
Robustness issues in

computational geometry

Marc Pouget
présentation trés largement inspirée du travail de Xavier Goaoc



Why are geometric algorithms hard to implement correctly?



First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.



First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.



First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.

Degeneracy are common. They are often there by design.

Objects in contact are tangent.

Try asking an architect to avoid quadruple of coplanar points when designing a CAD model.



First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.

Degeneracy are common. They are often there by design.

Objects in contact are tangent.

Try asking an architect to avoid quadruple of coplanar points when designing a CAD model.

Some degeneracies come from the problem, others from the algorithm.



First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.

Degeneracy are common. They are often there by design.

Objects in contact are tangent.

Try asking an architect to avoid quadruple of coplanar points when designing a CAD model.

Can we handle degeneracies without treating each one separately?

Can we at least detect them efficiently?

Some degeneracies come from the problem, others from the algorithm.



Perturbing? Easier said than done

In principle, perturbing the points eliminate degeneracies.



Perturbing? Easier said than done

In principle, perturbing the points eliminate degeneracies.

First issue: the perturbation should preserves non-degenerate inputs.

can be perturbed in but not in

can be perturbed in but not in



Perturbing? Easier said than done

In principle, perturbing the points eliminate degeneracies.

First issue: the perturbation should preserves non-degenerate inputs.

Second issue: the perturbation should not create new degeneracies.

can be perturbed in but not in

can be perturbed in but not in

should not be perturbed in

should not be perturbed in



Perturbing? Easier said than done

In principle, perturbing the points eliminate degeneracies.

First issue: the perturbation should preserves non-degenerate inputs.

Second issue: the perturbation should not create new degeneracies.

can be perturbed in but not in

can be perturbed in but not in

should not be perturbed in

should not be perturbed in

Bottom line: ”Epsilon=10ˆ-12” is not an option if we want any kind of guarantee.



Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.



Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.

The question is: can these error have a significant impact?



Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.

The question is: can these error have a significant impact?

”Judge for yourself”: the example of 2D convex hull computation.



Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.

The question is: can these error have a significant impact?

”Judge for yourself”: the example of 2D convex hull computation.

The problem: three points are nearly aligned, and the orientation predicates make inconsistent errors.

”Sometimes left, sometimes right”.



A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0



A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0
Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));



A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0
Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));



A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0
Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));

∈



A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0
Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));

∈

6∈



Consequences of numerical rounding

A ”correct” code can make incorrect decisions. These errors are inconsistent.

Crash, infinite loops, smooth execution but wrong answer... which is the worse?

Can be hard to detect...



Interval arithmetic

Keep the precision bounded but keep track of the error.

A number is represented by an interval (reduced to a single element if precision is sufficient).

Define all operations on intervals.

24− 0.5000027 = 23.4999973 ∼ 23.499998

becomes [24, 24]− [0.5000027, 0.5000027] = [23.49999, 23.50000].



Interval arithmetic

Keep the precision bounded but keep track of the error.

A number is represented by an interval (reduced to a single element if precision is sufficient).

Define all operations on intervals.

24− 0.5000027 = 23.4999973 ∼ 23.499998

If the interval does not contain 0 then we can decide the sign with certainty.

Otherwise, we need more precision... Restart the computation with twice as many digits.

This suffices ”most of the time”.

becomes [24, 24]− [0.5000027, 0.5000027] = [23.49999, 23.50000].



Interval arithmetic

Keep the precision bounded but keep track of the error.

A number is represented by an interval (reduced to a single element if precision is sufficient).

Define all operations on intervals.

24− 0.5000027 = 23.4999973 ∼ 23.499998

If the interval does not contain 0 then we can decide the sign with certainty.

Otherwise, we need more precision... Restart the computation with twice as many digits.

If the result of the computation is exactly 0 we will never have enough precision...

This suffices ”most of the time”.

For those few cases, we need to be able to do the computations exactly.

Exact number types for integers, rational numbers, algebraic numbers.

becomes [24, 24]− [0.5000027, 0.5000027] = [23.49999, 23.50000].



Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.



Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).



Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).



Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.
→ evaluate the sign of polynomials of degree 6.

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).



Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.
→ evaluate the sign of polynomials of degree 6.

Evaluate 3D orientations of quadruples of points

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).



Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.
→ evaluate the sign of polynomials of degree 6.

Evaluate 3D orientations of quadruples of points
→ evaluate the sign of polynomials of degree 3.

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).



Wrap-up: robustness

Treating degeneracies requires great care.

Numerical problems will arise.

If not treated properly, they produce crashes, infinite loops or wrong results.

Exact number types exist and are implemented. This is good enough for prototyping.

Reliability and efficiency are achieved by using good predicates

and filtering exact number type with interval arithmetic.



The End


