than r(S)l( K Wh,) steps. 0  

REMARK 3. It is important that when  close data points are 
merged,  the radius of data does  not increase. A simple 
mechanism is merging close points into one  of them. This 
must be  done  before the exhaust ion of floating-point preci- 
sion, because truncation may indeed increase the radius of 
data and  cause cycles. An extreme case is the blurring proc- 
ess appl ied to categorical data, when  a  flat kernel based  on  
the Hamming distance and  round-off to the nearest  integer 
are used  in each  mean  shift step. In this case, the mean  shift 
step becomes 

s t Majority{t E S; IIt - sI[ 5  a} . (35) 

Round-off  may actually shift a  data point out of the flat ker- 
nel centering at it. For example, 0111,  1011,  1101,  and  
1110  all have  Hamming distance 3  from 0000,  but the ma- 

jority of the five will be  1111,  which has  a  distance 4  from 
the center, 0000,  and  there is a  projection on  which 
max 7r(S) actually increases. 0  

D. Fixed Points as  Local Maxima 

In Section III, we  showed that mean  shift for individual 
points in X is hill climbing on  the data density function. Be- 
cause the data density function also evolves in the blurring 
process, it is difficult to see where the hill climbing leads to. 
When  the evolving set of points in X, either S (in blurring) or T 
(as cluster centers), is treated as  a  point in X”, where N is the 
number  of points involved, real functions can be  constructed 
and  the fixed points of mean  shift can  be  identified as  local 
maxima of these functions. 
THEOREM 5. When S is fired, the stable fired points of the 

mean shift process 

c K(s- t)w(s)s 

T  t m(T) = m(t) = sEs 
c K(s-t)w(s) ” ET 
ES 

are local maxima of 

1 (36) 

(37) 

where H is a shadow of K. For the blurring process, 
S t m(S), assuming weights of data points do not change, 
the fixed points are the local maxima of 

V(S) = c H(s-t)w(s)w(t). (38) 
s,td 

PROOF. When  S is fixed, each  I E T reaches its fixed point 
when  Vq(t) = 0, using the result and  notation in (18). Be- 
causeU(T) =  xq(t), a  local maximum of V is reached 

IET 

when each  t E T attains a  local maximum of q(t). Because 
local minima of q are not stable fixed points for t, a  stable 
fixed point of V can only be  its local maximum. For the 
blurring process, we have  

$=2xh$s-rll*)(s-f)w(s)w(t). (39) 
td 

Notice that w(s) will not change  and  thus is treated as  a  
constant. a via s = 0  is equivalent to 

xK(s-t)w(t)(t-s)=O (40) 
IS.7 

or 

m(s)-s= CKb-++)(t-4 
Id 

c K(s- t)w(t) = ” 
(41) 

IES 

and  thus, the local maxima of V(S) are fixed points of 
S t m(S). By the same reason as  before, they are the only 
stable fixed points. 0  
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V. MEAN SHIFT CLUSTERING 

Theorem 3  shows that in a  blurring process with a  broad 
kernel (one with a  broad support), data points do  converge to a  
single position. To  the other extreme, when  the kernel is trun- 
cated to the degree that it covers no  more than one  data point 
at any  position, the initial data set is a  fixed point of the blur- 
ring process and  thus no  merger takes place. When  the kernel 
size is between these extremes, data points may have  trajecto- 
ries that merge into varying numbers  of “cluster centers.” 

Iteration of mean  shift gives rise to natural clustering algo- 
rithms. The  final T contains the final posit ions of the cluster 
centers. In k-means like clustering, T is not initialized to 5, 
fuzzy membership or nearest  center classification must be  used  
to decide how data points are divided into clusters. 

In this section, we will study the clustering results when  T is 
initialized to S or when  T is S (the blurring process). The  data 
set S is partit ioned into clusters based  solely on  their mean  
shift trajectories. When  two data points or their T representa- 
tives converge to the same final position, they are considered 
to belong to the same cluster. Unlike k-means like clustering 
algorithms, which are probabilistic because the randomness of 
the initialization of T, mean  shift clustering with T initialized 
to S is deterministic. 

A. Clustering as  a  Natural Process 

Many  clustering algorithms are treated as  means  for opti- 
mizing certain measures about  the partitioning. For example, 
the k-means clustering algorithm is aiming at minimizing the 
within-group sum of squared errors [7], and  the maximum en- 
tropy clustering algorithm is to maximize entropy while the 
within-group sum of squared errors is held constant. Some- 
times, it is the algorithm itself that is emphasized,  for instance 
in the case of the k-means clustering. The  initial cluster cen- 
ters, T, are randomly or strategically chosen,  and  there is no  
guarantee that any  execut ion of the algorithm will reach the 
global minimum. After the execut ion of the algorithm, all one  
can say is that a  local minimum is reached,  and  the optimiza- 
tion goal becomes illusive. 

At other times, the reach of a  global opt imum is essential. 
The  maximum entropy clustering is an  example. The  actual 
iteration that hopeful ly attains the goal is de-emphasized,  
based  on  precisely the same reason, that every run of the al- 
gorithm only reaches a  local maximum [5]. It is known that 
optimization problems like these are NP-hard [9]. Hence,  in 
general,  clustering as  optimization is computationally unattain- 
able. 

The  phi losophy of this paper  is that clustering can also be  
v iewed as the result of some natural process, like mean  shift or 
blurring. As a  deterministic process, the clustering result pro- 
vides a  characteristic of the data set. In the light of Theorem 5, 
when  T is initialized to S, the final configuration of T is a  local 
maximum of U(T); when  T is S, it is a  local maximum of V(S). 
The result or purpose of mean  shift clustering is to use  a  local 
maximum of U or V as a  characterization of S. The  global 
maximum of U or V is not only unattainable, but also undesir- 
able. For instance, V reaches its global maximum when S 
shrinks to one  point, which is the result only when  the kernel 

has  a  broad support.  The  number  and  distribution of local 
maxima of U and  V depend  only on  the kernel, the dimen- 
sionality of the space,  and  the data size. 
EXAMPLE 5. To  visualize mean  shift as  clustering, we ran- 

domly chose an  S of size 100  in the unit square (Fig. 4a)  
and  appl ied five different variations of mean  shift. Proc- 
esses were terminated when  no  update larger than 10” took 
place. The  truncated Gaussian kernel, (GF)p-vi, was used 

in Figs. 4b, 4c, and  4d, while the Gaussian kernel, “non-  
truncated,” GO, was used in Figs. 4e)  and  4f, all with p  =  30. 
The  blurring process was used in Fig. 4b  and  nonblurring, 
meaning 

\ 

(4 

\ 

(4 

Fig. 4. Trajectories of different mean  shift variations on  the same data set. (a) 
The data set S, also the initial T  set for nonblurring processes. (b) A blurring 
process with IO iterations and nine clusters. (c) A nonblurring mean  shift 
process with a  truncated Gaussian kernel and  uniform weights. It terminated 
in 20  iterations at 37  clusters, (d) Nonblurring mean  shift with a  truncated 
Gaussian kernel and  an  adaptive weight function. It terminated in 20  itera- 
tions at 64  clusters. (e) Nonblurring with a  nontruncated Gaussian kernel and  
uniform weights. It terminated in 274  iterations at two clusters. (f) Nonblur- 
ring with a  nontruncated Gaussian kernel and  adaptive weights. It terminated 
in 127  iterations with 13  clusters. 
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T was only initialized to S but S is fixed, was used in others. 
In (b), (c), and  (e), data points were equally weighted, while 
in (d) and  (f), a  weight w that satisfies 1  w(s) =  c K(t - s) 

I ST 

was used.  u  

B. Validation of Clustering 

When  the truncated Gaussian kernel (GF)p,,2 with varying 

/I is used,  we can see that in general,  the smaller j3 is, the fewer 
clusters will be  generated.  But this may not always be  true. 
Furthermore, a  smaller cluster associated with a  larger p  value 
may not be  the result of a  “split” of a  larger cluster associated 
with a  smaller p  value. However,  if the clustering outcomes 
are plotted against a  range of p  values, then it will be  clear that 
some clustering outcomes are transient and  unstable while oth- 
ers are more stable. The  recurrence of a  clustering outcome 
with varying j3 values can be  used as  an  indication that the 
pattern may be  more valid than the transient ones.  
EXAMPLE 6. Fig. 5  is a  plot of the blurring process appl ied on  

the velocities of 82  galaxies [I I]. The  same data were fit 
with a  bimodal normal mixture model  by  Roeder  [IO] and  
conclusion was that the observable universe contained two 
superclusters of galaxies sur rounded by large voids. How- 
ever, by  observing Fig. 5, one  can see that the most stable 
outcome is three instead of two clusters. This shows that 
while bimodal mixture or k-means clustering requires some 
prior guessing about  the number  of clusters, the result from 
mean  shift clustering is less arbitrary. 0  

Fig. 5. Clustering of 82  galaxies based on  their velocities. The tree-shape 
diagram shows the relative validity of clustering outcomes with the kernel 
(GQ of different J. values. Larger I values were used near the root of the 
tree, while smaller jl values were used near the leaves of the tree, where the 
dimension across the tree indicates the velocities. 

EXAMPLE 7. Another example of blurring within a  parameter 
cont inuum is demonstrated in Fig. 6, where 62  alphanu- 
meric characters were treated as  data points in a  144  (the 
number  of pixels involved in the 8  x 18  font) dimensional 
Eucl idean space.  Blurring with kernel (GF), with il ranging 
from 1.6 to 3.8 was performed. The  clustering results were 
discretized and  displayed as  two-tone pixels, 0  

Fig. 6. Blurring of 62  8  x 18 font alphanumeric characters. Each row is the 
outcome of blurring using the kernel (GF), with a  1  value between 1.6 and  
3.8. The average number  of iterations was 4.7. 

C. Application to Hough  Transform 

EXAMPLE 8. Fig. 7  shows an  application of mean  shift cluster- 
ing in general ized Hough  transform. 300  edge  pixels were 
randomly chosen from a  100  x 100  image and  each  pair of 
them generated a  straight line passing them. The  intersec- 
tions of these lines and  the borders of the image are rounded 
off to the nearest  integers (pixel positions) and  they are 
registered with 400  x 400  accumulators in the parameter 
space,  similar to the “muff’ transform suggested by  Wal lace 
[la. q 

(a) (b) 
Fig. 7. Mean  shift peak detection in the parameter space of Hough (muff) 
transform. The image contains 300  edge pixels. Pairs of edge pixels make 
44,850 suggestions of possible lines that are coded as points in the parameter 
space. Each line is coded with two integers between 0  and  400, that label the 
intersections of the line with the borders of the image. (a) shows the line 
detection based on  the number  of suggestions falling into the each point in the 
parameter space. A threshold of 30  was used. (b) is the result after mean  shift 
is appl ied to these lines in the parameter space. The kernel was (GF)to, 
weights were the number  of suggestions, and  four clusters emerged as the four 
lines shown. 

VI. MEAN SHIFT OPTIMIZATION 

The blurring process moves data points in the gradient di- 
rection of the function q on  X, 

44  = z Kb - -444~ (42) 

In clustering with mean  shift, this function q is considered as  
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an  approximation to the data density, and  mean  shift f inds the 
local maxima of the density function. 

When  data S is uniformly distributed in an  area of X, and  
w(s) is the value of a  tar-gel function f : X + R at the point s, q 
becomes an  approximation off with some scaling. Mean  shift 
with this setting will find all the local maxima off in a  region, 
and  this leads to another application of mean  shift, namely 
global optimization. 

Because now the initial data set S has  to be  randomly (and 
hopeful ly uniformly) generated,  the algorithm becomes prob- 
abilistic, even  when  T is S or is initialized to S. To  compensate 

3 
(b) 

Cd) 

(e) 
Fig. 8. Multistart global optimization using blurring. (a) shows the functionf; 
whose global max imum is to be  found. The next four figures show the mean  
shift of S, at the (b) initial, (c) first, (d) third, and  (e) fifth iterations of a  blur- 
ring process when f is used as the weight function. In each of these four fig- 
ures, the vertical bars show the positions and)‘values of the S points, and  the 
curve shows the y function, whose local maxima locations approximate those 
off. 

the inevitable non-uniformity of any  finite random set, the 
weight w(s) can  be  the f value at s augmented with a  data 
density balancing factor, as  

f(s) 
w(w)= CK(Q’ (43) 

te.7 

When  the blurring process is used,  the next generat ion of S 
will concentrate more at the modes  of the approximated F 
function, but the weight w will contain a  factor that offsets this 
effect. It is also possible to make the algorithm more determi- 
nistic by  placing the initial S on  regular grid points. 

EXAMPLE 9: Fig. 8  is a  demonstrat ion of this optimization 
strategy. (a) is the underlying functionf, whose maxima are 
to be  found. This function is unknown,  but with a  price, f(x) 
may be  obtained for any  x E X. The  upper  half of (b) shows 
the initial randomly chosen 100  x E X, as  the set S, a long 
with their f(x) values. The  lower half is the estimated f func- 
tion using 

q(x) = C(GF),(s - 44% 

f(s) 
w(s) = C(GF),(t - s) . (44) 

In this demonstrat ion, the range of X is the unit interval and  
il =  0.18. (c) contains the S set a long with f(s) values after a  
single mean  shift step, with the estimated f using this data 
set S in the lower half. (d) and  (e) are the snapshots after 
three and  five mean  shift steps respectively. After five itera- 
tions, the global maximum and  a  local maximum were dis- 
covered and  S reached its final configuration, a  fixed point 
of the blurring process. I1 

Mean  shift optimization is a  parallel hill climbing method 
comparable to many  genetic algorithms. The  blurring process 
in effect is an  evolutionary strategy, with f being the so-called 
fitness function. 

Mean  shift optimization also shows some similarity with 
some multistart global optimization methods [13]. Because it 
is necessary to have  sample points on  both sides of a  local 
maximum in order for mean  shift to work, the method may not 
be  efficient in a  space of high dimensionality or an  f function 
with too many  local maxima. Nevertheless, it has  the unique 
property that the same simple iteration works for both local 
and  global optimization, compared to most multistart methods 
where separate local and  global approaches are used.  

VII. CONCLUDING REMARKS 

Suppose one  has  made  a  number  of observations, per- 
formed a  series of experiments, or collected a  stack of cases. 
What  is a  natural way in which the memory of data is organ- 
ized? It could be  organized as  a  sorted list based  on  some key, 
or a  decision tree, or a  rule-based system, or a  distributed as- 
sociative memory.  But what can  be  more basic than to associ- 
ate each  exper ience with similar ones,  and  to extract the com- 
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mon features that make them different from others? Mean 
shift, or confusing a point with the average of similar points, 
must be a simple and natural process that plays a role in mem- 
ory organization. A multiresolution representation of the data, 
containing both commonality and specificity, seems likely to 
be the foundation of law discovery and knowledge acquisition. 

Since this process is so intuitive and basic, it should have 
been used as an ingredient in various modeling and algo- 
rithmic efforts, or at least it should have been studied in 
mathematics as a simple dynamic system. However, based on 
the author’s search and communication, the existence of previ- 
ous efforts is not apparent. To the best knowledge of the 
author, Fukunaga and Hostetler [l] is still the first work pro- 
posing mean shift explicitly as an iterative algorithm, and a 
rigorous and comprehensive treatment of the process has not 
been done. 

This paper attempted to provide an appropriate generaliza- 
tion to the mean shift algorithm, so that many interesting and 
useful properties would be preserved. One property is that the 
process is either a gradient mapping, or a similar one that 
seeks modes of a real function. Compared to gradient descent 
or ascent methods, mean shift seems more effective in terms of 
adapting to the right step size. 

The two major applications of mean shift discussed in this 
paper, namely cluster analysis and global optimization, have 
not been practiced widely. There may be computational ob- 
stacles, and they may not be suitable for problems with pro- 
hibitive sizes and dimensionalities. The computational cost of 
an iteration of mean shift is O(n2) where n is the size of S, the 
data set. It is obviously possible to reduce this time complexity 
to O(n log n), by a better storage of the data, when only neigh- 
boring points are used in the computation of the mean. 

ACKNOWLEDGMENTS 

The author thanks Keinosuke Fukunaga and John Schlipf 
for conversations and Zhangyong Wan for early exploration of 
the convergence of the process. 

This work was supported by the National Science Founda- 
tion, under Grant no. IRI-9010555. 

121 

131 

]41 

[51 

161 

[71 

181 

[91 

REFERENCES 

K. Fukunaga and L.D. Hostetler, “The estimation of the gradient of a 
density function, with applications in pattern recognition,” IEEE Trans. 
Infi,rmution Theory, vol. 21, pp. 32-40, 1975. 
B.W. Silverman, Density Estirnution ,jijr Stutistics und Dutu Anulysis. 
London: Chapman and Hall, 1986. 
Y. Cheng and KS. Fu, “Conceptual clustering in knowledge organiza- 
tion,” IEEE Truns. Puttern Analysis und Muchine Intelligence, vol. 7, 
pp. 592-598, 1985. 
K. Rose, E. Gurewitz, and G.C. Fox, “Statistical mechanics and phase 
transitions in clustering,” Physicul Review Letters, vol. 65, pp. 945-948, 
1990. 
K. Rose, E. Gurewitz, and G.C. Fox, “Constrained clustering as an 
optimization method,” IEEE Truns. Pattern Anulysis and Muchine In- 
telligence, vol. 15, pp. 785-794, 1993. 
J.M. Ortega and W.C. Rheinboldt, Iferutive Solution of Nonlineur 
Equtions in Severul Vuriubles. San Diego: Academic Press, 1970. 
S.Z. Selim and M.A. Ismail, “K-means-type algorithms: A generalized 
convergence theorem and characterization of local optimality,” IEEE 
Trans. Pattern Anulysis und Machine Intelligence, vol. 6, pp. 81-86, 
1984. 
Y. Cheng and Z. Wan, “Analysis of the blurring process,” Cumputu- 
tionul Leurning Theory und Nuturul Leurning Systems, vol. 3, 
T. Petsche, et al., eds., 1992. 
P. Bruckcr, “On the complexity of clustering problems,” Henn, Korte, 
and Oetth, eds. Optimizution und Operutions Reseurch. Berlin: 
Springer-Verlag, 1978. 

[lo] K. Roeder, “Density estimation with confidence sets exemplified by 
superciuaters and voids in the galaxies,” J. Amer. Stutisticul Assoc., 
vol. 85, pp. 617-624, 1990, also see [ll]. 

[I l] B.S. Everitt, Cluster Analysis. 3rd ed., London: Edward Arnold, 1993. 
[12] R.S. Wallace, “A modified Hough transform for lines,” IEEE CVPR 

Conf:, pp. 665-667, San Francisco, 1985. 
[ 131 A.H.G. Rinnooy Kan and G.T. Timmer, ‘Stochastic global optimization 

methods Part I: Clustering methods,” Muthemuticul Programming, 
vol. 39, pp. 27-56, 1987. 

Yizong Cheng received the BSEE and PhD degrees 
from Purdue University, West Lafayette, Ind., in 
1981 and 1986, respectively. He is now on the fac- 
ulty of the University of Cincinnati. 

His current research interests are in data self- 
organization and knowledge discovery. 


