IMPA 2013 Postdoc Course Convex Hulls and Point Location

Marc Pouget VEGAS research team, INRIA Nancy, France

Who am I?

Nancy is 1:30 hours from Paris

My research team at INRIA:

- Non-linear computational geometry
- 3d visibility and line geometry

People: L. Dupont, S. Lazard, S. Petitjean, X. Goaoc, G. Moroz

My favorite topics:

- Approximation of curvatures on discrete surfaces
- Topology and geometry of curves and surfaces with algebraic/numerical tools

Who am I?

Nancy is 1:30 hours from Paris

My research team at INRIA:

- Non-linear computational geometry
- 3d visibility and line geometry

People: L. Dupont, S. Lazard, S. Petitjean, X. Goaoc, G. Moroz

My favorite topics:

- Approximation of curvatures on discrete surfaces
- Topology and geometry of curves and surfaces with algebraic/numerical tools

Want to join our team? INRIA Internship/Postdoc

REFERENCES

Algorithmic Geometry. J.D. Boissonnat and M. Yvinec. Computational Geometry: Algorithm and Applications. M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf.

Thanks to: J.D. Boissonnat O. Devillers M. Yvinec X. Goaoc

. . .

CONVEX HULLS

- Define the problem
- Algorithms in 2d and 3d
- Combinatorics of polytopes
- Algorithms in nd
- Robustness issues
- Application to Voronoi/Delaunay

Transversal topics:

- CGAL (Computational Geometry Algorithm Library)
- Output sensitive analysis
- Randomized algorithm
- Expected complexity

POINT LOCATION

- Define the problem
- Naive slab decomposition
- Trapezoidal maps
- Hierarchy and walks in triangulations

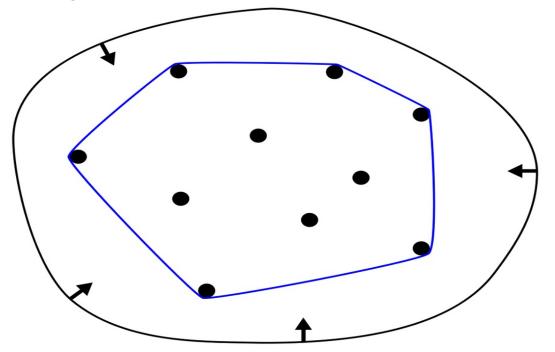
Also:

- Sweep algorithm for segment intersections
- CGAL

INTRODUCTION TO COMPUTATIONAL GEOMETRY

CONVEX HULL: DEFINITION

Convex set K: for any 2 points p, q of K, segment $[pq] \subset K$ $P = p_1, ..., p_n$ set of n points CH(P): Convex Hull of P =1. smallest (for the volume) convex containing P2. set of all convex combinations of points in P3. intersection of all half-spaces containing PCH(P) is a polytope with vertices in P



What does mean computing CH(P)?

- \bullet 1st answer: give the vertices of the polytope CH(P) i.e. a subset of points in P
- \bullet 2nd answer: give a combinatorial description of the polytope CH(P)

What does mean computing CH(P)?

- \bullet 1st answer: give the vertices of the polytope CH(P) i.e. a subset of points in P
- \bullet 2nd answer: give a combinatorial description of the polytope CH(P)

1D: find the smallest and largest points2D: store CH vertices in circular order3D: store a planar (spherical) graph with CH points as vertices

What does mean computing CH(P)?

- \bullet 1st answer: give the vertices of the polytope CH(P) i.e. a subset of points in P
- \bullet 2nd answer: give a combinatorial description of the polytope CH(P)

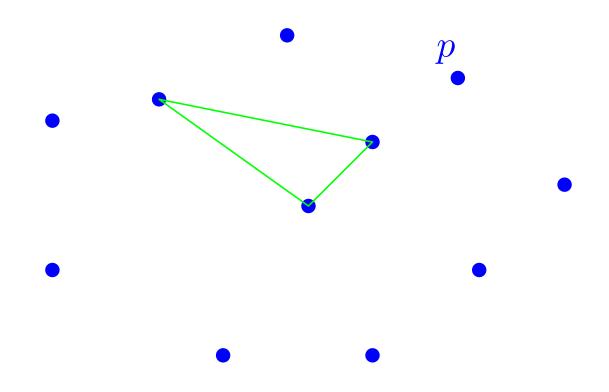
1D: find the smallest and largest points
2D: store CH vertices in circular order
3D: store a planar (spherical) graph with CH points as vertices

- Up to 3D: the complexity of a polytope (nb of edges, faces) is linear wrt the number of its vertices.
- Higher D: the complexity of a polytope (faces of all dimensions) is much higher

• Extreme points

For each point $p \in P$

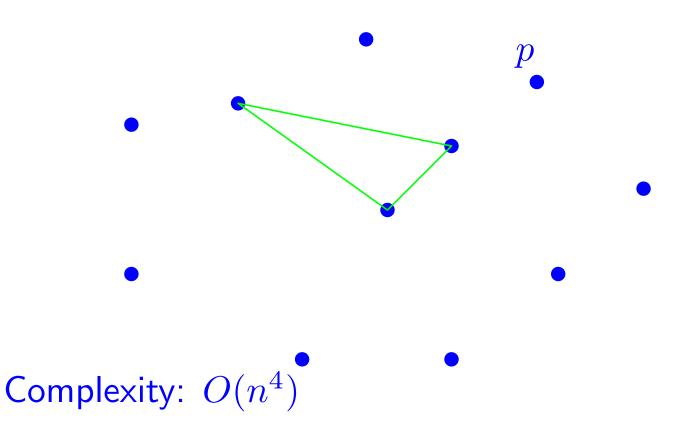
Check whether $p \mbox{ is in the interior of a triangle formed by 3 other points in <math display="inline">P$



• Extreme points

For each point $p \in P$

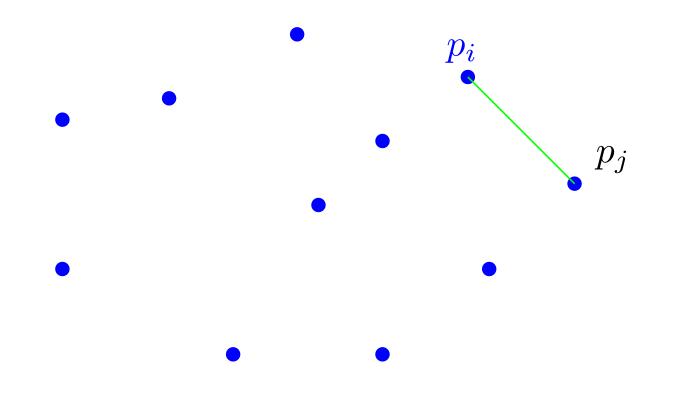
Check whether p is in the interior of a triangle formed by 3 other points in ${\cal P}$



• Extreme edges

For each edge $p_i p_j$

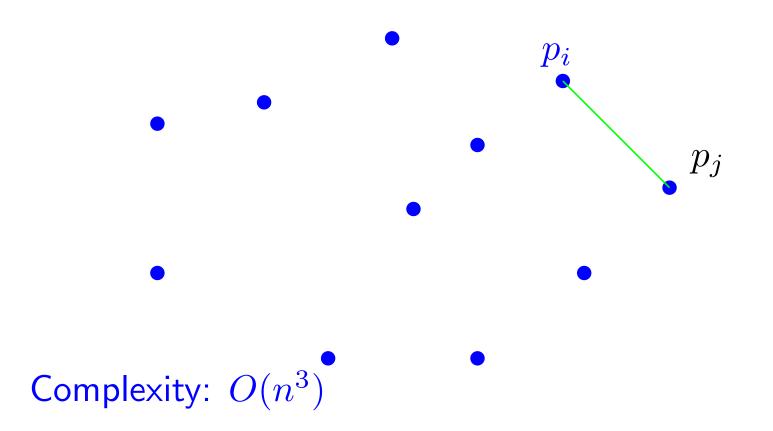
Check whether all other points are on one side



• Extreme edges

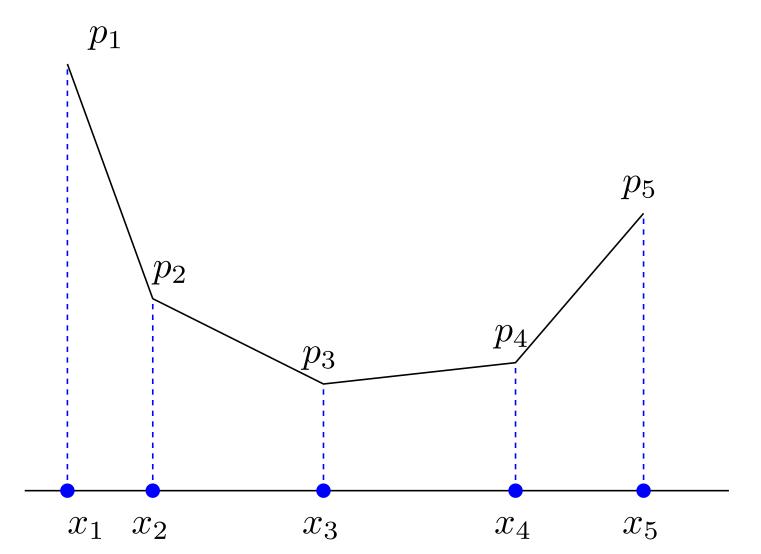
For each edge $p_i p_j$

Check whether all other points are on one side



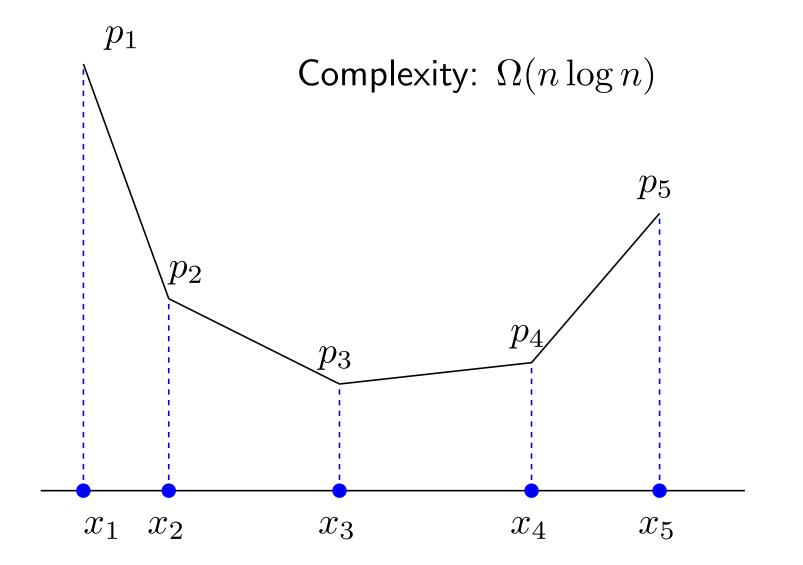
LOWER BOUND

Convex hull is at least as hard as sorting $x_i \rightarrow p_i = (x_i, x_i^2)$

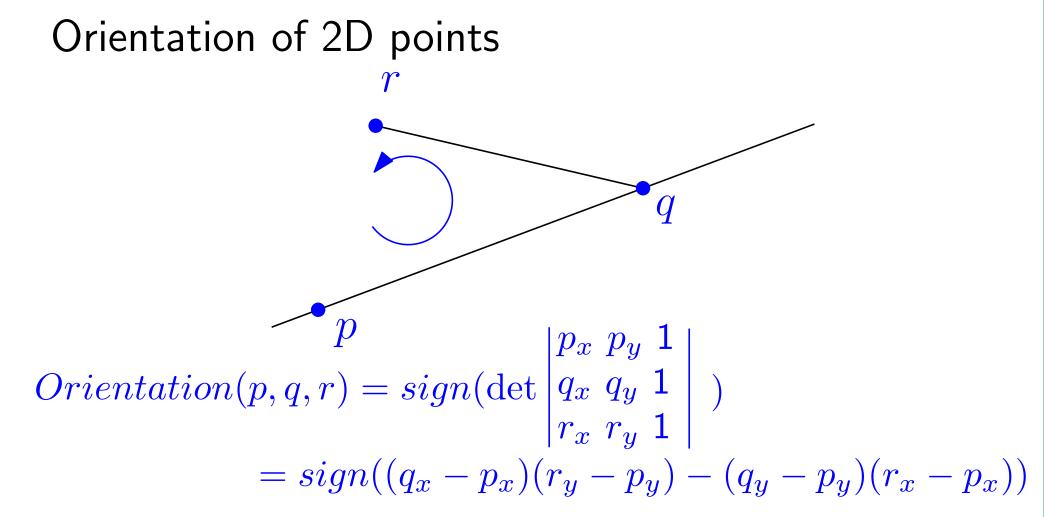


LOWER BOUND

Convex hull is at least as hard as sorting $x_i \rightarrow p_i = (x_i, x_i^2)$

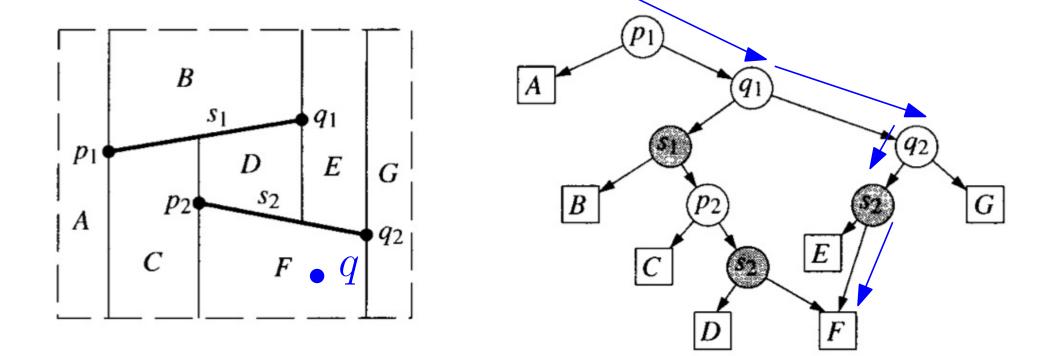


ROBUSTNESS ISSUES



Predicate for CH: decide the sign of a polynomial of degree 2 wrt the coordinates of the input points

TRAPEZOIDAL MAP & SEARCH STRUCTURE



TRAPEZOIDAL MAP & SEARCH STRUCTURE

Algorithm TRAPEZOIDALMAP(S)

Input. A set S of n non-crossing line segments.

- *Output.* The trapezoidal map $\mathcal{T}(S)$ and a search structure \mathcal{D} for $\mathcal{T}(S)$ in a bounding box.
- 1. Determine a bounding box R that contains all segments of S, and initialize the trapezoidal map structure T and search structure D for it.
- 2. Compute a random permutation s_1, s_2, \ldots, s_n of the elements of S.
- 3. for $i \leftarrow 1$ to n
- 4. **do** Find the set $\Delta_0, \Delta_1, \dots, \Delta_k$ of trapezoids in \mathcal{T} properly intersected by s_i .
- 5. Remove $\Delta_0, \Delta_1, \dots, \Delta_k$ from \mathcal{T} and replace them by the new trapezoids that appear because of the insertion of s_i .
- 6. Remove the leaves for $\Delta_0, \Delta_1, \dots, \Delta_k$ from \mathcal{D} , and create leaves for the new trapezoids. Link the new leaves to the existing inner nodes by adding some new inner nodes, as explained below.