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Definition of the operations allowed in an algorithm and their cost.

Goal: estimate the ressources required by an algorithm

Ex: execution time, memory space, number of I/O transfers, number of processors...

as a function of the input size.

Principle: we do not want a precise cost estimation

We want to speak of algorithms independently of the technology.

We want to compare algorithms, not implementations.

Classical model in CG: Real RAM model

Allows manipulation of real (as in R) numbers.

Input size n → complexity f (n) = maxinput |X|=n f (X)

Care about asymptotic order of magnitude of f (O(),Ω(),Θ()).
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Brute force does not scale well (or: why should we think?)

The ”Travelling salesman problem”.

Input: n cities and all inter-city distances.

Output: order on the cities that minimizes the distance travelled.

Brute-force approach: test all n! orders and pick the best.

Assume your computer can process 1015 orders per second.

Generate the order, add-up the distances, compare to the current best...

A very generous over-estimation.

Start the computation now. It will end...

in 30-60 min. for n = 20. in two weeks for n = 22.

in twenty years for n = 24. in four centuries for n = 25.

in the dark for n = 30.



Orders of magnitude

Sort by increasing asymptotic orders of magnitude:

n, 2n, n2, n!,
√
n, log n, log∗ n, 2n

2



Orders of magnitude

Sort by increasing asymptotic orders of magnitude:

n, 2n, n2, n!,
√
n, log n, log∗ n, 2n

2

log∗ n� log n�
√
n� n� n2 � 2n � n!� 2n

2



Orders of magnitude

Sort by increasing asymptotic orders of magnitude:

n, 2n, n2, n!,
√
n, log n, log∗ n, 2n

2

log∗ n� log n�
√
n� n� n2 � 2n � n!� 2n

2

log∗ n� loga n� nb � 2cn � (n!)d � 2en
2

∀a, b, c, d, e ∈ R+



Three classes of problems

Orders of magnitude

Sort by increasing asymptotic orders of magnitude:

n, 2n, n2, n!,
√
n, log n, log∗ n, 2n

2

log∗ n� log n�
√
n� n� n2 � 2n � n!� 2n

2

Undecidable: no algorithm will solve the problem. Ever.

NP-hard: conjectured unlikely that a polynomial-time algorithm exists.

Polynomial-time: solvable by an algorithm with complexity O(nc)

for some constant c.

log∗ n� loga n� nb � 2cn � (n!)d � 2en
2

∀a, b, c, d, e ∈ R+



Hilbert’s tenth problem

Input: a polynomial P in n variables with integer coefficients.

Output: yes if P has a integer solution, no otherwise.

Ex: P (x1, x2, x3) = x21 + 3x1x2 − 2x22 + 4x3 + 3

Tenth question in Hilbert’s list of Problèmes futurs des mathématiques.

Raised in 1900. Algorithmic question before the age of computers.

”Solved” in 1970 by Y. Matiyasevitch.
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Ex: P (x1, x2, x3) = x21 + 3x1x2 − 2x22 + 4x3 + 3

Tenth question in Hilbert’s list of Problèmes futurs des mathématiques.

Raised in 1900. Algorithmic question before the age of computers.

”Solved” in 1970 by Y. Matiyasevitch.

UNDECIDABLE
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Algorithms for the same problem may have different complexities.

Ex: Merge sort has Θ(n log n) complexity.
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Problems solvable in polynomial time

Algorithms for the same problem may have different complexities.

Ex: Merge sort has Θ(n log n) complexity.

Bubble sort has Θ(n2) complexity.

Quick sort has Θ(n2) complexity but O(n log n) average-case complexity.

This can have a drastic impact.

http://www.sorting-algorithms.com/



Wrap-up: what is it about?

Algorithmic solutions to geometric problems.

Proofs of correctness and complexity bounds.

(Attention to degeneracy and numerical issues.)

Beware of undecidable or NP-hard problems.

Asymptotic complexity matters in practice.
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Question 2 (getting started)

How to compute the intersections among n segments in 2D?

Input:

Output:

Any idea?
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Details:

How to detect the changes in the ordered list?

Data structure? Predicates?

Three types of events

Data structures
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Ordered list of segments intersected by the line.
Supports efficient insertion, deletion & exchange.

List of events sorted by x-coordinates.

each event happens

at a particular x-coordinate

{
Supports efficient insertion & deletion.



Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.
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Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.
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Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.
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Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.
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Output= {(3, 4), (2, 4), (2, 3)}



Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.
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Events= {I2,4, R4, L1, I2,3, L5, R1, R5, R3, R2}

Sweep= {4, 2, 3}

Output= {(3, 4), (2, 4), (2, 3)}

etc...

Correctness? Complexity?
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Computing arrangements of geometric objects.

Computing trapezoidal decompositions of arrangements of geometric objects.

Computing substructures of arrangements of geometric objects.

Other objects (polygons, circles, algebraic curves, etc...), other spaces (S2, R3, S1 × S1...).

Generic principle, three predicates: x-extreme points, intersection, x-coordinate comparison.

Wrap-up: sweep algorithms

All that in O((n+ k) log n).



Question 3

Why are geometric algorithms hard to implement correctly?
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First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.

Degeneracy are common. They are often there by design.

Objects in contact are tangent.

Try asking an architect to avoid quadruple of coplanar points when designing a CAD model.

Can we handle degeneracies without treating each one separately?

Can we at least detect them efficiently?

Some degeneracies come from the problem, others from the algorithm.
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The 3-sum problem: Given n numbers, decide if three of them sum to 0.

What is the best algorithm you can come-up with?

Known bounds: O(n2) and Ω(n log n).

If we can detect triples of aligned 2D points in o(n2) time then we can solve 3-sum in o(n2) time.

15 years old conjecture: any algorithm solving 3-sum has Ω(n2) time complexity.
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The 3-sum problem: Given n numbers, decide if three of them sum to 0.

What is the best algorithm you can come-up with?

Known bounds: O(n2) and Ω(n log n).

If we can detect triples of aligned 2D points in o(n2) time then we can solve 3-sum in o(n2) time.

15 years old conjecture: any algorithm solving 3-sum has Ω(n2) time complexity.
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Testing if d + 1 points lie on a common hyperplane in Rd is dd2e-sum hard.
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Perturbing? Easier said than done

In principle, perturbing the points eliminate degeneracies.

First issue: the perturbation should preserves non-degenerate inputs.

Second issue: the perturbation should not create new degeneracies.

can be perturbed in but not in

can be perturbed in but not in

should not be perturbed in

should not be perturbed in

Bottom line: ”Epsilon=10ˆ-12” is not an option if we want any kind of guarantee.
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Degeneracy correspond to vanishing of some of the polynomials evaluating the geometric predicates.

Make all computations for ”t > 0 sufficiently small” then take limt→0.
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Ex: the point p = (3, 12) becomes p = (3 + t, 12 + t2).

Degeneracy correspond to vanishing of some of the polynomials evaluating the geometric predicates.

Make all computations for ”t > 0 sufficiently small” then take limt→0.

Choose the functions so that the relevant polynomials do not identically vanish.

Example: convex hull computation, point-in-polygon.
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Consider a geometric object as a function of one variable t [1990].

The input we are interested in is the value when t = 0.

Ex: the point p = (3, 12) becomes p = (3 + t, 12 + t2).

Degeneracy correspond to vanishing of some of the polynomials evaluating the geometric predicates.

Make all computations for ”t > 0 sufficiently small” then take limt→0.

Choose the functions so that the relevant polynomials do not identically vanish.

Example: convex hull computation, point-in-polygon.

Replacing pi by pi + (t2
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, t2

2i+1
) handles all degeneracies for these predicates.

Predicates are x-coordinates comparison and orientation.

Heavy machinery, important slow-down, ignore voluntary degeneracies.

Partial perturbation: shearing (x, y) 7→ (x + ty, y)
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Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.

Not to mention that processors make errors from time to time...

The question is: can these error have a significant impact?

”Judge for yourself”: the example of 2D convex hull computation.

The problem: three points are nearly aligned, and the orientation predicates make inconsistent errors.

”Sometimes left, sometimes right”.
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A close look at that example
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Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));
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Consequences of numerical rounding

A ”correct” code can make incorrect decisions. These errors are inconsistent.

Crash, infinite loops, smooth execution but wrong answer... which is the worse?

Can be hard to detect...
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Interval arithmetic

Keep the precision bounded but keep track of the error.

A number is represented by an interval (reduced to a single element if precision is sufficient).

Define all operations on intervals.

24− 0.5000027 = 23.4999973 ∼ 23.499998

If the interval does not contain 0 then we can decide the sign with certainty.

Otherwise, we need more precision... Restart the computation with twice as many digits.

If the result of the computation is exactly 0 we will never have enough precision...

This suffices ”most of the time”.

For those few cases, we need to be able to do the computations exactly.

Exact number types for integers, rational numbers, algebraic numbers.

becomes [24, 24]− [0.5000027, 0.5000027] = [23.49999, 23.50000].
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Algebraic numbers

A real r is algebraic if there exists a polynomial P (X) with integer coefficients such that P (r) = 0.

What about n ∈ N, f ∈ Q,
√

2, 5
√

17, e, π... ?

The set of algebraic numbers is closed under +,−,×, /, x 7→ xt for t ∈ Q (in particular
√

).

There are few algebraic numbers (ie countably many).

The result of most classical operations on geometric objects defined by integers

can be described using algebraic numbers.

5
√

23 and 7
√

25 are not integers, but we can still compare them exactly using integer arithmetic.
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Representing and manipulating algebraic numbers

An algebraic number can be represented by a polynomial (a family of integers) and an isolation interval.

y=P(x)

r

Interval containing a single root of P .

Ex:
√

2 ' (X2 − 1, [1, 2]).

Given two algebraic numbers a and b represented by polynomials and isolation intervals,

we can compute a polynomial / isolation interval that represents:

a + b, a− b, a× b, ab , a
2,
√
a, etc...

Implemented in the C/C++ core library.



Using algebraic numbers

Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));
leads to

Core::Expr xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));

These problems can be avoided by using
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Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.
→ evaluate the sign of polynomials of degree 6.

Evaluate 3D orientations of quadruples of points
→ evaluate the sign of polynomials of degree 3.

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).



Wrap-up: robustness

Treating degeneracies requires great care.

Numerical problems will arise.

If not treated properly, they produce crashes, infinite loops or wrong results.

Exact number types exist and are implemented. This is good enough for prototyping.

Reliability and efficiency are achieved by using good predicates

and filtering exact number type with interval arithmetic.



The End


