
Voronoi Diagrams and Delaunay
Triangulations

Jean-Daniel Boissonnat

MPRI, Lecture 1, September 20, 2012

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Outline

I Euclidean Voronoi diagrams
I Delaunay triangulations
I Convex hulls

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Voronoi diagrams in nature

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

The solar system (Descartes)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Growth of merystem

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Euclidean Voronoi diagrams

Voronoi cell V (pi) = {x : ‖x − pi‖ ≤ ‖x − pj‖, ∀j}

Voronoi diagram (P) = { cell complex whose cells are the V (pi)
and their faces, pi ∈ P }

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Polyhedra and cell complexes

Polyhedron

The intersection of a finite collection of half-spaces :
V =

⋂
i∈I h+

i

Faces of a polyhedron

FJ =
⋂

j∈J h+
j
⋂

i∈I\J hi

Cell complex

A finite collection C of polyhedra called the faces of C such that

I f ∈ C, g ⊂ f ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Polyhedra and cell complexes

Polyhedron

The intersection of a finite collection of half-spaces :
V =

⋂
i∈I h+

i

Faces of a polyhedron

FJ =
⋂

j∈J h+
j
⋂

i∈I\J hi

Cell complex

A finite collection C of polyhedra called the faces of C such that

I f ∈ C, g ⊂ f ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Polyhedra and cell complexes

Polyhedron

The intersection of a finite collection of half-spaces :
V =

⋂
i∈I h+

i

Faces of a polyhedron

FJ =
⋂

j∈J h+
j
⋂

i∈I\J hi

Cell complex

A finite collection C of polyhedra called the faces of C such that

I f ∈ C, g ⊂ f ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Voronoi diagrams and polytopes

Vor(p1, . . . , pn) is the minimization diagram of the
n functions δi(x) = (x − pi)

2

arg min(δi) = arg max(hi)
where hpi (x) = 2 pi · x − p2

i

The minimization diagram of the δi is also the
maximization diagram of the affine functions hi(x)

The faces of Vor(P) are the projection of
the faces of V(P) =

⋂
i h+

pi

h+
pi
= {x : xd+1 > 2pi · x − p2

i }

pi

z = (x− pi)
2

Note !

hpi (x) = 0 is the hyperplane tangent to Q : xd+1 = x2 at (x , x2)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Voronoi diagrams and polytopes

Vor(p1, . . . , pn) is the minimization diagram of the
n functions δi(x) = (x − pi)

2

arg min(δi) = arg max(hi)
where hpi (x) = 2 pi · x − p2

i

The minimization diagram of the δi is also the
maximization diagram of the affine functions hi(x)

The faces of Vor(P) are the projection of
the faces of V(P) =

⋂
i h+

pi

h+
pi
= {x : xd+1 > 2pi · x − p2

i }

pi

z = (x− pi)
2

Note !

hpi (x) = 0 is the hyperplane tangent to Q : xd+1 = x2 at (x , x2)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Voronoi diagrams and polytopes

Vor(p1, . . . , pn) is the minimization diagram of the
n functions δi(x) = (x − pi)

2

arg min(δi) = arg max(hi)
where hpi (x) = 2 pi · x − p2

i

The minimization diagram of the δi is also the
maximization diagram of the affine functions hi(x)

The faces of Vor(P) are the projection of
the faces of V(P) =

⋂
i h+

pi

h+
pi
= {x : xd+1 > 2pi · x − p2

i }

pi

z = (x− pi)
2

Note !

hpi (x) = 0 is the hyperplane tangent to Q : xd+1 = x2 at (x , x2)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Voronoi diagrams and polytopes

Vor(p1, . . . , pn) is the minimization diagram of the
n functions δi(x) = (x − pi)

2

arg min(δi) = arg max(hi)
where hpi (x) = 2 pi · x − p2

i

The minimization diagram of the δi is also the
maximization diagram of the affine functions hi(x)

The faces of Vor(P) are the projection of
the faces of V(P) =

⋂
i h+

pi

h+
pi
= {x : xd+1 > 2pi · x − p2

i }

pi

z = (x− pi)
2

Note !

hpi (x) = 0 is the hyperplane tangent to Q : xd+1 = x2 at (x , x2)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Voronoi diagrams and polytopes

Lifting map

The faces of Vor(P) are the projection of the faces of the

polyhedron V(P) =
⋂

i h+
pi

where hpi is the hyperplane tangent to paraboloid Q
at the lifted point (pi ,p2

i)

Corollaries

I The size of Vor(P) is the same as the size of V(P)

I Computing Vor(P) reduces to computing V(P)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Voronoi diagrams and polytopes

Lifting map

The faces of Vor(P) are the projection of the faces of the

polyhedron V(P) =
⋂

i h+
pi

where hpi is the hyperplane tangent to paraboloid Q
at the lifted point (pi ,p2

i)

Corollaries

I The size of Vor(P) is the same as the size of V(P)

I Computing Vor(P) reduces to computing V(P)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Delaunay Triangulations

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Dual triangulation

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Convex hull of a finite point set P

P conv(P)

Definition

conv(P) = {
∑

λipi , λi ≥ 0,
∑

i

λi = 1}

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Geometric simplices

k -dimensional simplex (k -simplex for short)

The convex hull of k + 1 points that are affinely independent

1-simplex = line segment
2-simplex = triangle
3-simplex = tetrahedron

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Geometric simplicial complexes

Definition

A finite collection of simplices C called the faces of C such that

I ∀f ∈ C, f is a simplex
I f ∈ C, f ⊂ g ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C

The dimension of the complex is the max dimension of its
simplices

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Abstract simplicial complexes

Given a finite set of points P (not necessarily from a Euclidean
space) a subset C = {σ1, ..., σm} is a simplicial complex if

1. ∀i , σi ⊂ P
2. ∀i , all the subsets of σi are in C
3. ∀i , j , σi ∩ σj ∈ C

Theorem

Any simplicial complex of dimension k can be embedded in
R2k+1

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Abstract simplicial complexes

Given a finite set of points P (not necessarily from a Euclidean
space) a subset C = {σ1, ..., σm} is a simplicial complex if

1. ∀i , σi ⊂ P
2. ∀i , all the subsets of σi are in C
3. ∀i , j , σi ∩ σj ∈ C

Theorem

Any simplicial complex of dimension k can be embedded in
R2k+1

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Nerve of the Voronoi diagram of P = {p1, ...,pn} ⊂ Rd

If j Voronoi cells V (pi1), ...,V (pij) have a non empty intersection,
conv(pi1 , ...,pij) is a simplex of the Delaunay triangulation Del(P)

Note : Del(P) is not always embedded in Rd

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Empty circumballs

An (open) d-ball B circumscribing a
simplex σ ⊂ P is called empty if

1. σ ⊂ ∂B
2. B ∩ P = ∅

Del(P) is the collection of simplices
admitting an empty circumball

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Generic point sets

P = {p1,p2 . . . pn} is said to be generic if 6 ∃ d + 1 points of P
lying on a same sphere

If P is generic, t ⊂ P is a Delaunay simplex iff
∃ a sphere σt = {x , σt (x) = 0} s.t.

σt (p) = 0 ∀p ∈ t
σt (q) > 0 ∀q ∈ P \ t

Theorem [Delaunay 1936]

If P is generic, Del(P) is embedded in Rd

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Generic point sets

P = {p1,p2 . . . pn} is said to be generic if 6 ∃ d + 1 points of P
lying on a same sphere

If P is generic, t ⊂ P is a Delaunay simplex iff
∃ a sphere σt = {x , σt (x) = 0} s.t.

σt (p) = 0 ∀p ∈ t
σt (q) > 0 ∀q ∈ P \ t

Theorem [Delaunay 1936]

If P is generic, Del(P) is embedded in Rd

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Proof of Delaunay’s theorem

σ

h(σ)

P

Linearization
σ(x) = x2 − 2c · x + s, s = c2 − r2

σ(x) < 0⇔
{

z < 2c · x − s (h−σ)
z = x2 (P)

⇔ x̂ = (x , x2) ∈ h−σ

Proof of Delaunay’s th.
t a simplex, σt its circumscribing sphere

t ∈ Del(P)⇔ ∀i , p̂i ∈ h+
σt

⇔ t̂ is a face of conv−(P̂)

Del(P) = proj(conv−(P̂))

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Proof of Delaunay’s theorem

σ

h(σ)

P

Linearization
σ(x) = x2 − 2c · x + s, s = c2 − r2

σ(x) < 0⇔
{

z < 2c · x − s (h−σ)
z = x2 (P)

⇔ x̂ = (x , x2) ∈ h−σ

Proof of Delaunay’s th.
t a simplex, σt its circumscribing sphere

t ∈ Del(P)⇔ ∀i , p̂i ∈ h+
σt

⇔ t̂ is a face of conv−(P̂)

Del(P) = proj(conv−(P̂))

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Proof of Delaunay’s theorem

Linearization
σ(x) = x2 − 2c · x + s, s = c2 − r2

σ(x) < 0⇔
{

z < 2c · x − s (h−σ)
z = x2 (P)

⇔ x̂ = (x , x2) ∈ h−σ

Proof of Delaunay’s th.
t a simplex, σt its circumscribing sphere

t ∈ Del(P)⇔ ∀i , p̂i ∈ h+
σt

⇔ t̂ is a face of conv−(P̂)

Del(P) = proj(conv−(P̂))

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Combinatorial complexity

The combinatorial complexity of the Delaunay triangulation
diagram of n points of Rd is the same as the combinatorial
complexity of a convex hull of n points of Rd+1

Quadratic in R3

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Constructing Del(P), P = {p1, ...,pn} ⊂ Rd

Algorithm

1 Lift the points of P onto the paraboloid xd+1 = x2 of Rd+1:
pi → p̂i = (pi ,p2

i)

2 Compute conv({p̂i})
3 Project the lower hull conv−({p̂i}) onto Rd

Main predicate

p0

p1 p2

p4

insphere(p0, . . . ,pd+1) = orient(p̂0, . . . , p̂d+1)

= sign

∣∣∣∣∣∣
1 . . . 1
p0 . . . pd+1
p2

0 . . . p2
d+1

∣∣∣∣∣∣

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Constructing Del(P), P = {p1, ...,pn} ⊂ Rd

Algorithm

1 Lift the points of P onto the paraboloid xd+1 = x2 of Rd+1:
pi → p̂i = (pi ,p2

i)

2 Compute conv({p̂i})
3 Project the lower hull conv−({p̂i}) onto Rd

Main predicate

p0

p1 p2

p4

insphere(p0, . . . ,pd+1) = orient(p̂0, . . . , p̂d+1)

= sign

∣∣∣∣∣∣
1 . . . 1
p0 . . . pd+1
p2

0 . . . p2
d+1

∣∣∣∣∣∣
Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Convex Hulls

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

P conv(P)

Set of all possible convex combinations of points in P∑
λipi , λi ≥ 0,

∑
i λi = 1

We call polytope the convex hull of a finite set of points

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Cell complex

A finite collection of polytopal cells C called the faces of C such
that

I f ∈ C, g ⊂ f ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C

Simplicial complex

all faces are simplices

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Facial structure of a polytope

Supporting hyperplane
H ∩ C 6= ∅ and C is entirely contained in one of
the two half-spaces defined by H

Faces

The faces of P are the polytopes P ∩ h, h support. hyp.

The face complex

The faces of P form a cell complex C

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Facial structure of a polytope

Supporting hyperplane
H ∩ C 6= ∅ and C is entirely contained in one of
the two half-spaces defined by H

Faces

The faces of P are the polytopes P ∩ h, h support. hyp.

The face complex

The faces of P form a cell complex C

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Facial structure of a polytope

Supporting hyperplane
H ∩ C 6= ∅ and C is entirely contained in one of
the two half-spaces defined by H

Faces

The faces of P are the polytopes P ∩ h, h support. hyp.

The face complex

The faces of P form a cell complex C

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

General position

General position

A point set P is said to be in general position iff no subset of
k + 2 points lie in a k -flat

Boundary complex

If P is in general position, all the faces of conv(P) are simplices

The boundary of conv(P) is a simplicial complex

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

General position

General position

A point set P is said to be in general position iff no subset of
k + 2 points lie in a k -flat

Boundary complex

If P is in general position, all the faces of conv(P) are simplices

The boundary of conv(P) is a simplicial complex

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Two ways of defining polyhedra

Convex hull of n points

Intersection of n half-spaces

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Duality between points and hyperplanes

hyperplane h : xd = a · x ′ − b of Rd −→ point h∗ = (a, b) ∈ Rd−1 × R

point p = (p′, pd) ∈ Rd −→ hyperplane p∗ ⊂ Rd

= {(a, b) ∈ Rd : b = p′ · a− pd}

The mapping ∗

I preserves incidences :

p ∈ h ⇐⇒ pd = a · p′ − b ⇐⇒ b = p′ · a− pd ⇐⇒ h∗ ∈ p∗

p ∈ h+ ⇐⇒ pd > a · p′ − b ⇐⇒ b > p′ · a− pd ⇐⇒ h∗ ∈ p∗+

I is an involution and thus is bijective : h∗∗ = h and p∗∗ = p

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Duality between polytopes
Let h1, . . . ,hn be n hyperplanes de Rd and let P = ∩h+

i

ss

h1
h2 *

h3

h∗
3

h∗
2

h∗
1

A vertex s of P is t̄he intersection of k ≥ d hyperplanes h1, . . . ,hk
lying above all the other hyperplanes

=⇒ s∗ is a hyperplane 3 h∗1 , . . . ,h
∗
k

supporting P∗=conv−(h∗1 , . . . ,h
∗
k)

General position
s is the intersection of d hyperplanes

=⇒ s∗ supports a (d − 1)-face (simplex) de P∗

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

More generally and under the general position assumption,

if f is a (d − k)-face of P and aff(f) = ∩k
i=1hi

p ∈ f ⇔ h∗i ∈ p∗ for i = 1, . . . , k

h∗i ∈ p∗+ for i = k + 1, . . . , n

⇔ p∗support. hyp. of P∗ = conv(h∗1 , . . . , h
∗
n)

p∗ 3 h∗1 , . . . , h
∗
k

⇔ f ∗ = conv(h∗1 , . . . , h
∗
k) is a (k − 1)− face of P∗

Duality between P and P∗

I The correspondence between the faces of P and P∗ is
involutive and therefore bijective

I It reverses inclusions : ∀f ,g ∈ P, f ⊂ g ⇒ g∗ ⊂ f ∗

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

More generally and under the general position assumption,

if f is a (d − k)-face of P and aff(f) = ∩k
i=1hi

p ∈ f ⇔ h∗i ∈ p∗ for i = 1, . . . , k

h∗i ∈ p∗+ for i = k + 1, . . . , n

⇔ p∗support. hyp. of P∗ = conv(h∗1 , . . . , h
∗
n)

p∗ 3 h∗1 , . . . , h
∗
k

⇔ f ∗ = conv(h∗1 , . . . , h
∗
k) is a (k − 1)− face of P∗

Duality between P and P∗

I The correspondence between the faces of P and P∗ is
involutive and therefore bijective

I It reverses inclusions : ∀f ,g ∈ P, f ⊂ g ⇒ g∗ ⊂ f ∗

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Algorithmic consequences

I Computing the intersection of n upper half-spaces or the
lower convex hull of n points are equivalent problems

I Depending on the application, the primal or the dual setting
may be more appropriate

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Euler formula for 3-polytopes

The numbers of vertices s, edges a and facets f of a polytope
of R3 satisfy

s − a + f = 2

Schlegel diagram

s = s′
a′ = a + 1
f ′ = f + 1

a′ = a + 1
f ′ = f

s′ = s + 1

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Euler formula for 3-polytopes : s − a + f = 2

Incidences edges-facets

2a ≥ 3f =⇒ a ≤ 3s − 6
f ≤ 2s − 4

with equality when all facets are triangles

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Beyond the 3rd dimension
Upper bound theorem [McMullen 1970]

If P is the intersection of n half-spaces of Rd

nb faces of P = Θ(nb d
2 c)

General position

I all vertices of P are incident to d edges (in the worst-case)
and have distinct xd

I the convex hull of k < d edges incident to a vertex p
is a k -face of P

I any k -face is the intersection of d − k hyperplanes
defining P

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Beyond the 3rd dimension
Upper bound theorem [McMullen 1970]

If P is the intersection of n half-spaces of Rd

nb faces of P = Θ(nb d
2 c)

General position

I all vertices of P are incident to d edges (in the worst-case)
and have distinct xd

I the convex hull of k < d edges incident to a vertex p
is a k -face of P

I any k -face is the intersection of d − k hyperplanes
defining P

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Proof of the upper bound th.
Bounding the number of vertices

1. ≥ dd
2 e edges incident to a vertex p are in h+

p : xd ≥ xd (p)
or in h−p
⇒ p is a xd -max or xd -min vertex of at least one d d

2 e-face of P
⇒ # vertices of P ≤ 2×# d d

2 e-faces of P

2. A k -face is the intersection of d − k hyperplanes defining P

⇒ # k -faces =

(
n

d − k

)
= O(nd−k)

d d
2 e-faces = O(nb

d
2 c)

Bounding the total number of faces

The number of faces incident to p depends on d but not on n

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Proof of the upper bound th.
Bounding the number of vertices

⇒1. ≥ dd
2 e edges incident to a vertex p are in h+

p : xd ≥ xd (p)
or in h−p
⇒ p is a xd -max or xd -min vertex of at least one d d

2 e-face of P
⇒ # vertices of P ≤ 2×# d d

2 e-faces of P

2. A k -face is the intersection of d − k hyperplanes defining P

⇒ # k -faces =

(
n

d − k

)
= O(nd−k)

d d
2 e-faces = O(nb

d
2 c)

Bounding the total number of faces

The number of faces incident to p depends on d but not on n

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Proof of the upper bound th.
Bounding the number of vertices

⇒1. ≥ dd
2 e edges incident to a vertex p are in h+

p : xd ≥ xd (p)
or in h−p
⇒ p is a xd -max or xd -min vertex of at least one d d

2 e-face of P
⇒ # vertices of P ≤ 2×# d d

2 e-faces of P

2. A k -face is the intersection of d − k hyperplanes defining P

⇒ # k -faces =

(
n

d − k

)
= O(nd−k)

d d
2 e-faces = O(nb

d
2 c)

Bounding the total number of faces

The number of faces incident to p depends on d but not on n

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Representation of a convex hull

Adjacency graph (AG) of the facets

In general position, all the facets are (d − 1)-simplexes

⇒ Vertex
Face* v face

Face
Vertex* vertex [d]
Face* neighbor [d]

i

f

neighbor(ccw(i))

cw(i)

neighbor(i) ccw(i)
neighbor(cw(i))

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Incremental algorithm

Pi : set of the i points that have been
inserted first

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

s

t

f = [p1, ...,pd] is a red facet iff its supporting hyperplane
separates pi from conv(Pi)

⇐⇒ orient(p1, ...,pd ,pi)× orient(p1, ...,pd ,O) < 0

orient(p0,p1, ...,pd) =

∣∣∣∣ 1 1 ... 1
p0 p1 ... pd

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 1 ... 1

x01 x11 ... xd1
...

... ...
...

x0d x1d ... xdd

∣∣∣∣∣∣∣∣∣
Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Update of conv(Pi)

red facet = facet whose supporting hyperplane separates
o and pi+1

horizon : (d − 2)-faces shared by a blue and a red facet

Update conv(Pi) :
1. find the red facets
2. remove them and create the

new facets
[pi+1,g], ∀g ∈ horizon

O

pi

conv(Ei)

e

s

t

Complexity

proportional to the nb of red facets

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Update of conv(Pi)

red facet = facet whose supporting hyperplane separates
o and pi+1

horizon : (d − 2)-faces shared by a blue and a red facet

Update conv(Pi) :
1. find the red facets
2. remove them and create the

new facets
[pi+1,g], ∀g ∈ horizon

O

pi

conv(Ei)

e

s

t

Complexity

proportional to the nb of red facets

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Complexity analysis
I update proportionnal to the number of

red facets

I # new facets = |conv(i ,d − 1)|
= O(ib

d−1
2 c)

I fast locate : insert the points in
lexicographic order and search
a 1st red facet in star(pi−1)

(which necessarily exists)

O

pi

conv(Ei)

e

s

t

T (n,d) = O(n log n) +
∑n

i=1 ib
d−1

2 c)

= O(n log n + nb d+1
2 c)

Worst-case optimal in even dimensions

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Complexity analysis
I update proportionnal to the number of

red facets

I # new facets = |conv(i ,d − 1)|
= O(ib

d−1
2 c)

I fast locate : insert the points in
lexicographic order and search
a 1st red facet in star(pi−1)

(which necessarily exists)

O

pi

conv(Ei)

e

s

t

T (n,d) = O(n log n) +
∑n

i=1 ib
d−1

2 c)

= O(n log n + nb d+1
2 c)

Worst-case optimal in even dimensions

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Lower bound

xi

pi = (xi, x
2
i)

y = x2 conv({pi}) =⇒ tri({xi})

the orientation test reduces to 3
comparisons

orient(pi , pj , pk) =

∣∣∣∣ xi − xj xi − xk

x2
i − x2

j x2
i − x2

k

∣∣∣∣
= (xi − xj)(xj − xk)(xk − xi)

=⇒ Lower bound : Ω(n log n)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Lower bound for the incremental algorithm

No incremental algorithm can compute the convex hull of n
points of R3 in less than Ω(n2)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Randomized incremental algorithm

o a point inside conv(P)

Pi : the set of the first i inserted points

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

Conflict graph

bipartite graph {pj} × {facets of conv(Pi)}

pj † f ⇐⇒ j > i (pj not yet inserted), f ∩ opj 6= ∅

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Randomized incremental algorithm

o a point inside conv(P)

Pi : the set of the first i inserted points

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

Conflict graph

bipartite graph {pj} × {facets of conv(Pi)}

pj † f ⇐⇒ j > i (pj not yet inserted), f ∩ opj 6= ∅

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Randomized analysis

Hyp. : points are inserted in random order

Notations

R : random sample of size r of P

F (R) = { subsets of d points of R}
F0(R) = { elements of F (R) with 0 conflict in R}

(i.e. ∈ conv(R))

F1(R) = { elements of F (R) with 1 conflict in R}

Ci(r ,P) = E(|Fi(R)|)
(expectation over all random samples R ⊂ P of size r)

Lemma

C1(r ,P) = C0(r ,P) = O(rb d
2 c)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Randomized analysis

Hyp. : points are inserted in random order

Notations

R : random sample of size r of P

F (R) = { subsets of d points of R}
F0(R) = { elements of F (R) with 0 conflict in R}

(i.e. ∈ conv(R))

F1(R) = { elements of F (R) with 1 conflict in R}

Ci(r ,P) = E(|Fi(R)|)
(expectation over all random samples R ⊂ P of size r)

Lemma

C1(r ,P) = C0(r ,P) = O(rb d
2 c)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Randomized analysis

Hyp. : points are inserted in random order

Notations

R : random sample of size r of P

F (R) = { subsets of d points of R}
F0(R) = { elements of F (R) with 0 conflict in R}

(i.e. ∈ conv(R))

F1(R) = { elements of F (R) with 1 conflict in R}

Ci(r ,P) = E(|Fi(R)|)
(expectation over all random samples R ⊂ P of size r)

Lemma

C1(r ,P) = C0(r ,P) = O(rb d
2 c)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Proof of the lemma : C1(r ,P) = C0(r ,P) = O(rb d
2c)

R′ = R \ {p}

f ∈ F0(R′) if f ∈ F1(R) and p † f (proba = 1
r)

or f ∈ F0(R) and R′ 3 the d vertices of f (proba = r−d
r)

Taking the expectation,

C0(r − 1,R) =
1
r
|F1(R)|+ r − d

r
|F0(R)|

C0(r − 1,P) =
1
r

C1(r ,P) +
r − d

r
C0(r ,P)

C1(r ,P) = d C0(r ,P)− r (C0(r ,P)− C0(r − 1,P))

≤ d C0(r ,P)

= O(rb d
2 c)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Randomized analysis 1
Updating the convex hull + memory space

Expected number N(i) of facets created at step i

N(i) =
∑

f∈F (P)

proba(f ∈ F0(Pi))× d
i

=
d
i

O
(

ib d
2 c
)

= O(nb d
2 c−1)

Expected total number of created facets = O(nb d
2c)

O(n) if d = 2, 3

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Randomized analysis2
Updating the conflict graph

Cost proportional to the total number of conflicts between
facets that have been created and points not yet inserted

N(i , j) = expected number of conflicts f † pj
f face of conv(Pi) created at step i
j > i (pj has not been inserted yet)

Pi : a random subset of P
pj : a random point of P \ Pi
P+

i = Pi ∪ {pj} : a random subset of i + 1 points of P

N(i , j) =
∑

f∈F (P)

proba(f ∈ F1(P+
i))× d

i
× 1

i + 1
=

d C1(i + 1)

i (i + 1)

Expected total cost of updating the conflict graph
n∑

i=1

n∑
j=i+1

N(i , j) = O(n log n + nb d
2 c)

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

Theorem

I The convex hull of n points of Rd can be computed in time
O(n log n + nb d

2 c) using O(nb d
2 c) space

I The same bounds hold for computing the intersection of n
half-spaces of Rd

I The randomized algorithm can be derandomized
[Chazelle 1992]

I The same results hold for Voronoi diagrams and Delaunay
triangulations provided that d → d + 1

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

You know my methods. Apply them !

Sherlock Holmes

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations

