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Next point is found

Then the next

Etc...



Jarvis march (Gift wrapping)

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u
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Complexity ?

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u

O(n2)



Jarvis march (Gift wrapping)

Complexity ?

Input : S set of points.
u = the lowest point of S;
min =∞
For all w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.next = v;
Do

S = S \ {v}
For all w ∈ S

min =∞
If angle(v.previous v, vw) < min then

min = angle(v.previous v, vw); v.next = w;
v = v.next;

While v 6= u

O(nh)
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Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;

else
v.next = v.next.next;
if v 6= u v = v.previous;

Graham Scan
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Input : S a set of n points.
origin = barycenter of 3 points of S;
sort S around the origin;
u = the lowest point of S;
v = u;
while v.next 6= u

if (v, v.next, v.next.next) turn left
v = v.next;
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Graham Scan
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Upper envelope



Graham alternative: origin at y = −∞

Upper envelope

Add the lower envelope
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Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;
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Input : S set of n points.
sort S in x;
initialize a circular list with the 3 leftmost points

such that u is on the right u, u.next, u.next.next turn left;
For v the next point in x

w=u
while (v, u, u.next) turn right

u = u.next;
v.next = u; u.previous = v;
while (v, w, w.previous) turn left

w = w.previous;
v.previous = w; w.next = v;
u = v;

Deterministic incremental algorithm
Complexity

Draw an edge in the triangulation

nb of edges ' 3n
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Divide & conquer algorithm

Common tangents



Upper tangent



Upper tangent

Topmost points



Upper tangent



Upper tangent



Upper tangent

O(n)



Divide & conquer algorithm

Complexity

f (n) =



Divide & conquer algorithm

Complexity

f (n) = A · n + f (n2) + f (n2)
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Complexity
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Divide & conquer algorithm

Complexity

f (n) = A · n + f (n2) + f (n2)

= O(n log n)

Balanced partition

Divide and merge in O(n)

(preprocessing in O(n log n)
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CHAN’s ALGORITHM
Compute the CH of k subsets of P



CHAN’s ALGORITHM
Wrap around the CH of the k subsets



CHAN’s ALGORITHM
Compute the CH of k = n/m subsets of size m:

each in O(m logm), all in k/m×O(m logm) = O(n logm)
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Find the si: O(n)

Compute the CH of k = n/m subsets of size m:
each in O(m logm), all in k/m×O(m logm) = O(n logm)



CHAN’s ALGORITHM

One wrapping step:
find the bitangents ti on each
subset:
n/m+ O(nb points visited)
=n/m+ O(nb points removed)



CHAN’s ALGORITHM

Find the si: O(n)

Compute the CH of k = n/m subsets of size m:
each in O(m logm), all in k/m×O(m logm) = O(n logm)

One wrapping step:
find the bitangents ti on each
subset:
n/m + O(nb points visited)
=n/m + O(nb points removed)

For h wrapping steps:
O(hn/m+ total points removed)

= O(hn/m + n)

Total:
O(n logm + hn/m + n) =
O(n(1 + h/m + logm))



CHAN’s ALGORITHM
Set a parameter H, call h the actual size of the convex hull of P

Hull(P,m,H)
Do H wrapping steps

If the last wrap comes back to the first point then return success
Else return incomplete

• Success if H > h
• Complexity of Hull(P,H,H) is O(n logH)



CHAN’s ALGORITHM
Set a parameter H, call h the actual size of the convex hull of P

Hull(P,m,H)
Do H wrapping steps

If the last wrap comes back to the first point then return success
Else return incomplete

• Success if H > h
• Complexity of Hull(P,H,H) is O(n logH)

Hull(P)
For i = 1, 2, ... do
L = Hull(P,H,H) with m = H = min(22i , n)
If L 6= incomplete then return L

Complexity:
Nb of iterations = O(log log h)
Cost of ith iterations = O(n logH) = O(n2i)

Total: O(
∑log logn

i=1 n2i) = O(n2log logn+1) =O(n log h)



Special case: simple polygonal line



Special case: simple polygonal line

already seen: monotone polyline in Graham’s scan
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Special case: simple polygonal line

p1

p2

p3

p4

p6

p5

p8
p10

p11

p12p13

p14

P Q

P = p1, p2, ..., p14
Q contains the subsequence p2, p4, p6, p11



Special case: simple polygonal line

p1

succ(AM)

pi−1

pi

AM

Incremental algorithm : order given by the polyline
AM = highest rank point in CH(Pi−1)

Property: pi interior to CH(Pi−1) iff pi ∈ H+
pred ∩H+

succ

pred(AM)

H+
succ

H+
pred



Special case: simple polygonal line

p1

succ(AM)

pi−1

pi

AM

Incremental algorithm : order given by the polyline
AM = highest rank point in CH(Pi−1)

Property: pi interior to CH(Pi−1) iff pi ∈ H+
pred ∩H+

succ

Update CH(Pi) as in the incremental algorithm

Complexity: O(n)

pred(AM)

H+
succ

H+
pred
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3D: Gift wrapping



3D: Gift wrapping

Complexity: O(nh)



3D Divide & conquer algorithm



3D Divide & conquer algorithm

Sort in x and divide



3D Divide & conquer algorithm



3D Divide & conquer algorithm
Find new edge: construct the CH of the projections,

use the 2d algo for bitangent



3D Divide & conquer algorithm
Use a wrapping algorithm around the new edges



3D Divide & conquer algorithm
Use a wrapping algorithm around the new edges



3D Divide & conquer algorithm
Search only in the star of the new edge vertices
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3D Divide & conquer algorithm
Search only in the star of the new edge vertices



3D Divide & conquer algorithm
Search only in the star of the new edge vertices Merge in O(n)



3D Divide & conquer algorithm
Search only in the star of the new edge vertices Merge in O(n)

Complexity: O(n log n)




