
Computational Geometry Algorithms Library

Monique Teillaud

www.cgal.org

1 / 75

Introduction The CGAL Kernels

2D, 3D, dD “rational” kernels
2D circular and 3D spherical kernels

17 / 75

Introduction The CGAL Kernels

In the kernels

Elementary geometric objects
Elementary computations on them

Primitives Predicates Constructions
2D, 3D, dD • comparison • intersection
• Point • Orientation • squared distance
• Vector • InSphere . . .
• Triangle . . .
• Circle
. . .

18 / 75

Introduction The CGAL Kernels

Affine geometry

Point - Origin ! Vector
Point - Point ! Vector
Point + Vector ! Point

Point Vector

Origin

Point + Point illegal

midpoint(a,b) = a + 1/2 x (b-a)

19 / 75

Introduction The CGAL Kernels

Kernels and number types

Cartesian representation

Point
����
x = hx

hw

y = hy
hw

Homogeneous representation

Point

������

hx
hy
hw

- ex: Intersection of two lines -
⇢

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =0

BB@

������

b1 c1
b2 c2

������
������

a1 b1
a2 b2

������

,�

������

a1 c1
a2 c2

������
������

a1 b1
a2 b2

������

1

CCA

⇢
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx , hy , hw) =✓����
b1 c1
b2 c2

���� ,�
����
a1 c1
a2 c2

���� ,
����
a1 b1
a2 b2

����

◆

Field operations Ring operations

20 / 75

Introduction The CGAL Kernels

Kernels and number types

Cartesian representation

Point
����
x = hx

hw

y = hy
hw

Homogeneous representation

Point

������

hx
hy
hw

- ex: Intersection of two lines -
⇢

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =0

BB@

������

b1 c1
b2 c2

������
������

a1 b1
a2 b2

������

,�

������

a1 c1
a2 c2

������
������

a1 b1
a2 b2

������

1

CCA

⇢
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx , hy , hw) =✓����
b1 c1
b2 c2

���� ,�
����
a1 c1
a2 c2

���� ,
����
a1 b1
a2 b2

����

◆

Field operations Ring operations

20 / 75

Introduction The CGAL Kernels

Kernels and number types

Cartesian representation

Point
����
x = hx

hw

y = hy
hw

Homogeneous representation

Point

������

hx
hy
hw

- ex: Intersection of two lines -
⇢

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =0

BB@

������

b1 c1
b2 c2

������
������

a1 b1
a2 b2

������

,�

������

a1 c1
a2 c2

������
������

a1 b1
a2 b2

������

1

CCA

⇢
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx , hy , hw) =✓����
b1 c1
b2 c2

���� ,�
����
a1 c1
a2 c2

���� ,
����
a1 b1
a2 b2

����

◆

Field operations Ring operations

20 / 75

Introduction The CGAL Kernels

The “rational” Kernels

CGAL::Cartesian< FieldType >

CGAL::Homogeneous< RingType >

�! Flexibility

typedef double NumberType;
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point_2 Point;

21 / 75

Introduction The CGAL Kernels

Arithmetic robustness issues

Rational Kernels:
Predicates = signs of polynomial expressions

Exact Geometric Computation
6= exact arithmetics

Predicates evaluated exactly
Filtering Techniques (interval arithmetics, etc)

exact arithmetics only when needed

CGAL::Exact_predicates_inexact_constructions_kernel

22 / 75

Introduction The CGAL Kernels

Arithmetic robustness issues

typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt(NT(2));

Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // squared radius 2

assert(C.has_on_boundary(q));

OK if NT gives exact sqrt
assertion violation otherwise

23 / 75

Introduction The CGAL Kernels

Arithmetic robustness issues

typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt(NT(2));

Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // squared radius 2

assert(C.has_on_boundary(q));

OK if NT gives exact sqrt
assertion violation otherwise

23 / 75

Introduction The CGAL Kernels

The circular/spherical kernels

Circular/spherical kernels
• solve needs for e.g. intersection of circles.
• extend the CGAL (linear) kernels

Exact computations on algebraic numbers of degree 2
= roots of polynomials of degree 2

Algebraic methods reduce comparisons to
computations of signs of polynomial expressions

24 / 75

Introduction The CGAL Kernels

Application of the 2D circular kernel

Computation of arrangements
of 2D circular arcs and line segments

Pedro M.M. de Castro, Master internship
25 / 75

Introduction The CGAL Kernels

Application of the 3D spherical kernel

Computation of arrangements of 3D spheres

Sébastien Loriot, PhD thesis

26 / 75

2D, 3D Triangulations in CGAL

2D, 3D Triangulations in CGAL

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

27 / 75

2D, 3D Triangulations in CGAL Introduction

2D, 3D Triangulations in CGAL — Introduction

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

28 / 75

2D, 3D Triangulations in CGAL Introduction

Simplicial complex

= set K of 0,1,2,. . . d-faces such that
each face is a simplex
� 2 K, ⌧  �) ⌧ 2 K
�,�0 2 K) � \ �0  �,�0

29 / 75

2D, 3D Triangulations in CGAL Introduction

Various triangulations

2D, 3D, dD Basic triangulations
2D, 3D, dD Delaunay triangulations
2D, 3D, dD Regular triangulations

Triangulation

Delaunay Regular

30 / 75

2D, 3D Triangulations in CGAL Introduction

Basic and Delaunay triangulations

(figures in 2D)

p

Basic triangulations : incremental construction
Delaunay triangulations: empty sphere property

31 / 75

2D, 3D Triangulations in CGAL Functionalities

2D, 3D Triangulations in CGAL — Functionalities

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

34 / 75

2D, 3D Triangulations in CGAL Functionalities

General functionalities

• Traversal of a 2D (3D) triangulation

- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells)

incident to a vertex
- circulators to visit all cells around an edge

• Point location query

• Insertion, removal, flips

• is_valid
checks local validity (sufficient in practice)
not global validity

35 / 75

2D, 3D Triangulations in CGAL Functionalities

General functionalities

• Traversal of a 2D (3D) triangulation

- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells)

incident to a vertex
- circulators to visit all cells around an edge

• Point location query

• Insertion, removal, flips

• is_valid
checks local validity (sufficient in practice)
not global validity

35 / 75

2D, 3D Triangulations in CGAL Functionalities

General functionalities

• Traversal of a 2D (3D) triangulation

- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells)

incident to a vertex
- circulators to visit all cells around an edge

• Point location query

• Insertion, removal, flips

• is_valid
checks local validity (sufficient in practice)
not global validity

35 / 75

2D, 3D Triangulations in CGAL Functionalities

Traversal of a 3D triangulation

Iterators
All_cells_iterator Finite_cells_iterator
All_faces_iterator Finite_faces_iterator
All_edges_iterator Finite_edges_iterator
All_vertices_iterator Finite_vertices_iterator

Circulators
Cell_circulator : cells incident to an edge
Facet_circulator : facets incident to an edge

All_vertices_iterator vit;

for (vit = T.all_vertices_begin();

vit != T.all_vertices_end(); ++vit)

...

36 / 75

2D, 3D Triangulations in CGAL Functionalities

Traversal of a 3D triangulation

Around a vertex

incident cells and facets, adjacent vertices

template < class OutputIterator >
OutputIterator

t.incident_cells

(Vertex_handle v, OutputIterator cells)

37 / 75

2D, 3D Triangulations in CGAL Functionalities

Point location, insertion, removal

basic triangulation:

Delaunay triangulation :

38 / 75

2D, 3D Triangulations in CGAL Functionalities

Additional functionalities for Delaunay triangulations

Nearest neighbor queries
Voronoi diagram

40 / 75

2D, 3D Triangulations in CGAL Representation

2D, 3D Triangulations in CGAL — Representation

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

41 / 75

2D, 3D Triangulations in CGAL Representation

The main algorithm

Incremental algorithm

fully dynamic (point insertion, vertex removal)
any dimension
easier to implement
efficient in practice
. . .

42 / 75

2D, 3D Triangulations in CGAL Representation

Needs

Walking in a triangulation

Access to
vertices of a simplex
neighbors of a simplex

in constant time

43 / 75

2D, 3D Triangulations in CGAL Representation

2D - Representation based on faces

i

f

neighbor(ccw(i))

cw(i)

neighbor(i) ccw(i)
neighbor(cw(i))

Vertex
Face_handle v_face

Face
Vertex_handle vertex [3]
Face_handle neighbor [3]

Edges are implicit: std::pair< f , i >
where f = one of the two incident faces.

more efficient than half-edges
From one face to another
n = f ! neighbor(i)
j = n ! index(f)

44 / 75

2D, 3D Triangulations in CGAL Representation

2D - Representation based on faces

i

f

neighbor(ccw(i))

cw(i)

neighbor(i) ccw(i)
neighbor(cw(i))

Vertex
Face_handle v_face

Face
Vertex_handle vertex [3]
Face_handle neighbor [3]

Edges are implicit: std::pair< f , i >
where f = one of the two incident faces.

more efficient than half-edges
From one face to another
n = f ! neighbor(i)
j = n ! index(f)

44 / 75

2D, 3D Triangulations in CGAL Representation

Geometry vs. combinatorics

Each finite vertex stores a point

There is NO point in the infinite vertex

infinite simplex = half-space

47 / 75

2D, 3D Triangulations in CGAL Robustness

Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation

3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

Kernel 2D 3D
Cartesian < double >

may loop (or crash) !

Exact_predicates_inexact_constructions_kernel 10.6 sec 82 sec

51 / 75

2D, 3D Triangulations in CGAL Robustness

Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation

3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

Kernel 2D 3D
Cartesian < double >

may loop (or crash) !

9.7 sec 75 sec
Exact_predicates_inexact_constructions_kernel 10.6 sec 82 sec

51 / 75

2D, 3D Triangulations in CGAL Robustness

Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation

3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

Kernel 2D 3D
Cartesian < double > may loop (or crash) !
Exact_predicates_inexact_constructions_kernel 10.6 sec 82 sec

51 / 75

2D, 3D Triangulations in CGAL Robustness

Robustness

Pictures by Pierre Alliez

58 / 75

2D, 3D Triangulations in CGAL Software Design

2D, 3D Triangulations in CGAL — Software Design

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

59 / 75

2D, 3D Triangulations in CGAL Software Design

Traits class

Triangulation_2<Traits, TDS>

Geometric traits classes provide:
Geometric objects + predicates + constructors

Flexibility:
• The Kernel can be used as a traits class for several algorithms
• Otherwise: Default traits classes provided
• The user can plug his/her own traits class

60 / 75

2D, 3D Triangulations in CGAL Software Design

Traits class

Generic algorithms

Delaunay_Triangulation_2<Traits, TDS>

Traits parameter provides:
• Point
• orientation test, in_circle test

61 / 75

2D, 3D Triangulations in CGAL Software Design

Traits class

2D Kernel used as traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Delaunay_triangulation_2< K > Delaunay;

• 2D points: coordinates (x, y)
• orientation, in_circle

62 / 75

2D, 3D Triangulations in CGAL Software Design

Traits class

Changing the traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Projection_traits_xy_3< K > Traits;

typedef CGAL::Delaunay_triangulation_2< Traits > Terrain;

• 3D points: coordinates (x, y, z)
• orientation, in_circle:

on x and y coordinates only

63 / 75

2D, 3D Triangulations in CGAL Software Design

Layers

Triangulation_3< Traits, TDS >

Vertex Cell

Vertex

-base

Cell

-base

Geometric information

Additional information

Data Structure
Combinatorics

insertion

Triangulation
Geometry

location

Triangulation_data_structure_3< Vb, Cb> ;
Vb and Cb have default values.

64 / 75

2D, 3D Triangulations in CGAL Software Design

Layers

The base level
Concepts VertexBase and CellBase.

Provide
- Point + access function + setting
- incidence and adjacency relations (access and setting)

Several models, parameterised by the traits class.

65 / 75

50

demos

web site www.cgal.org

	Introduction
	The CGAL Open Source Project
	Contents of CGAL
	The CGAL Kernels

	2D, 3D Triangulations in CGAL
	Introduction
	Functionalities
	Representation
	Robustness
	Software Design

