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Why are geometric algorithms hard to implement correctly?
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No two points have the same z-coordinate.
No three segments intersect in the same point. properties that hold generically.

No four points lie on the same circle.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.

Degeneracy are common. They are often there by design.

Objects in contact are tangent.

Try asking an architect to avoid quadruple of coplanar points when designing a CAD model.

Some degeneracies come from the problem, others from the algorithm.

Can we handle degeneracies without treating each one separately?

Can we at least detect them efficiently?
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Bottom line: "Epsilon=10"-12" is not an option if we want any kind of guarantee.
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Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.

The question is: can these error have a significant impact?

" Judge for yourself”: the example of 2D convex hull computation.

The problem: three points are nearly aligned, and the orientation predicates make inconsistent errors.

"Sometimes left, sometimes right”.
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Float xp,yp,xq,yq,Xr,yr;
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Consequences of numerical rounding

A "correct” code can make incorrect decisions. These errors are inconsistent.

Crash, infinite loops, smooth execution but wrong answer... which is the worse?

Can be hard to detect...
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Interval arithmetic

Keep the precision bounded but keep track of the error.

A number is represented by an interval (reduced to a single element if precision is sufficient).

Define all operations on intervals.

24 — 0.5000027 = 23.4999973 ~ 23.499998
becomes [24, 24] — [0.5000027, 0.5000027] = [23.49999, 23.50000].

If the interval does not contain 0 then we can decide the sign with certainty.

This suffices " most of the time”.
Otherwise, we need more precision... Restart the computation with twice as many digits.

If the result of the computation is exactly O we will never have enough precision...

For those few cases, we need to be able to do the computations exactly.

Exact number types for integers, rational numbers, algebraic numbers.
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Decision VS constructions

Distinguish between decision (for branching) and constructions.
Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

If the decisions are correct, the "type" of the result is correct (constructions do not matter much).

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.
— evaluate the sign of polynomials of degree 6.

— Evaluate 3D orientations of quadruples of points
— evaluate the sign of polynomials of degree 3.




Wrap-up: robustness

Treating degeneracies requires great care.

Numerical problems will arise.

If not treated properly, they produce crashes, infinite loops or wrong results.

Exact number types exist and are implemented. This is good enough for prototyping.

Reliability and efficiency are achieved by using good predicates

and filtering exact number type with interval arithmetic.



The End



