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Abstract
The Extended Kalman Filter (EKF) has become a standard
technique used in a number of nonlinear estimation and ma-
chine learning applications. These include estimating the
state of a nonlinear dynamic system, estimating parame-
ters for nonlinear system identification (e.g., learning the
weights of a neural network), and dual estimation (e.g., the
ExpectationMaximization (EM) algorithm)where both states
and parameters are estimated simultaneously.

This paper points out the flaws in using the EKF, and
introduces an improvement, the Unscented Kalman Filter
(UKF), proposed by Julier and Uhlman [5]. A central and
vital operation performed in the Kalman Filter is the prop-
agation of a Gaussian random variable (GRV) through the
system dynamics. In the EKF, the state distribution is ap-
proximated by a GRV, which is then propagated analyti-
cally through the first-order linearization of the nonlinear
system. This can introduce large errors in the true posterior
mean and covariance of the transformed GRV, which may
lead to sub-optimal performance and sometimes divergence
of the filter. The UKF addresses this problem by using a
deterministic sampling approach. The state distribution is
again approximated by a GRV, but is now represented using
a minimal set of carefully chosen sample points. These sam-
ple points completely capture the true mean and covariance
of the GRV, and when propagated through the true non-
linear system, captures the posterior mean and covariance
accurately to the 3rd order (Taylor series expansion) for any
nonlinearity. The EKF, in contrast, only achieves first-order
accuracy. Remarkably, the computational complexity of the
UKF is the same order as that of the EKF.

Julier and Uhlman demonstrated the substantial perfor-
mance gains of the UKF in the context of state-estimation
for nonlinear control. Machine learning problems were not
considered. We extend the use of the UKF to a broader class
of nonlinear estimation problems, including nonlinear sys-
tem identification, training of neural networks, and dual es-
timation problems. Our preliminary results were presented
in [13]. In this paper, the algorithms are further developed
and illustrated with a number of additional examples.
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1. Introduction
The EKF has been applied extensively to the field of non-
linear estimation. General application areas may be divided
into state-estimation and machine learning. We further di-
vide machine learning into parameter estimation and dual
estimation. The framework for these areas are briefly re-
viewed next.

State-estimation

The basic framework for the EKF involves estimation of the
state of a discrete-time nonlinear dynamic system,

(1)
(2)

where represent the unobserved state of the system and
is the only observed signal. The process noise drives

the dynamic system, and the observation noise is given by
. Note that we are not assuming additivity of the noise

sources. The system dynamic model and are assumed
known. In state-estimation, the EKF is the standard method
of choice to achieve a recursive (approximate) maximum-
likelihood estimation of the state . We will review the
EKF itself in this context in Section 2 to help motivate the
Unscented Kalman Filter (UKF).

Parameter Estimation

The classic machine learning problem involves determining
a nonlinear mapping

(3)

where is the input, is the output, and the nonlinear
map is parameterized by the vector . The nonlinear
map, for example, may be a feedforward or recurrent neural
network ( are the weights), with numerous applications
in regression, classification, and dynamic modeling. Learn-
ing corresponds to estimating the parameters . Typically,
a training set is provided with sample pairs consisting of
known input and desired outputs, . The error of
the machine is defined as , and the
goal of learning involves solving for the parameters in
order to minimize the expected squared error.



While a number of optimization approaches exist (e.g.,
gradient descent using backpropagation), the EKF may be
used to estimate the parameters by writing a new state-space
representation

(4)
(5)

where the parameters correspond to a stationary pro-
cess with identity state transition matrix, driven by process
noise (the choice of variance determines tracking per-
formance). The output corresponds to a nonlinear obser-
vation on . The EKF can then be applied directly as an
efficient “second-order” technique for learning the parame-
ters. In the linear case, the relationship between the Kalman
Filter (KF) and Recursive Least Squares (RLS) is given in
[3]. The use of the EKF for training neural networks has
been developed by Singhal and Wu [9] and Puskorious and
Feldkamp [8].

Dual Estimation

A special case of machine learning arises when the input
is unobserved, and requires coupling both state-estimation
and parameter estimation. For these dual estimation prob-
lems, we again consider a discrete-time nonlinear dynamic
system,

(6)
(7)

where both the system states and the set of model param-
eters for the dynamic systemmust be simultaneously esti-
mated from only the observed noisy signal . Approaches
to dual-estimation are discussed in Section 4.2.

In the next section we explain the basic assumptions and
flaws with the using the EKF. In Section 3, we introduce the
Unscented Kalman Filter (UKF) as a method to amend the
flaws in the EKF. Finally, in Section 4, we present results of
using the UKF for the different areas of nonlinear estima-
tion.

2. The EKF and its Flaws
Consider the basic state-space estimation framework as in
Equations 1 and 2. Given the noisy observation , a re-
cursive estimation for can be expressed in the form (see
[6]),

prediction of prediction of (8)

This recursion provides the optimalminimummean-squared
error (MMSE) estimate for assuming the prior estimate

and current observation are Gaussian RandomVari-
ables (GRV). We need not assume linearity of the model.
The optimal terms in this recursion are given by

(9)
(10)
(11)

where the optimal prediction of is written as , and
corresponds to the expectation of a nonlinear function of
the random variables and (similar interpretation
for the optimal prediction ). The optimal gain term
is expressed as a function of posterior covariance matrices
(with ). Note these terms also require tak-
ing expectations of a nonlinear function of the prior state
estimates.

The Kalman filter calculates these quantities exactly in
the linear case, and can be viewed as an efficient method for
analytically propagating a GRV through linear system dy-
namics. For nonlinear models, however, the EKF approxi-
mates the optimal terms as:

(12)
(13)

(14)

where predictions are approximated as simply the function
of the priormean value for estimates (no expectation taken)1
The covariance are determined by linearizing the dynamic
equations ( ), and
then determining the posterior covariance matrices analyt-
ically for the linear system. In other words, in the EKF
the state distribution is approximated by a GRV which is
then propagated analytically through the “first-order” lin-
earization of the nonlinear system. The readers are referred
to [6] for the explicit equations. As such, the EKF can be
viewed as providing “first-order” approximations to the op-
timal terms2. These approximations, however, can intro-
duce large errors in the true posterior mean and covariance
of the transformed (Gaussian) random variable, which may
lead to sub-optimal performance and sometimes divergence
of the filter. It is these “flaws” which will be amended in the
next section using the UKF.

3. The Unscented Kalman Filter
The UKF addresses the approximation issues of the EKF.
The state distribution is again represented by a GRV, but
is now specified using a minimal set of carefully chosen
sample points. These sample points completely capture the
true mean and covariance of the GRV, and when propagated
through the true non-linear system, captures the posterior
mean and covariance accurately to the 3rd order (Taylor se-
ries expansion) for any nonlinearity. To elaborate on this,

1The noise means are denoted by and , and are
usually assumed to equal to zero.

2While “second-order” versions of the EKF exist, their increased im-
plementation and computational complexity tend to prohibit their use.



we start by first explaining the unscented transformation.

The unscented transformation (UT) is a method for cal-
culating the statistics of a random variable which undergoes
a nonlinear transformation [5]. Consider propagating a ran-
dom variable (dimension ) through a nonlinear function,

. Assume has mean and covariance . To
calculate the statistics of , we form a matrix of
sigma vectors (with corresponding weights ), accord-
ing to the following:

(15)

where is a scaling parameter. deter-
mines the spread of the sigma points around and is usually
set to a small positive value (e.g., 1e-3). is a secondary
scaling parameter which is usually set to 0, and is used
to incorporate prior knowledge of the distribution of (for
Gaussian distributions, is optimal).
is the th row of the matrix square root. These sigma vectors
are propagated through the nonlinear function,

(16)

and the mean and covariance for are approximated us-
ing a weighted sample mean and covariance of the posterior
sigma points,

(17)

(18)

Note that this method differs substantially from general “sam-
pling” methods (e.g., Monte-Carlo methods such as particle
filters [1]) which require orders of magnitude more sample
points in an attempt to propagate an accurate (possibly non-
Gaussian) distribution of the state. The deceptively sim-
ple approach taken with the UT results in approximations
that are accurate to the third order for Gaussian inputs for
all nonlinearities. For non-Gaussian inputs, approximations
are accurate to at least the second-order, with the accuracy
of third and higher order moments determined by the choice
of and (See [4] for a detailed discussion of the UT). A
simple example is shown in Figure 1 for a 2-dimensional
system: the left plot shows the true mean and covariance
propagation using Monte-Carlo sampling; the center plots

Actual (sampling) Linearized (EKF) UT

sigma points

true mean

UT mean

    and covariance
weighted sample mean

mean

UT covariance

covariance

true covariance

transformed
sigma points

Figure 1: Example of the UT for mean and covariance prop-
agation. a) actual, b) first-order linearization (EKF), c) UT.

show the results using a linearization approach as would be
done in the EKF; the right plots show the performance of
the UT (note only 5 sigma points are required). The supe-
rior performance of the UT is clear.

The Unscented Kalman Filter (UKF) is a straightfor-
ward extension of the UT to the recursive estimation in Equa-
tion 8, where the state RV is redefined as the concatenation
of the original state and noise variables: .
The UT sigma point selection scheme (Equation 15) is ap-
plied to this new augmented state RV to calculate the corre-
sponding sigma matrix, . The UKF equations are given
in Algorithm 3. Note that no explicit calculation of Ja-
cobians or Hessians are necessary to implement this algo-
rithm. Furthermore, the overall number of computations are
the same order as the EKF.

4. Applications and Results
The UKF was originally designed for the state-estimation
problem, and has been applied in nonlinear control applica-
tions requiring full-state feedback [5]. In these applications,
the dynamic model represents a physically based paramet-
ric model, and is assumed known. In this section, we extend
the use of the UKF to a broader class of nonlinear estimation
problems, with results presented below.

4.1. UKF State Estimation

In order to illustrate the UKF for state-estimation, we pro-
vide a new application example corresponding to noisy time-
series estimation.

In this example, the UKF is used to estimate an underly-
ing clean time-series corrupted by additive Gaussian white
noise. The time-series used is the Mackey-Glass-30 chaotic



Initialize with:

For ,

Calculate sigma points:

Time update:

Measurement update equations:

where, , ,
=composite scaling parameter, =dimension of augmented state,
=process noise cov., =measurement noise cov., =weights

as calculated in Eqn. 15.
Algorithm 3.1: Unscented Kalman Filter (UKF) equations

series. The clean times-series is first modeled as a nonlinear
autoregression

(19)

where the model (parameterized by w) was approximated
by training a feedforward neural network on the clean se-
quence. The residual error after convergence was taken to
be the process noise variance.

Next, white Gaussian noise was added to the cleanMackey-
Glass series to generate a noisy time-series .
The corresponding state-space representation is given by:

...
. . .

...
...

...

(20)

In the estimation problem, the noisy-time series is the
only observed input to either the EKF or UKF algorithms
(both utilize the known neural network model). Note that
for this state-space formulation both the EKF and UKF are
order complexity. Figure 2 shows a sub-segment of the
estimates generated by both the EKF and the UKF (the orig-
inal noisy time-series has a 3dB SNR). The superior perfor-
mance of the UKF is clearly visible.
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Figure 2: Estimation of Mackey-Glass time-series with the
EKF and UKF using a known model. Bottom graph shows
comparison of estimation errors for complete sequence.

4.2. UKF dual estimation

Recall that the dual estimation problem consists of simul-
taneously estimating the clean state and the model pa-



rameters from the noisy data (see Equation 7). As
expressed earlier, a number of algorithmic approaches ex-
ist for this problem. We present results for the Dual UKF
and Joint UKF. Development of a Unscented Smoother for
an EM approach [2] was presented in [13]. As in the prior
state-estimation example, we utilize a noisy time-series ap-
plication modeled with neural networks for illustration of
the approaches.

In the the dual extended Kalman filter [11], a separate
state-space representation is used for the signal and the weights.
The state-space representation for the state is the same
as in Equation 20. In the context of a time-series, the state-
space representation for the weights is given by

(21)
(22)

where we set the innovations covariance equal to 3.
Two EKFs can now be run simultaneously for signal and
weight estimation. At every time-step, the current estimate
of the weights is used in the signal-filter, and the current es-
timate of the signal-state is used in the weight-filter. In the
new dual UKF algorithm, both state- and weight-estimation
are done with the UKF. Note that the state-transition is lin-
ear in the weight filter, so the nonlinearity is restricted to the
measurement equation.

In the joint extended Kalman filter [7], the signal-state
and weight vectors are concatenated into a single, joint state
vector: . Estimation is done recursively by writ-
ing the state-space equations for the joint state as:

(23)

(24)

and running an EKF on the joint state-space4 to produce
simultaneous estimates of the states and . Again, our
approach is to use the UKF instead of the EKF.

Dual Estimation Experiments

We present results on two time-series to provide a clear il-
lustration of the use of the UKF over the EKF. The first
series is again the Mackey-Glass-30 chaotic series with ad-
ditive noise (SNR 3dB). The second time series (also
chaotic) comes from an autoregressive neural network with
random weights driven by Gaussian process noise and also

3 is usually set to a small constant which can be related to the time-
constant for RLS weight decay [3]. For a data length of 1000,
was used.

4The covariance of is again adapted using the RLS-weight-decay
method.

corrupted by additive white Gaussian noise (SNR 3dB).
A standard 6-4-1 MLP with hidden activation func-
tions and a linear output layer was used for all the filters in
the Mackey-Glass problem. A 5-3-1 MLP was used for the
second problem. The process and measurement noise vari-
ances were assumed to be known. Note that in contrast to
the state-estimation example in the previous section, only
the noisy time-series is observed. A clean reference is never
provided for training.

Example training curves for the different dual and joint
Kalman based estimation methods are shown in Figure 3. A
final estimate for the Mackey-Glass series is also shown for
the Dual UKF. The superior performance of the UKF based
algorithms are clear. These improvements have been found
to be consistent and statistically significant on a number of
additional experiments.
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Figure 3: Comparative learning curves and results for the
dual estimation experiments.



4.3. UKF parameter estimation

As part of the dual UKF algorithm, we implemented the
UKF for weight estimation. This represents a new param-
eter estimation technique that can be applied to such prob-
lems as training feedforward neural networks for either re-
gression or classification problems.

Recall that in this case we write a state-space representa-
tion for the unknownweight parameters as given in Equa-
tion 5. Note that in this case both the UKF and EKF are or-
der ( is the number of weights). The advantage of the
UKF over the EKF in this case is also not as obvious, as the
state-transition function is linear. However, as pointed out
earlier, the observation is nonlinear. Effectively, the EKF
builds up an approximation to the expected Hessian by tak-
ing outer products of the gradient. The UKF, however, may
provide a more accurate estimate through direct approxima-
tion of the expectation of the Hessian. Note another distinct
advantage of the UKF occurs when either the architecture
or error metric is such that differentiation with respect to
the parameters is not easily derived as necessary in the EKF.
The UKF effectively evaluates both the Jacobian and Hes-
sian precisely through its sigma point propagation, without
the need to perform any analytic differentiation.

We have performed a number of experiments applied to
training neural networks on standard benchmark data. Fig-
ure 4 illustrates the differences in learning curves (averaged
over 100 experiments with different initial weights) for the
Mackay-Robot-Arm dataset and the Ikeda chaotic time se-
ries. Note the slightly faster convergence and lower final
MSE performance of the UKF weight training. While these
results are clearly encouraging, further study is still neces-
sary to fully contrast differences between UKF and EKF
weight training.
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Figure 4: Comparison of learning curves for the EKF and
UKF training. a) Mackay-Robot-Arm, 2-12-2 MLP, b) Ikeda
time series, 10-7-1 MLP.

5. Conclusions and future work
The EKF has been widely accepted as a standard tool in the
machine learning community. In this paper we have pre-
sented an alternative to the EKF using the unscented fil-
ter. The UKF consistently achieves a better level of ac-
curacy than the EKF at a comparable level of complexity.
We have demonstrated this performance gain in a number
of application domains, including state-estimation, dual es-
timation, and parameter estimation. Future work includes
additional characterization of performance benefits, exten-
sions to batch learning and non-MSE cost functions, as well
as application to other neural and non-neural (e.g., paramet-
ric) architectures. In addition, we are also exploring the use
of the UKF as a method to improve Particle Filters [10], as
well as an extension of the UKF itself that avoids the linear
update assumption by using a direct Bayesian update [12].

6. References
[1] J. de Freitas, M. Niranjan, A. Gee, and A. Doucet. Sequential monte

carlo methods for optimisation of neural network models. Technical
Report CUES/F-INFENG/TR-328, Dept. of Engineering, University
of Cambridge, Nov 1998.

[2] A. Dempster, N. M. Laird, and D. Rubin. Maximum-likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statisti-
cal Society, B39:1–38, 1977.

[3] S. Haykin. Adaptive Filter Theory. Prentice-Hall, Inc, 3 edition,
1996.

[4] S. J. Julier. The Scaled Unscented Transformation. To appear in
Automatica, February 2000.

[5] S. J. Julier and J. K. Uhlmann. A New Extension of the Kalman Filter
to Nonlinear Systems. In Proc. of AeroSense: The 11th Int. Symp. on
Aerospace/Defence Sensing, Simulation and Controls., 1997.

[6] F. L. Lewis. Optimal Estimation. John Wiley & Sons, Inc., New
York, 1986.

[7] M. B. Matthews. A state-space approach to adaptive nonlinear filter-
ing using recurrent neural networks. In Proceedings IASTED Inter-
nat. Symp. Artificial Intelligence Application and Neural Networks,
pages 197–200, 1990.

[8] G. Puskorius and L. Feldkamp. Decoupled Extended Kalman Filter
Training of Feedforward Layered Networks. In IJCNN, volume 1,
pages 771–777, 1991.

[9] S. Singhal and L. Wu. Training multilayer perceptrons with the ex-
tended Kalman filter. In Advances in Neural Information Processing
Systems 1, pages 133–140, San Mateo, CA, 1989. Morgan Kauffman.

[10] R. van der Merwe, J. F. G. de Freitas, A. Doucet, and E. A. Wan. The
Unscented Particle Filter. Technical report, Dept. of Engineering,
University of Cambridge, 2000. In preparation.

[11] E. A. Wan and A. T. Nelson. Neural dual extended Kalman filtering:
applications in speech enhancement and monaural blind signal sep-
aration. In Proc. Neural Networks for Signal Processing Workshop.
IEEE, 1997.

[12] E. A. Wan and R. van der Merwe. The Unscented Bayes Filter. Tech-
nical report, CSLU, Oregon Graduate Institute of Science and Tech-
nology, 2000. In preparation (http://cslu.cse.ogi.edu/nsel).

[13] E. A. Wan, R. van der Merwe, and A. T. Nelson. Dual Estimation
and the Unscented Transformation. In S. Solla, T. Leen, and K.-R.
Müller, editors, Advances in Neural Information Processing Systems
12, pages 666–672. MIT Press, 2000.


