
Convex Hulls in 2d and 3d



Convex Hulls in 2d and 3d





Extreme point



Extreme point

Support line



Jarvis march (Gift wrapping)



Jarvis march (Gift wrapping)

The lowest point is extreme



Jarvis march (Gift wrapping)



Jarvis march (Gift wrapping)



Jarvis march (Gift wrapping)



Jarvis march (Gift wrapping)



Jarvis march (Gift wrapping)

Next point is found



Jarvis march (Gift wrapping)

Next point is found

Then the next



Jarvis march (Gift wrapping)

Next point is found

Then the next

Etc...



Jarvis march (Gift wrapping)

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u



Jarvis march (Gift wrapping)

Complexity ?

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u



Jarvis march (Gift wrapping)

Complexity ?

O(n)

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u



O(n)

Jarvis march (Gift wrapping)

Complexity ?

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u



Jarvis march (Gift wrapping)

Complexity ?

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u



Jarvis march (Gift wrapping)

Complexity ?

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u O(n)



Jarvis march (Gift wrapping)

Complexity ?

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u

O(n2)



Jarvis march (Gift wrapping)

Complexity ?

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u

O(nh)



Graham scan



Graham scan

One interior point



Graham scan

One interior point

Sorting around this point



Graham scan

One interior point

Sorting around this point



Graham scan

One interior point

Sorting around this point



Graham scan

One interior point

Sorting around this point



Graham scan

One interior point

Sorting around this point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Graham scan

One interior point

Sorting around this point

Scan starting from the lowest point



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)
O(1)



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)
O(1)

O(n)



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)
O(1)

O(n)



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)
O(1)

O(n)



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)
O(1)

O(n)

at most n deletions



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)
O(1)

O(n)

at most n deletions



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)
O(1)

O(n)

at most n deletions

at most n times



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)
O(1)

O(n)

O(n)



Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
Complexity

O(n log n)



Graham alternative: origin at y = −∞



Graham alternative: origin at y = −∞

Sort in x



Graham alternative: origin at y = −∞

Sort in x



Graham alternative: origin at y = −∞

Sort in x

Upper envelope



Graham alternative: origin at y = −∞

Upper envelope

Add the lower envelope



Deterministic incremental algorithm



Deterministic incremental algorithm



Deterministic incremental algorithm



Deterministic incremental algorithm



Deterministic incremental algorithm



Deterministic incremental algorithm



Deterministic incremental algorithm



Deterministic incremental algorithm



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

Deterministic incremental algorithm



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

vu

Deterministic incremental algorithm



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

vu

Deterministic incremental algorithm
u



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

vu

Deterministic incremental algorithm
u

u



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

vu

Deterministic incremental algorithm

w



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

vu

Deterministic incremental algorithm

w
w



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

Deterministic incremental algorithm

w
w

u



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

Deterministic incremental algorithm
Complexity



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

Deterministic incremental algorithm
Complexity

O(n log n)



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

Deterministic incremental algorithm



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

Deterministic incremental algorithm
Complexity

Draw an edge in the triangulation



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

Deterministic incremental algorithm
Complexity

Draw an edge in the triangulation

nb of edges ' 3n



Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

Deterministic incremental algorithm
Complexity

O(n log n)



Divide & conquer algorithm



Divide & conquer algorithm



Divide & conquer algorithm



Divide & conquer algorithm

Common tangents



Upper tangent



Upper tangent

Topmost points



Upper tangent



Upper tangent



Upper tangent

O(n)



Divide & conquer algorithm

Complexity

f (n) =



Divide & conquer algorithm

Complexity

f (n) = A · n + f (n2) + f (n2)



Divide & conquer algorithm

Complexity

f (n) = A · n + f (n2) + f (n2)

= O(n log n)



Divide & conquer algorithm

Complexity

f (n) = A · n + f (n2) + f (n2)

= O(n log n)

Balanced partition

Divide and merge in O(n)

(preprocessing in O(n log n)



CHAN’s ALGORITHM



CHAN’s ALGORITHM
Compute the CH of k subsets of P



CHAN’s ALGORITHM
Wrap around the CH of the k subsets



CHAN’s ALGORITHM
Compute the CH of k = n/m subsets of size m:

each in O(m logm), all in k/m×O(m logm) = O(n logm)



CHAN’s ALGORITHM

Find the si: O(n)

Compute the CH of k = n/m subsets of size m:
each in O(m logm), all in k/m×O(m logm) = O(n logm)



CHAN’s ALGORITHM

One wrapping step:
find the bitangents ti on each
subset:
n/m+ O(nb points visited)
=n/m+ O(nb points removed)



CHAN’s ALGORITHM

Find the si: O(n)

Compute the CH of k = n/m subsets of size m:
each in O(m logm), all in k/m×O(m logm) = O(n logm)

One wrapping step:
find the bitangents ti on each
subset:
n/m + O(nb points visited)
=n/m + O(nb points removed)

For h wrapping steps:
O(hn/m+ total points removed)

= O(hn/m + n)

Total:
O(n logm + hn/m + n) =
O(n(1 + h/m + logm))



CHAN’s ALGORITHM
Set a parameter H, call h the actual size of the convex hull of P

Hull(P,m,H)
Do H wrapping steps

If the last wrap comes back to the first point then return success
Else return incomplete

• Success if H > h
• Complexity of Hull(P,H,H) is O(n logH)



CHAN’s ALGORITHM
Set a parameter H, call h the actual size of the convex hull of P

Hull(P,m,H)
Do H wrapping steps

If the last wrap comes back to the first point then return success
Else return incomplete

• Success if H > h
• Complexity of Hull(P,H,H) is O(n logH)

Hull(P)
For i = 1, 2, ... do
L = Hull(P,H,H) with m = H = min(22i , n)
If L 6= incomplete then return L

Complexity:
Nb of iterations = O(log log h)
Cost of ith iterations = O(n logH) = O(n2i)

Total: O(
∑log logn

i=1 n2i) = O(n2log logn+1) =O(n log h)



Special case: simple polygonal line



Special case: simple polygonal line

already seen: monotone polyline in Graham’s scan



Special case: simple polygonal line

Graham does not work



Special case: simple polygonal line

Graham does not work



Special case: simple polygonal line

Graham does not work



Special case: simple polygonal line

Graham does not work



Special case: simple polygonal line

Graham does not work



Special case: simple polygonal line

Graham does not work



Special case: simple polygonal line

Graham does not work



Special case: simple polygonal line

Graham does not work



Special case: simple polygonal line

p1

p2

p3

p4

p6

p5

p8
p10

p11

p12p13

p14

P Q

P = p1, p2, ..., p14
Q contains the subsequence p2, p4, p6, p11



Special case: simple polygonal line

p1

succ(AM)

pi−1

pi

AM

Incremental algorithm : order given by the polyline
AM = highest rank point in CH(Pi−1)

Property: pi interior to CH(Pi−1) iff pi ∈ H+
pred ∩H+

succ

pred(AM)

H+
succ

H+
pred



Special case: simple polygonal line

p1

succ(AM)

pi−1

pi

AM

Incremental algorithm : order given by the polyline
AM = highest rank point in CH(Pi−1)

Property: pi interior to CH(Pi−1) iff pi ∈ H+
pred ∩H+

succ

Update CH(Pi) as in the incremental algorithm

Complexity: O(n)

pred(AM)

H+
succ

H+
pred



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping



3D: Gift wrapping

Complexity: O(nh)



3D Divide & conquer algorithm



3D Divide & conquer algorithm

Sort in x and divide



3D Divide & conquer algorithm



3D Divide & conquer algorithm
Find new edge: construct the CH of the projections,

use the 2d algo for bitangent



3D Divide & conquer algorithm
Use a wrapping algorithm around the new edges



3D Divide & conquer algorithm
Use a wrapping algorithm around the new edges



3D Divide & conquer algorithm
Search only in the star of the new edge vertices



3D Divide & conquer algorithm
Search only in the star of the new edge vertices



3D Divide & conquer algorithm
Search only in the star of the new edge vertices



3D Divide & conquer algorithm
Search only in the star of the new edge vertices



3D Divide & conquer algorithm
Search only in the star of the new edge vertices



3D Divide & conquer algorithm
Search only in the star of the new edge vertices



3D Divide & conquer algorithm
Search only in the star of the new edge vertices Merge in O(n)



3D Divide & conquer algorithm
Search only in the star of the new edge vertices Merge in O(n)

Complexity: O(n log n)




