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Voronoi diagrams in nature
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The solar system (Descartes)
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Growth of merystem
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Euclidean Voronoi diagrams

Voronoi cell V (pi) = {x : ‖x − pi‖ ≤ ‖x − pj‖, ∀j}

Voronoi diagram (P) = { cell complex whose cells are the V (pi)
and their faces, pi ∈ P }
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Polyhedra and cell complexes

Polyhedron

The intersection of a finite collection of half-spaces :
V =

⋂
i∈I h+

i

Faces of a polyhedron

FJ =
⋂

j∈J h+
j
⋂

i∈I\J hi

Cell complex

A finite collection C of polyhedra called the faces of C such that

I f ∈ C, g ⊂ f ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C
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Voronoi diagrams and polytopes

Vor(p1, . . . , pn) is the minimization diagram of the
n functions δi(x) = (x − pi)

2

arg min(δi) = arg max(hi)
where hpi (x) = 2 pi · x − p2

i

The minimization diagram of the δi is also the
maximization diagram of the affine functions hi(x)

The faces of Vor(P) are the projection of
the faces of V(P) =

⋂
i h+

pi

h+
pi
= {x : xd+1 > 2pi · x − p2

i }

pi

z = (x− pi)
2

Note !

hpi (x) = 0 is the hyperplane tangent to Q : xd+1 = x2 at (x , x2)
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Voronoi diagrams and polytopes

Lifting map

The faces of Vor(P) are the projection of the faces of the

polyhedron V(P) =
⋂

i h+
pi

where hpi is the hyperplane tangent to paraboloid Q
at the lifted point (pi ,p2

i )

Corollaries

I The size of Vor(P) is the same as the size of V(P)

I Computing Vor(P) reduces to computing V(P)
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Delaunay Triangulations
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Dual triangulation
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Convex hull of a finite point set P

P conv(P)

Definition

conv(P) = {
∑

λipi , λi ≥ 0,
∑

i

λi = 1}
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Geometric simplices

k -dimensional simplex (k -simplex for short)

The convex hull of k + 1 points that are affinely independent

1-simplex = line segment
2-simplex = triangle
3-simplex = tetrahedron
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Geometric simplicial complexes

Definition

A finite collection of simplices C called the faces of C such that

I ∀f ∈ C, f is a simplex
I f ∈ C, f ⊂ g ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C

The dimension of the complex is the max dimension of its
simplices
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Abstract simplicial complexes

Given a finite set of points P (not necessarily from a Euclidean
space) a subset C = {σ1, ..., σm} is a simplicial complex if

1. ∀i , σi ⊂ P
2. ∀i , all the subsets of σi are in C
3. ∀i , j , σi ∩ σj ∈ C

Theorem

Any simplicial complex of dimension k can be embedded in
R2k+1
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Nerve of the Voronoi diagram of P = {p1, ...,pn} ⊂ Rd

If j Voronoi cells V (pi1), ...,V (pij ) have a non empty intersection,
conv(pi1 , ...,pij ) is a simplex of the Delaunay triangulation Del(P)

Note : Del(P) is not always embedded in Rd
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Empty circumballs

An (open) d-ball B circumscribing a
simplex σ ⊂ P is called empty if

1. σ ⊂ ∂B
2. B ∩ P = ∅

Del(P) is the collection of simplices
admitting an empty circumball
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Generic point sets

P = {p1,p2 . . . pn} is said to be generic if 6 ∃ d + 1 points of P
lying on a same sphere

If P is generic, t ⊂ P is a Delaunay simplex iff
∃ a sphere σt = {x , σt (x) = 0} s.t.

σt (p) = 0 ∀p ∈ t
σt (q) > 0 ∀q ∈ P \ t

Theorem [Delaunay 1936]

If P is generic, Del(P) is embedded in Rd
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Proof of Delaunay’s theorem

σ

h(σ)

P

Linearization
σ(x) = x2 − 2c · x + s, s = c2 − r2

σ(x) < 0⇔
{

z < 2c · x − s (h−σ )
z = x2 (P)

⇔ x̂ = (x , x2) ∈ h−σ

Proof of Delaunay’s th.
t a simplex, σt its circumscribing sphere

t ∈ Del(P)⇔ ∀i , p̂i ∈ h+
σt

⇔ t̂ is a face of conv−(P̂)

Del(P) = proj(conv−(P̂))
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Combinatorial complexity

The combinatorial complexity of the Delaunay triangulation
diagram of n points of Rd is the same as the combinatorial
complexity of a convex hull of n points of Rd+1

Quadratic in R3
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Constructing Del(P), P = {p1, ...,pn} ⊂ Rd

Algorithm

1 Lift the points of P onto the paraboloid xd+1 = x2 of Rd+1:
pi → p̂i = (pi ,p2

i )

2 Compute conv({p̂i})
3 Project the lower hull conv−({p̂i}) onto Rd

Main predicate

p0

p1 p2

p4

insphere(p0, . . . ,pd+1) = orient(p̂0, . . . , p̂d+1)

= sign

∣∣∣∣∣∣
1 . . . 1
p0 . . . pd+1
p2

0 . . . p2
d+1

∣∣∣∣∣∣
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Convex Hulls
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P conv(P)

Set of all possible convex combinations of points in P∑
λipi , λi ≥ 0,

∑
i λi = 1

We call polytope the convex hull of a finite set of points
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Cell complex

A finite collection of polytopal cells C called the faces of C such
that

I f ∈ C, g ⊂ f ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C

Simplicial complex

all faces are simplices
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Facial structure of a polytope

Supporting hyperplane
H ∩ C 6= ∅ and C is entirely contained in one of
the two half-spaces defined by H

Faces

The faces of P are the polytopes P ∩ h, h support. hyp.

The face complex

The faces of P form a cell complex C
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General position

General position

A point set P is said to be in general position iff no subset of
k + 2 points lie in a k -flat

Boundary complex

If P is in general position, all the faces of conv(P) are simplices

The boundary of conv(P) is a simplicial complex

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations



General position

General position

A point set P is said to be in general position iff no subset of
k + 2 points lie in a k -flat

Boundary complex

If P is in general position, all the faces of conv(P) are simplices

The boundary of conv(P) is a simplicial complex

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations



Two ways of defining polyhedra

Convex hull of n points

Intersection of n half-spaces
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Duality between points and hyperplanes

hyperplane h : xd = a · x ′ − b of Rd −→ point h∗ = (a, b) ∈ Rd−1 × R

point p = (p′, pd) ∈ Rd −→ hyperplane p∗ ⊂ Rd

= {(a, b) ∈ Rd : b = p′ · a− pd}

The mapping ∗

I preserves incidences :

p ∈ h ⇐⇒ pd = a · p′ − b ⇐⇒ b = p′ · a− pd ⇐⇒ h∗ ∈ p∗

p ∈ h+ ⇐⇒ pd > a · p′ − b ⇐⇒ b > p′ · a− pd ⇐⇒ h∗ ∈ p∗+

I is an involution and thus is bijective : h∗∗ = h and p∗∗ = p
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Duality between polytopes
Let h1, . . . ,hn be n hyperplanes de Rd and let P = ∩h+

i

ss

h1
h2 *

h3

h∗
3

h∗
2

h∗
1

A vertex s of P is t̄he intersection of k ≥ d hyperplanes h1, . . . ,hk
lying above all the other hyperplanes

=⇒ s∗ is a hyperplane 3 h∗1 , . . . ,h
∗
k

supporting P∗=conv−(h∗1 , . . . ,h
∗
k )

General position
s is the intersection of d hyperplanes

=⇒ s∗ supports a (d − 1)-face (simplex) de P∗
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More generally and under the general position assumption,

if f is a (d − k)-face of P and aff(f ) = ∩k
i=1hi

p ∈ f ⇔ h∗i ∈ p∗ for i = 1, . . . , k

h∗i ∈ p∗+ for i = k + 1, . . . , n

⇔ p∗support. hyp. of P∗ = conv(h∗1 , . . . , h
∗
n )

p∗ 3 h∗1 , . . . , h
∗
k

⇔ f ∗ = conv(h∗1 , . . . , h
∗
k ) is a (k − 1)− face of P∗

Duality between P and P∗

I The correspondence between the faces of P and P∗ is
involutive and therefore bijective

I It reverses inclusions : ∀f ,g ∈ P, f ⊂ g ⇒ g∗ ⊂ f ∗
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Algorithmic consequences

I Computing the intersection of n upper half-spaces or the
lower convex hull of n points are equivalent problems

I Depending on the application, the primal or the dual setting
may be more appropriate
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Euler formula for 3-polytopes

The numbers of vertices s, edges a and facets f of a polytope
of R3 satisfy

s − a + f = 2

Schlegel diagram

s = s′
a′ = a + 1
f ′ = f + 1

a′ = a + 1
f ′ = f

s′ = s + 1
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Euler formula for 3-polytopes : s − a + f = 2

Incidences edges-facets

2a ≥ 3f =⇒ a ≤ 3s − 6
f ≤ 2s − 4

with equality when all facets are triangles

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations



Beyond the 3rd dimension
Upper bound theorem [McMullen 1970]

If P is the intersection of n half-spaces of Rd

nb faces of P = Θ(nb d
2 c)

General position

I all vertices of P are incident to d edges (in the worst-case)
and have distinct xd

I the convex hull of k < d edges incident to a vertex p
is a k -face of P

I any k -face is the intersection of d − k hyperplanes
defining P
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Proof of the upper bound th.
Bounding the number of vertices

1. ≥ dd
2 e edges incident to a vertex p are in h+

p : xd ≥ xd (p)
or in h−p
⇒ p is a xd -max or xd -min vertex of at least one d d

2 e-face of P
⇒ # vertices of P ≤ 2×# d d

2 e-faces of P

2. A k -face is the intersection of d − k hyperplanes defining P

⇒ # k -faces =

(
n

d − k

)
= O(nd−k )

# d d
2 e-faces = O(nb

d
2 c)

Bounding the total number of faces

The number of faces incident to p depends on d but not on n
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Representation of a convex hull

Adjacency graph (AG) of the facets

In general position, all the facets are (d − 1)-simplexes

⇒ Vertex
Face* v face

Face
Vertex* vertex [d ]
Face* neighbor [d ]

i

f

neighbor(ccw(i))

cw(i)

neighbor(i) ccw(i)
neighbor(cw(i))
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Incremental algorithm

Pi : set of the i points that have been
inserted first

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

s

t

f = [p1, ...,pd ] is a red facet iff its supporting hyperplane
separates pi from conv(Pi)

⇐⇒ orient(p1, ...,pd ,pi)× orient(p1, ...,pd ,O) < 0

orient(p0,p1, ...,pd ) =

∣∣∣∣ 1 1 ... 1
p0 p1 ... pd

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 1 ... 1

x01 x11 ... xd1
...

... ...
...

x0d x1d ... xdd

∣∣∣∣∣∣∣∣∣
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Update of conv(Pi)

red facet = facet whose supporting hyperplane separates
o and pi+1

horizon : (d − 2)-faces shared by a blue and a red facet

Update conv(Pi) :
1. find the red facets
2. remove them and create the

new facets
[pi+1,g], ∀g ∈ horizon

O

pi

conv(Ei)

e

s

t

Complexity

proportional to the nb of red facets

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations



Update of conv(Pi)

red facet = facet whose supporting hyperplane separates
o and pi+1

horizon : (d − 2)-faces shared by a blue and a red facet

Update conv(Pi) :
1. find the red facets
2. remove them and create the

new facets
[pi+1,g], ∀g ∈ horizon

O

pi

conv(Ei)

e

s

t

Complexity

proportional to the nb of red facets

Computational Geometric Learning Voronoi Diagrams and Delaunay Triangulations



Complexity analysis
I update proportionnal to the number of

red facets

I # new facets = |conv(i ,d − 1)|
= O(ib

d−1
2 c)

I fast locate : insert the points in
lexicographic order and search
a 1st red facet in star(pi−1)

(which necessarily exists)

O

pi

conv(Ei)

e

s

t

T (n,d) = O(n log n) +
∑n

i=1 ib
d−1

2 c)

= O(n log n + nb d+1
2 c)

Worst-case optimal in even dimensions
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Lower bound

xi

pi = (xi, x
2
i )

y = x2 conv({pi}) =⇒ tri({xi})

the orientation test reduces to 3
comparisons

orient(pi , pj , pk ) =

∣∣∣∣ xi − xj xi − xk

x2
i − x2

j x2
i − x2

k

∣∣∣∣
= (xi − xj)(xj − xk )(xk − xi)

=⇒ Lower bound : Ω(n log n)
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Lower bound for the incremental algorithm

No incremental algorithm can compute the convex hull of n
points of R3 in less than Ω(n2)
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Randomized incremental algorithm

o a point inside conv(P)

Pi : the set of the first i inserted points

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

Conflict graph

bipartite graph {pj} × {facets of conv(Pi)}

pj † f ⇐⇒ j > i (pj not yet inserted), f ∩ opj 6= ∅
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Randomized analysis

Hyp. : points are inserted in random order

Notations

R : random sample of size r of P

F (R) = { subsets of d points of R}
F0(R) = { elements of F (R) with 0 conflict in R}

(i.e. ∈ conv(R))

F1(R) = { elements of F (R) with 1 conflict in R}

Ci(r ,P) = E(|Fi(R)|)
(expectation over all random samples R ⊂ P of size r )

Lemma

C1(r ,P) = C0(r ,P) = O(rb d
2 c)
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Proof of the lemma : C1(r ,P) = C0(r ,P) = O(rb d
2c)

R′ = R \ {p}

f ∈ F0(R′) if f ∈ F1(R) and p † f (proba = 1
r )

or f ∈ F0(R) and R′ 3 the d vertices of f (proba = r−d
r )

Taking the expectation,

C0(r − 1,R) =
1
r
|F1(R)|+ r − d

r
|F0(R)|

C0(r − 1,P) =
1
r

C1(r ,P) +
r − d

r
C0(r ,P)

C1(r ,P) = d C0(r ,P)− r (C0(r ,P)− C0(r − 1,P))

≤ d C0(r ,P)

= O(rb d
2 c)
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Randomized analysis 1
Updating the convex hull + memory space

Expected number N(i) of facets created at step i

N(i) =
∑

f∈F (P)

proba(f ∈ F0(Pi))× d
i

=
d
i

O
(

ib d
2 c
)

= O(nb d
2 c−1)

Expected total number of created facets = O(nb d
2c)

O(n) if d = 2, 3
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Randomized analysis2
Updating the conflict graph

Cost proportional to the total number of conflicts between
facets that have been created and points not yet inserted

N(i , j) = expected number of conflicts f † pj
f face of conv(Pi ) created at step i
j > i (pj has not been inserted yet)

Pi : a random subset of P
pj : a random point of P \ Pi
P+

i = Pi ∪ {pj} : a random subset of i + 1 points of P

N(i , j) =
∑

f∈F (P)

proba(f ∈ F1(P+
i ))× d

i
× 1

i + 1
=

d C1(i + 1)

i (i + 1)

Expected total cost of updating the conflict graph
n∑

i=1

n∑
j=i+1

N(i , j) = O(n log n + nb d
2 c)
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Theorem

I The convex hull of n points of Rd can be computed in time
O(n log n + nb d

2 c) using O(nb d
2 c) space

I The same bounds hold for computing the intersection of n
half-spaces of Rd

I The randomized algorithm can be derandomized
[Chazelle 1992]

I The same results hold for Voronoi diagrams and Delaunay
triangulations provided that d → d + 1
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You know my methods. Apply them !

Sherlock Holmes
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